order.symm_diffMathlib.Order.SymmDiff

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -591,7 +591,7 @@ theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
 theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩
-  rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h 
+  rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h
   exact h.of_disjoint_inf_of_le le_sup_left
 #align symm_diff_eq_sup symmDiff_eq_sup
 -/
@@ -601,7 +601,7 @@ theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
 theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, fun h => h.symm_diff_eq_sup.symm ▸ le_sup_left⟩
-  rw [symmDiff_eq_sup_sdiff_inf] at h 
+  rw [symmDiff_eq_sup_sdiff_inf] at h
   exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le
 #align le_symm_diff_iff_left le_symmDiff_iff_left
 -/
Diff
@@ -136,7 +136,7 @@ theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm
 -/
 
 #print symmDiff_isCommutative /-
-instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
+instance symmDiff_isCommutative : Std.Commutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
 #align symm_diff_is_comm symmDiff_isCommutative
 -/
@@ -306,7 +306,7 @@ theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 -/
 
 #print bihimp_isCommutative /-
-instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
+instance bihimp_isCommutative : Std.Commutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
 #align bihimp_is_comm bihimp_isCommutative
 -/
@@ -641,7 +641,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
 -/
 
 #print symmDiff_isAssociative /-
-instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
+instance symmDiff_isAssociative : Std.Associative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
 #align symm_diff_is_assoc symmDiff_isAssociative
 -/
@@ -850,7 +850,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
 -/
 
 #print bihimp_isAssociative /-
-instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
+instance bihimp_isAssociative : Std.Associative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
 #align bihimp_is_assoc bihimp_isAssociative
 -/
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz, Bryan Gin-ge Chen, Yaël Dillies
 -/
-import Mathbin.Order.BooleanAlgebra
-import Mathbin.Logic.Equiv.Basic
+import Order.BooleanAlgebra
+import Logic.Equiv.Basic
 
 #align_import order.symm_diff from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz, Bryan Gin-ge Chen, Yaël Dillies
-
-! This file was ported from Lean 3 source module order.symm_diff
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.BooleanAlgebra
 import Mathbin.Logic.Equiv.Basic
 
+#align_import order.symm_diff from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
+
 /-!
 # Symmetric difference and bi-implication
 
Diff
@@ -77,13 +77,11 @@ def bihimp [Inf α] [HImp α] (a b : α) : α :=
 #align bihimp bihimp
 -/
 
--- mathport name: «expr ∆ »
 infixl:100
   " ∆ " =>/- This notation might conflict with the Laplacian once we have it. Feel free to put it in locale
   `order` or `symm_diff` if that happens. -/
   symmDiff
 
--- mathport name: «expr ⇔ »
 infixl:100 " ⇔ " => bihimp
 
 #print symmDiff_def /-
@@ -98,18 +96,24 @@ theorem bihimp_def [Inf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a 
 #align bihimp_def bihimp_def
 -/
 
+#print symmDiff_eq_Xor' /-
 theorem symmDiff_eq_Xor' (p q : Prop) : p ∆ q = Xor' p q :=
   rfl
 #align symm_diff_eq_xor symmDiff_eq_Xor'
+-/
 
+#print bihimp_iff_iff /-
 @[simp]
 theorem bihimp_iff_iff {p q : Prop} : p ⇔ q ↔ (p ↔ q) :=
   (iff_iff_implies_and_implies _ _).symm.trans Iff.comm
 #align bihimp_iff_iff bihimp_iff_iff
+-/
 
+#print Bool.symmDiff_eq_xor /-
 @[simp]
 theorem Bool.symmDiff_eq_xor : ∀ p q : Bool, p ∆ q = xor p q := by decide
 #align bool.symm_diff_eq_bxor Bool.symmDiff_eq_xor
+-/
 
 section GeneralizedCoheytingAlgebra
 
@@ -129,66 +133,97 @@ theorem ofDual_bihimp (a b : αᵒᵈ) : ofDual (a ⇔ b) = ofDual a ∆ ofDual
 #align of_dual_bihimp ofDual_bihimp
 -/
 
+#print symmDiff_comm /-
 theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm]
 #align symm_diff_comm symmDiff_comm
+-/
 
+#print symmDiff_isCommutative /-
 instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
 #align symm_diff_is_comm symmDiff_isCommutative
+-/
 
+#print symmDiff_self /-
 @[simp]
 theorem symmDiff_self : a ∆ a = ⊥ := by rw [(· ∆ ·), sup_idem, sdiff_self]
 #align symm_diff_self symmDiff_self
+-/
 
+#print symmDiff_bot /-
 @[simp]
 theorem symmDiff_bot : a ∆ ⊥ = a := by rw [(· ∆ ·), sdiff_bot, bot_sdiff, sup_bot_eq]
 #align symm_diff_bot symmDiff_bot
+-/
 
+#print bot_symmDiff /-
 @[simp]
 theorem bot_symmDiff : ⊥ ∆ a = a := by rw [symmDiff_comm, symmDiff_bot]
 #align bot_symm_diff bot_symmDiff
+-/
 
+#print symmDiff_eq_bot /-
 @[simp]
 theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
   simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
 #align symm_diff_eq_bot symmDiff_eq_bot
+-/
 
+#print symmDiff_of_le /-
 theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
 #align symm_diff_of_le symmDiff_of_le
+-/
 
+#print symmDiff_of_ge /-
 theorem symmDiff_of_ge {a b : α} (h : b ≤ a) : a ∆ b = a \ b := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
 #align symm_diff_of_ge symmDiff_of_ge
+-/
 
+#print symmDiff_le /-
 theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ∆ b ≤ c :=
   sup_le (sdiff_le_iff.2 ha) <| sdiff_le_iff.2 hb
 #align symm_diff_le symmDiff_le
+-/
 
+#print symmDiff_le_iff /-
 theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c := by
   simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
 #align symm_diff_le_iff symmDiff_le_iff
+-/
 
+#print symmDiff_le_sup /-
 @[simp]
 theorem symmDiff_le_sup {a b : α} : a ∆ b ≤ a ⊔ b :=
   sup_le_sup sdiff_le sdiff_le
 #align symm_diff_le_sup symmDiff_le_sup
+-/
 
+#print symmDiff_eq_sup_sdiff_inf /-
 theorem symmDiff_eq_sup_sdiff_inf : a ∆ b = (a ⊔ b) \ (a ⊓ b) := by simp [sup_sdiff, symmDiff]
 #align symm_diff_eq_sup_sdiff_inf symmDiff_eq_sup_sdiff_inf
+-/
 
+#print Disjoint.symmDiff_eq_sup /-
 theorem Disjoint.symmDiff_eq_sup {a b : α} (h : Disjoint a b) : a ∆ b = a ⊔ b := by
   rw [(· ∆ ·), h.sdiff_eq_left, h.sdiff_eq_right]
 #align disjoint.symm_diff_eq_sup Disjoint.symmDiff_eq_sup
+-/
 
+#print symmDiff_sdiff /-
 theorem symmDiff_sdiff : a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) := by
   rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
 #align symm_diff_sdiff symmDiff_sdiff
+-/
 
+#print symmDiff_sdiff_inf /-
 @[simp]
 theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b := by rw [symmDiff_sdiff]; simp [symmDiff]
 #align symm_diff_sdiff_inf symmDiff_sdiff_inf
+-/
 
+#print symmDiff_sdiff_eq_sup /-
 @[simp]
 theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
   by
@@ -197,12 +232,16 @@ theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
     le_antisymm (sup_le_sup sdiff_le sdiff_le)
       (sup_le le_sdiff_sup <| le_sdiff_sup.trans <| sup_le le_sup_right le_sdiff_sup)
 #align symm_diff_sdiff_eq_sup symmDiff_sdiff_eq_sup
+-/
 
+#print sdiff_symmDiff_eq_sup /-
 @[simp]
 theorem sdiff_symmDiff_eq_sup : (a \ b) ∆ b = a ⊔ b := by
   rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
 #align sdiff_symm_diff_eq_sup sdiff_symmDiff_eq_sup
+-/
 
+#print symmDiff_sup_inf /-
 @[simp]
 theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
   by
@@ -214,26 +253,35 @@ theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
   · rw [sup_assoc]
     exact le_sup_of_le_right le_sdiff_sup
 #align symm_diff_sup_inf symmDiff_sup_inf
+-/
 
+#print inf_sup_symmDiff /-
 @[simp]
 theorem inf_sup_symmDiff : a ⊓ b ⊔ a ∆ b = a ⊔ b := by rw [sup_comm, symmDiff_sup_inf]
 #align inf_sup_symm_diff inf_sup_symmDiff
+-/
 
+#print symmDiff_symmDiff_inf /-
 @[simp]
 theorem symmDiff_symmDiff_inf : a ∆ b ∆ (a ⊓ b) = a ⊔ b := by
   rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
 #align symm_diff_symm_diff_inf symmDiff_symmDiff_inf
+-/
 
+#print inf_symmDiff_symmDiff /-
 @[simp]
 theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
   rw [symmDiff_comm, symmDiff_symmDiff_inf]
 #align inf_symm_diff_symm_diff inf_symmDiff_symmDiff
+-/
 
+#print symmDiff_triangle /-
 theorem symmDiff_triangle : a ∆ c ≤ a ∆ b ⊔ b ∆ c :=
   by
   refine' (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq _
   rw [@sup_comm _ _ (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
 #align symm_diff_triangle symmDiff_triangle
+-/
 
 end GeneralizedCoheytingAlgebra
 
@@ -255,99 +303,143 @@ theorem ofDual_symmDiff (a b : αᵒᵈ) : ofDual (a ∆ b) = ofDual a ⇔ ofDua
 #align of_dual_symm_diff ofDual_symmDiff
 -/
 
+#print bihimp_comm /-
 theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 #align bihimp_comm bihimp_comm
+-/
 
+#print bihimp_isCommutative /-
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
 #align bihimp_is_comm bihimp_isCommutative
+-/
 
+#print bihimp_self /-
 @[simp]
 theorem bihimp_self : a ⇔ a = ⊤ := by rw [(· ⇔ ·), inf_idem, himp_self]
 #align bihimp_self bihimp_self
+-/
 
+#print bihimp_top /-
 @[simp]
 theorem bihimp_top : a ⇔ ⊤ = a := by rw [(· ⇔ ·), himp_top, top_himp, inf_top_eq]
 #align bihimp_top bihimp_top
+-/
 
+#print top_bihimp /-
 @[simp]
 theorem top_bihimp : ⊤ ⇔ a = a := by rw [bihimp_comm, bihimp_top]
 #align top_bihimp top_bihimp
+-/
 
+#print bihimp_eq_top /-
 @[simp]
 theorem bihimp_eq_top {a b : α} : a ⇔ b = ⊤ ↔ a = b :=
   @symmDiff_eq_bot αᵒᵈ _ _ _
 #align bihimp_eq_top bihimp_eq_top
+-/
 
+#print bihimp_of_le /-
 theorem bihimp_of_le {a b : α} (h : a ≤ b) : a ⇔ b = b ⇨ a := by
   rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
 #align bihimp_of_le bihimp_of_le
+-/
 
+#print bihimp_of_ge /-
 theorem bihimp_of_ge {a b : α} (h : b ≤ a) : a ⇔ b = a ⇨ b := by
   rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
 #align bihimp_of_ge bihimp_of_ge
+-/
 
+#print le_bihimp /-
 theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤ b ⇔ c :=
   le_inf (le_himp_iff.2 hc) <| le_himp_iff.2 hb
 #align le_bihimp le_bihimp
+-/
 
+#print le_bihimp_iff /-
 theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b := by
   simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
 #align le_bihimp_iff le_bihimp_iff
+-/
 
+#print inf_le_bihimp /-
 @[simp]
 theorem inf_le_bihimp {a b : α} : a ⊓ b ≤ a ⇔ b :=
   inf_le_inf le_himp le_himp
 #align inf_le_bihimp inf_le_bihimp
+-/
 
+#print bihimp_eq_inf_himp_inf /-
 theorem bihimp_eq_inf_himp_inf : a ⇔ b = a ⊔ b ⇨ a ⊓ b := by simp [himp_inf_distrib, bihimp]
 #align bihimp_eq_inf_himp_inf bihimp_eq_inf_himp_inf
+-/
 
+#print Codisjoint.bihimp_eq_inf /-
 theorem Codisjoint.bihimp_eq_inf {a b : α} (h : Codisjoint a b) : a ⇔ b = a ⊓ b := by
   rw [(· ⇔ ·), h.himp_eq_left, h.himp_eq_right]
 #align codisjoint.bihimp_eq_inf Codisjoint.bihimp_eq_inf
+-/
 
+#print himp_bihimp /-
 theorem himp_bihimp : a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) := by
   rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
 #align himp_bihimp himp_bihimp
+-/
 
+#print sup_himp_bihimp /-
 @[simp]
 theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b := by rw [himp_bihimp]; simp [bihimp]
 #align sup_himp_bihimp sup_himp_bihimp
+-/
 
+#print bihimp_himp_eq_inf /-
 @[simp]
 theorem bihimp_himp_eq_inf : a ⇔ (a ⇨ b) = a ⊓ b :=
   @symmDiff_sdiff_eq_sup αᵒᵈ _ _ _
 #align bihimp_himp_eq_inf bihimp_himp_eq_inf
+-/
 
+#print himp_bihimp_eq_inf /-
 @[simp]
 theorem himp_bihimp_eq_inf : (b ⇨ a) ⇔ b = a ⊓ b :=
   @sdiff_symmDiff_eq_sup αᵒᵈ _ _ _
 #align himp_bihimp_eq_inf himp_bihimp_eq_inf
+-/
 
+#print bihimp_inf_sup /-
 @[simp]
 theorem bihimp_inf_sup : a ⇔ b ⊓ (a ⊔ b) = a ⊓ b :=
   @symmDiff_sup_inf αᵒᵈ _ _ _
 #align bihimp_inf_sup bihimp_inf_sup
+-/
 
+#print sup_inf_bihimp /-
 @[simp]
 theorem sup_inf_bihimp : (a ⊔ b) ⊓ a ⇔ b = a ⊓ b :=
   @inf_sup_symmDiff αᵒᵈ _ _ _
 #align sup_inf_bihimp sup_inf_bihimp
+-/
 
+#print bihimp_bihimp_sup /-
 @[simp]
 theorem bihimp_bihimp_sup : a ⇔ b ⇔ (a ⊔ b) = a ⊓ b :=
   @symmDiff_symmDiff_inf αᵒᵈ _ _ _
 #align bihimp_bihimp_sup bihimp_bihimp_sup
+-/
 
+#print sup_bihimp_bihimp /-
 @[simp]
 theorem sup_bihimp_bihimp : (a ⊔ b) ⇔ (a ⇔ b) = a ⊓ b :=
   @inf_symmDiff_symmDiff αᵒᵈ _ _ _
 #align sup_bihimp_bihimp sup_bihimp_bihimp
+-/
 
+#print bihimp_triangle /-
 theorem bihimp_triangle : a ⇔ b ⊓ b ⇔ c ≤ a ⇔ c :=
   @symmDiff_triangle αᵒᵈ _ _ _ _
 #align bihimp_triangle bihimp_triangle
+-/
 
 end GeneralizedHeytingAlgebra
 
@@ -355,28 +447,38 @@ section CoheytingAlgebra
 
 variable [CoheytingAlgebra α] (a : α)
 
+#print symmDiff_top' /-
 @[simp]
 theorem symmDiff_top' : a ∆ ⊤ = ¬a := by simp [symmDiff]
 #align symm_diff_top' symmDiff_top'
+-/
 
+#print top_symmDiff' /-
 @[simp]
 theorem top_symmDiff' : ⊤ ∆ a = ¬a := by simp [symmDiff]
 #align top_symm_diff' top_symmDiff'
+-/
 
+#print hnot_symmDiff_self /-
 @[simp]
 theorem hnot_symmDiff_self : (¬a) ∆ a = ⊤ :=
   by
   rw [eq_top_iff, symmDiff, hnot_sdiff, sup_sdiff_self]
   exact Codisjoint.top_le codisjoint_hnot_left
 #align hnot_symm_diff_self hnot_symmDiff_self
+-/
 
+#print symmDiff_hnot_self /-
 @[simp]
 theorem symmDiff_hnot_self : a ∆ (¬a) = ⊤ := by rw [symmDiff_comm, hnot_symmDiff_self]
 #align symm_diff_hnot_self symmDiff_hnot_self
+-/
 
+#print IsCompl.symmDiff_eq_top /-
 theorem IsCompl.symmDiff_eq_top {a b : α} (h : IsCompl a b) : a ∆ b = ⊤ := by
   rw [h.eq_hnot, hnot_symmDiff_self]
 #align is_compl.symm_diff_eq_top IsCompl.symmDiff_eq_top
+-/
 
 end CoheytingAlgebra
 
@@ -384,27 +486,37 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] (a : α)
 
+#print bihimp_bot /-
 @[simp]
 theorem bihimp_bot : a ⇔ ⊥ = aᶜ := by simp [bihimp]
 #align bihimp_bot bihimp_bot
+-/
 
+#print bot_bihimp /-
 @[simp]
 theorem bot_bihimp : ⊥ ⇔ a = aᶜ := by simp [bihimp]
 #align bot_bihimp bot_bihimp
+-/
 
+#print compl_bihimp_self /-
 @[simp]
 theorem compl_bihimp_self : aᶜ ⇔ a = ⊥ :=
   @hnot_symmDiff_self αᵒᵈ _ _
 #align compl_bihimp_self compl_bihimp_self
+-/
 
+#print bihimp_hnot_self /-
 @[simp]
 theorem bihimp_hnot_self : a ⇔ aᶜ = ⊥ :=
   @symmDiff_hnot_self αᵒᵈ _ _
 #align bihimp_hnot_self bihimp_hnot_self
+-/
 
+#print IsCompl.bihimp_eq_bot /-
 theorem IsCompl.bihimp_eq_bot {a b : α} (h : IsCompl a b) : a ⇔ b = ⊥ := by
   rw [h.eq_compl, compl_bihimp_self]
 #align is_compl.bihimp_eq_bot IsCompl.bihimp_eq_bot
+-/
 
 end HeytingAlgebra
 
@@ -412,59 +524,82 @@ section GeneralizedBooleanAlgebra
 
 variable [GeneralizedBooleanAlgebra α] (a b c d : α)
 
+#print sup_sdiff_symmDiff /-
 @[simp]
 theorem sup_sdiff_symmDiff : (a ⊔ b) \ a ∆ b = a ⊓ b :=
   sdiff_eq_symm inf_le_sup (by rw [symmDiff_eq_sup_sdiff_inf])
 #align sup_sdiff_symm_diff sup_sdiff_symmDiff
+-/
 
+#print disjoint_symmDiff_inf /-
 theorem disjoint_symmDiff_inf : Disjoint (a ∆ b) (a ⊓ b) :=
   by
   rw [symmDiff_eq_sup_sdiff_inf]
   exact disjoint_sdiff_self_left
 #align disjoint_symm_diff_inf disjoint_symmDiff_inf
+-/
 
+#print inf_symmDiff_distrib_left /-
 theorem inf_symmDiff_distrib_left : a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) := by
   rw [symmDiff_eq_sup_sdiff_inf, inf_sdiff_distrib_left, inf_sup_left, inf_inf_distrib_left,
     symmDiff_eq_sup_sdiff_inf]
 #align inf_symm_diff_distrib_left inf_symmDiff_distrib_left
+-/
 
+#print inf_symmDiff_distrib_right /-
 theorem inf_symmDiff_distrib_right : a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) := by
   simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left]
 #align inf_symm_diff_distrib_right inf_symmDiff_distrib_right
+-/
 
+#print sdiff_symmDiff /-
 theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
   simp only [(· ∆ ·), sdiff_sdiff_sup_sdiff']
 #align sdiff_symm_diff sdiff_symmDiff
+-/
 
+#print sdiff_symmDiff' /-
 theorem sdiff_symmDiff' : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) := by
   rw [sdiff_symmDiff, sdiff_sup, sup_comm]
 #align sdiff_symm_diff' sdiff_symmDiff'
+-/
 
+#print symmDiff_sdiff_left /-
 @[simp]
 theorem symmDiff_sdiff_left : a ∆ b \ a = b \ a := by
   rw [symmDiff_def, sup_sdiff, sdiff_idem, sdiff_sdiff_self, bot_sup_eq]
 #align symm_diff_sdiff_left symmDiff_sdiff_left
+-/
 
+#print symmDiff_sdiff_right /-
 @[simp]
 theorem symmDiff_sdiff_right : a ∆ b \ b = a \ b := by rw [symmDiff_comm, symmDiff_sdiff_left]
 #align symm_diff_sdiff_right symmDiff_sdiff_right
+-/
 
+#print sdiff_symmDiff_left /-
 @[simp]
 theorem sdiff_symmDiff_left : a \ a ∆ b = a ⊓ b := by simp [sdiff_symmDiff]
 #align sdiff_symm_diff_left sdiff_symmDiff_left
+-/
 
+#print sdiff_symmDiff_right /-
 @[simp]
 theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
   rw [symmDiff_comm, inf_comm, sdiff_symmDiff_left]
 #align sdiff_symm_diff_right sdiff_symmDiff_right
+-/
 
+#print symmDiff_eq_sup /-
 theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩
   rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h 
   exact h.of_disjoint_inf_of_le le_sup_left
 #align symm_diff_eq_sup symmDiff_eq_sup
+-/
 
+#print le_symmDiff_iff_left /-
 @[simp]
 theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   by
@@ -472,12 +607,16 @@ theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   rw [symmDiff_eq_sup_sdiff_inf] at h 
   exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le
 #align le_symm_diff_iff_left le_symmDiff_iff_left
+-/
 
+#print le_symmDiff_iff_right /-
 @[simp]
 theorem le_symmDiff_iff_right : b ≤ a ∆ b ↔ Disjoint a b := by
   rw [symmDiff_comm, le_symmDiff_iff_left, disjoint_comm]
 #align le_symm_diff_iff_right le_symmDiff_iff_right
+-/
 
+#print symmDiff_symmDiff_left /-
 theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
   calc
     a ∆ b ∆ c = a ∆ b \ c ⊔ c \ a ∆ b := symmDiff_def _ _
@@ -485,7 +624,9 @@ theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
       rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff]
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
 #align symm_diff_symm_diff_left symmDiff_symmDiff_left
+-/
 
+#print symmDiff_symmDiff_right /-
 theorem symmDiff_symmDiff_right :
     a ∆ (b ∆ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
   calc
@@ -494,101 +635,144 @@ theorem symmDiff_symmDiff_right :
       rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff]
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
 #align symm_diff_symm_diff_right symmDiff_symmDiff_right
+-/
 
+#print symmDiff_assoc /-
 theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
   rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
 #align symm_diff_assoc symmDiff_assoc
+-/
 
+#print symmDiff_isAssociative /-
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
 #align symm_diff_is_assoc symmDiff_isAssociative
+-/
 
+#print symmDiff_left_comm /-
 theorem symmDiff_left_comm : a ∆ (b ∆ c) = b ∆ (a ∆ c) := by
   simp_rw [← symmDiff_assoc, symmDiff_comm]
 #align symm_diff_left_comm symmDiff_left_comm
+-/
 
+#print symmDiff_right_comm /-
 theorem symmDiff_right_comm : a ∆ b ∆ c = a ∆ c ∆ b := by simp_rw [symmDiff_assoc, symmDiff_comm]
 #align symm_diff_right_comm symmDiff_right_comm
+-/
 
+#print symmDiff_symmDiff_symmDiff_comm /-
 theorem symmDiff_symmDiff_symmDiff_comm : a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b ∆ d) := by
   simp_rw [symmDiff_assoc, symmDiff_left_comm]
 #align symm_diff_symm_diff_symm_diff_comm symmDiff_symmDiff_symmDiff_comm
+-/
 
+#print symmDiff_symmDiff_cancel_left /-
 @[simp]
 theorem symmDiff_symmDiff_cancel_left : a ∆ (a ∆ b) = b := by simp [← symmDiff_assoc]
 #align symm_diff_symm_diff_cancel_left symmDiff_symmDiff_cancel_left
+-/
 
+#print symmDiff_symmDiff_cancel_right /-
 @[simp]
 theorem symmDiff_symmDiff_cancel_right : b ∆ a ∆ a = b := by simp [symmDiff_assoc]
 #align symm_diff_symm_diff_cancel_right symmDiff_symmDiff_cancel_right
+-/
 
+#print symmDiff_symmDiff_self' /-
 @[simp]
 theorem symmDiff_symmDiff_self' : a ∆ b ∆ a = b := by
   rw [symmDiff_comm, symmDiff_symmDiff_cancel_left]
 #align symm_diff_symm_diff_self' symmDiff_symmDiff_self'
+-/
 
+#print symmDiff_left_involutive /-
 theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
   symmDiff_symmDiff_cancel_right _
 #align symm_diff_left_involutive symmDiff_left_involutive
+-/
 
+#print symmDiff_right_involutive /-
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
 #align symm_diff_right_involutive symmDiff_right_involutive
+-/
 
+#print symmDiff_left_injective /-
 theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
   (symmDiff_left_involutive _).Injective
 #align symm_diff_left_injective symmDiff_left_injective
+-/
 
+#print symmDiff_right_injective /-
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
 #align symm_diff_right_injective symmDiff_right_injective
+-/
 
+#print symmDiff_left_surjective /-
 theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
   (symmDiff_left_involutive _).Surjective
 #align symm_diff_left_surjective symmDiff_left_surjective
+-/
 
+#print symmDiff_right_surjective /-
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
 #align symm_diff_right_surjective symmDiff_right_surjective
+-/
 
 variable {a b c}
 
+#print symmDiff_left_inj /-
 @[simp]
 theorem symmDiff_left_inj : a ∆ b = c ∆ b ↔ a = c :=
   (symmDiff_left_injective _).eq_iff
 #align symm_diff_left_inj symmDiff_left_inj
+-/
 
+#print symmDiff_right_inj /-
 @[simp]
 theorem symmDiff_right_inj : a ∆ b = a ∆ c ↔ b = c :=
   (symmDiff_right_injective _).eq_iff
 #align symm_diff_right_inj symmDiff_right_inj
+-/
 
+#print symmDiff_eq_left /-
 @[simp]
 theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
   calc
     a ∆ b = a ↔ a ∆ b = a ∆ ⊥ := by rw [symmDiff_bot]
     _ ↔ b = ⊥ := by rw [symmDiff_right_inj]
 #align symm_diff_eq_left symmDiff_eq_left
+-/
 
+#print symmDiff_eq_right /-
 @[simp]
 theorem symmDiff_eq_right : a ∆ b = b ↔ a = ⊥ := by rw [symmDiff_comm, symmDiff_eq_left]
 #align symm_diff_eq_right symmDiff_eq_right
+-/
 
+#print Disjoint.symmDiff_left /-
 protected theorem Disjoint.symmDiff_left (ha : Disjoint a c) (hb : Disjoint b c) :
     Disjoint (a ∆ b) c := by rw [symmDiff_eq_sup_sdiff_inf];
   exact (ha.sup_left hb).disjoint_sdiff_left
 #align disjoint.symm_diff_left Disjoint.symmDiff_left
+-/
 
+#print Disjoint.symmDiff_right /-
 protected theorem Disjoint.symmDiff_right (ha : Disjoint a b) (hb : Disjoint a c) :
     Disjoint a (b ∆ c) :=
   (ha.symm.symmDiff_left hb.symm).symm
 #align disjoint.symm_diff_right Disjoint.symmDiff_right
+-/
 
+#print symmDiff_eq_iff_sdiff_eq /-
 theorem symmDiff_eq_iff_sdiff_eq (ha : a ≤ c) : a ∆ b = c ↔ c \ a = b :=
   by
   rw [← symmDiff_of_le ha]
   exact ((symmDiff_right_involutive a).toPerm _).apply_eq_iff_eq_symm_apply.trans eq_comm
 #align symm_diff_eq_iff_sdiff_eq symmDiff_eq_iff_sdiff_eq
+-/
 
 end GeneralizedBooleanAlgebra
 
@@ -600,202 +784,289 @@ variable [BooleanAlgebra α] (a b c d : α)
 the `generalized_boolean_algebra` ones -/
 section CogeneralizedBooleanAlgebra
 
+#print inf_himp_bihimp /-
 @[simp]
 theorem inf_himp_bihimp : a ⇔ b ⇨ a ⊓ b = a ⊔ b :=
   @sup_sdiff_symmDiff αᵒᵈ _ _ _
 #align inf_himp_bihimp inf_himp_bihimp
+-/
 
+#print codisjoint_bihimp_sup /-
 theorem codisjoint_bihimp_sup : Codisjoint (a ⇔ b) (a ⊔ b) :=
   @disjoint_symmDiff_inf αᵒᵈ _ _ _
 #align codisjoint_bihimp_sup codisjoint_bihimp_sup
+-/
 
+#print himp_bihimp_left /-
 @[simp]
 theorem himp_bihimp_left : a ⇨ a ⇔ b = a ⇨ b :=
   @symmDiff_sdiff_left αᵒᵈ _ _ _
 #align himp_bihimp_left himp_bihimp_left
+-/
 
+#print himp_bihimp_right /-
 @[simp]
 theorem himp_bihimp_right : b ⇨ a ⇔ b = b ⇨ a :=
   @symmDiff_sdiff_right αᵒᵈ _ _ _
 #align himp_bihimp_right himp_bihimp_right
+-/
 
+#print bihimp_himp_left /-
 @[simp]
 theorem bihimp_himp_left : a ⇔ b ⇨ a = a ⊔ b :=
   @sdiff_symmDiff_left αᵒᵈ _ _ _
 #align bihimp_himp_left bihimp_himp_left
+-/
 
+#print bihimp_himp_right /-
 @[simp]
 theorem bihimp_himp_right : a ⇔ b ⇨ b = a ⊔ b :=
   @sdiff_symmDiff_right αᵒᵈ _ _ _
 #align bihimp_himp_right bihimp_himp_right
+-/
 
+#print bihimp_eq_inf /-
 @[simp]
 theorem bihimp_eq_inf : a ⇔ b = a ⊓ b ↔ Codisjoint a b :=
   @symmDiff_eq_sup αᵒᵈ _ _ _
 #align bihimp_eq_inf bihimp_eq_inf
+-/
 
+#print bihimp_le_iff_left /-
 @[simp]
 theorem bihimp_le_iff_left : a ⇔ b ≤ a ↔ Codisjoint a b :=
   @le_symmDiff_iff_left αᵒᵈ _ _ _
 #align bihimp_le_iff_left bihimp_le_iff_left
+-/
 
+#print bihimp_le_iff_right /-
 @[simp]
 theorem bihimp_le_iff_right : a ⇔ b ≤ b ↔ Codisjoint a b :=
   @le_symmDiff_iff_right αᵒᵈ _ _ _
 #align bihimp_le_iff_right bihimp_le_iff_right
+-/
 
+#print bihimp_assoc /-
 theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
   @symmDiff_assoc αᵒᵈ _ _ _ _
 #align bihimp_assoc bihimp_assoc
+-/
 
+#print bihimp_isAssociative /-
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
 #align bihimp_is_assoc bihimp_isAssociative
+-/
 
+#print bihimp_left_comm /-
 theorem bihimp_left_comm : a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) := by simp_rw [← bihimp_assoc, bihimp_comm]
 #align bihimp_left_comm bihimp_left_comm
+-/
 
+#print bihimp_right_comm /-
 theorem bihimp_right_comm : a ⇔ b ⇔ c = a ⇔ c ⇔ b := by simp_rw [bihimp_assoc, bihimp_comm]
 #align bihimp_right_comm bihimp_right_comm
+-/
 
+#print bihimp_bihimp_bihimp_comm /-
 theorem bihimp_bihimp_bihimp_comm : a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d) := by
   simp_rw [bihimp_assoc, bihimp_left_comm]
 #align bihimp_bihimp_bihimp_comm bihimp_bihimp_bihimp_comm
+-/
 
+#print bihimp_bihimp_cancel_left /-
 @[simp]
 theorem bihimp_bihimp_cancel_left : a ⇔ (a ⇔ b) = b := by simp [← bihimp_assoc]
 #align bihimp_bihimp_cancel_left bihimp_bihimp_cancel_left
+-/
 
+#print bihimp_bihimp_cancel_right /-
 @[simp]
 theorem bihimp_bihimp_cancel_right : b ⇔ a ⇔ a = b := by simp [bihimp_assoc]
 #align bihimp_bihimp_cancel_right bihimp_bihimp_cancel_right
+-/
 
+#print bihimp_bihimp_self /-
 @[simp]
 theorem bihimp_bihimp_self : a ⇔ b ⇔ a = b := by rw [bihimp_comm, bihimp_bihimp_cancel_left]
 #align bihimp_bihimp_self bihimp_bihimp_self
+-/
 
+#print bihimp_left_involutive /-
 theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
   bihimp_bihimp_cancel_right _
 #align bihimp_left_involutive bihimp_left_involutive
+-/
 
+#print bihimp_right_involutive /-
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
 #align bihimp_right_involutive bihimp_right_involutive
+-/
 
+#print bihimp_left_injective /-
 theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
   @symmDiff_left_injective αᵒᵈ _ _
 #align bihimp_left_injective bihimp_left_injective
+-/
 
+#print bihimp_right_injective /-
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
 #align bihimp_right_injective bihimp_right_injective
+-/
 
+#print bihimp_left_surjective /-
 theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
   @symmDiff_left_surjective αᵒᵈ _ _
 #align bihimp_left_surjective bihimp_left_surjective
+-/
 
+#print bihimp_right_surjective /-
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
 #align bihimp_right_surjective bihimp_right_surjective
+-/
 
 variable {a b c}
 
+#print bihimp_left_inj /-
 @[simp]
 theorem bihimp_left_inj : a ⇔ b = c ⇔ b ↔ a = c :=
   (bihimp_left_injective _).eq_iff
 #align bihimp_left_inj bihimp_left_inj
+-/
 
+#print bihimp_right_inj /-
 @[simp]
 theorem bihimp_right_inj : a ⇔ b = a ⇔ c ↔ b = c :=
   (bihimp_right_injective _).eq_iff
 #align bihimp_right_inj bihimp_right_inj
+-/
 
+#print bihimp_eq_left /-
 @[simp]
 theorem bihimp_eq_left : a ⇔ b = a ↔ b = ⊤ :=
   @symmDiff_eq_left αᵒᵈ _ _ _
 #align bihimp_eq_left bihimp_eq_left
+-/
 
+#print bihimp_eq_right /-
 @[simp]
 theorem bihimp_eq_right : a ⇔ b = b ↔ a = ⊤ :=
   @symmDiff_eq_right αᵒᵈ _ _ _
 #align bihimp_eq_right bihimp_eq_right
+-/
 
+#print Codisjoint.bihimp_left /-
 protected theorem Codisjoint.bihimp_left (ha : Codisjoint a c) (hb : Codisjoint b c) :
     Codisjoint (a ⇔ b) c :=
   (ha.inf_left hb).mono_left inf_le_bihimp
 #align codisjoint.bihimp_left Codisjoint.bihimp_left
+-/
 
+#print Codisjoint.bihimp_right /-
 protected theorem Codisjoint.bihimp_right (ha : Codisjoint a b) (hb : Codisjoint a c) :
     Codisjoint a (b ⇔ c) :=
   (ha.inf_right hb).mono_right inf_le_bihimp
 #align codisjoint.bihimp_right Codisjoint.bihimp_right
+-/
 
 end CogeneralizedBooleanAlgebra
 
+#print symmDiff_eq /-
 theorem symmDiff_eq : a ∆ b = a ⊓ bᶜ ⊔ b ⊓ aᶜ := by simp only [(· ∆ ·), sdiff_eq]
 #align symm_diff_eq symmDiff_eq
+-/
 
+#print bihimp_eq /-
 theorem bihimp_eq : a ⇔ b = (a ⊔ bᶜ) ⊓ (b ⊔ aᶜ) := by simp only [(· ⇔ ·), himp_eq]
 #align bihimp_eq bihimp_eq
+-/
 
+#print symmDiff_eq' /-
 theorem symmDiff_eq' : a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ) := by
   rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf]
 #align symm_diff_eq' symmDiff_eq'
+-/
 
+#print bihimp_eq' /-
 theorem bihimp_eq' : a ⇔ b = a ⊓ b ⊔ aᶜ ⊓ bᶜ :=
   @symmDiff_eq' αᵒᵈ _ _ _
 #align bihimp_eq' bihimp_eq'
+-/
 
+#print symmDiff_top /-
 theorem symmDiff_top : a ∆ ⊤ = aᶜ :=
   symmDiff_top' _
 #align symm_diff_top symmDiff_top
+-/
 
+#print top_symmDiff /-
 theorem top_symmDiff : ⊤ ∆ a = aᶜ :=
   top_symmDiff' _
 #align top_symm_diff top_symmDiff
+-/
 
+#print compl_symmDiff /-
 @[simp]
 theorem compl_symmDiff : (a ∆ b)ᶜ = a ⇔ b := by
   simp_rw [symmDiff, compl_sup_distrib, compl_sdiff, bihimp, inf_comm]
 #align compl_symm_diff compl_symmDiff
+-/
 
+#print compl_bihimp /-
 @[simp]
 theorem compl_bihimp : (a ⇔ b)ᶜ = a ∆ b :=
   @compl_symmDiff αᵒᵈ _ _ _
 #align compl_bihimp compl_bihimp
+-/
 
+#print compl_symmDiff_compl /-
 @[simp]
 theorem compl_symmDiff_compl : aᶜ ∆ bᶜ = a ∆ b :=
   sup_comm.trans <| by simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq]
 #align compl_symm_diff_compl compl_symmDiff_compl
+-/
 
+#print compl_bihimp_compl /-
 @[simp]
 theorem compl_bihimp_compl : aᶜ ⇔ bᶜ = a ⇔ b :=
   @compl_symmDiff_compl αᵒᵈ _ _ _
 #align compl_bihimp_compl compl_bihimp_compl
+-/
 
+#print symmDiff_eq_top /-
 @[simp]
 theorem symmDiff_eq_top : a ∆ b = ⊤ ↔ IsCompl a b := by
   rw [symmDiff_eq', ← compl_inf, inf_eq_top_iff, compl_eq_top, isCompl_iff, disjoint_iff,
     codisjoint_iff, and_comm]
 #align symm_diff_eq_top symmDiff_eq_top
+-/
 
+#print bihimp_eq_bot /-
 @[simp]
 theorem bihimp_eq_bot : a ⇔ b = ⊥ ↔ IsCompl a b := by
   rw [bihimp_eq', ← compl_sup, sup_eq_bot_iff, compl_eq_bot, isCompl_iff, disjoint_iff,
     codisjoint_iff]
 #align bihimp_eq_bot bihimp_eq_bot
+-/
 
+#print compl_symmDiff_self /-
 @[simp]
 theorem compl_symmDiff_self : aᶜ ∆ a = ⊤ :=
   hnot_symmDiff_self _
 #align compl_symm_diff_self compl_symmDiff_self
+-/
 
+#print symmDiff_compl_self /-
 @[simp]
 theorem symmDiff_compl_self : a ∆ aᶜ = ⊤ :=
   symmDiff_hnot_self _
 #align symm_diff_compl_self symmDiff_compl_self
+-/
 
+#print symmDiff_symmDiff_right' /-
 theorem symmDiff_symmDiff_right' :
     a ∆ (b ∆ c) = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c :=
   calc
@@ -810,9 +1081,11 @@ theorem symmDiff_symmDiff_right' :
         rw [inf_comm, inf_assoc]
       · apply inf_left_right_swap
 #align symm_diff_symm_diff_right' symmDiff_symmDiff_right'
+-/
 
 variable {a b c}
 
+#print Disjoint.le_symmDiff_sup_symmDiff_left /-
 theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆ c ⊔ b ∆ c :=
   by
   trans c \ (a ⊓ b)
@@ -820,18 +1093,25 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆
   · rw [sdiff_inf]
     exact sup_le_sup le_sup_right le_sup_right
 #align disjoint.le_symm_diff_sup_symm_diff_left Disjoint.le_symmDiff_sup_symmDiff_left
+-/
 
+#print Disjoint.le_symmDiff_sup_symmDiff_right /-
 theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆ b ⊔ a ∆ c := by
   simp_rw [symmDiff_comm a]; exact h.le_symm_diff_sup_symm_diff_left
 #align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_right
+-/
 
+#print Codisjoint.bihimp_inf_bihimp_le_left /-
 theorem Codisjoint.bihimp_inf_bihimp_le_left (h : Codisjoint a b) : a ⇔ c ⊓ b ⇔ c ≤ c :=
   h.dual.le_symmDiff_sup_symmDiff_left
 #align codisjoint.bihimp_inf_bihimp_le_left Codisjoint.bihimp_inf_bihimp_le_left
+-/
 
+#print Codisjoint.bihimp_inf_bihimp_le_right /-
 theorem Codisjoint.bihimp_inf_bihimp_le_right (h : Codisjoint b c) : a ⇔ b ⊓ a ⇔ c ≤ a :=
   h.dual.le_symmDiff_sup_symmDiff_right
 #align codisjoint.bihimp_inf_bihimp_le_right Codisjoint.bihimp_inf_bihimp_le_right
+-/
 
 end BooleanAlgebra
 
@@ -840,29 +1120,37 @@ end BooleanAlgebra
 
 section Prod
 
+#print symmDiff_fst /-
 @[simp]
 theorem symmDiff_fst [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
     (a ∆ b).1 = a.1 ∆ b.1 :=
   rfl
 #align symm_diff_fst symmDiff_fst
+-/
 
+#print symmDiff_snd /-
 @[simp]
 theorem symmDiff_snd [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
     (a ∆ b).2 = a.2 ∆ b.2 :=
   rfl
 #align symm_diff_snd symmDiff_snd
+-/
 
+#print bihimp_fst /-
 @[simp]
 theorem bihimp_fst [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
     (a ⇔ b).1 = a.1 ⇔ b.1 :=
   rfl
 #align bihimp_fst bihimp_fst
+-/
 
+#print bihimp_snd /-
 @[simp]
 theorem bihimp_snd [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
     (a ⇔ b).2 = a.2 ⇔ b.2 :=
   rfl
 #align bihimp_snd bihimp_snd
+-/
 
 end Prod
 
@@ -871,27 +1159,35 @@ end Prod
 
 namespace Pi
 
+#print Pi.symmDiff_def /-
 theorem symmDiff_def [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ∆ b = fun i => a i ∆ b i :=
   rfl
 #align pi.symm_diff_def Pi.symmDiff_def
+-/
 
+#print Pi.bihimp_def /-
 theorem bihimp_def [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ⇔ b = fun i => a i ⇔ b i :=
   rfl
 #align pi.bihimp_def Pi.bihimp_def
+-/
 
+#print Pi.symmDiff_apply /-
 @[simp]
 theorem symmDiff_apply [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :
     (a ∆ b) i = a i ∆ b i :=
   rfl
 #align pi.symm_diff_apply Pi.symmDiff_apply
+-/
 
+#print Pi.bihimp_apply /-
 @[simp]
 theorem bihimp_apply [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :
     (a ⇔ b) i = a i ⇔ b i :=
   rfl
 #align pi.bihimp_apply Pi.bihimp_apply
+-/
 
 end Pi
 
Diff
@@ -484,7 +484,6 @@ theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) := by
       rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff]
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
-    
 #align symm_diff_symm_diff_left symmDiff_symmDiff_left
 
 theorem symmDiff_symmDiff_right :
@@ -494,7 +493,6 @@ theorem symmDiff_symmDiff_right :
     _ = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) := by
       rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff]
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
-    
 #align symm_diff_symm_diff_right symmDiff_symmDiff_right
 
 theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
@@ -570,7 +568,6 @@ theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
   calc
     a ∆ b = a ↔ a ∆ b = a ∆ ⊥ := by rw [symmDiff_bot]
     _ ↔ b = ⊥ := by rw [symmDiff_right_inj]
-    
 #align symm_diff_eq_left symmDiff_eq_left
 
 @[simp]
@@ -812,7 +809,6 @@ theorem symmDiff_symmDiff_right' :
       · congr 1
         rw [inf_comm, inf_assoc]
       · apply inf_left_right_swap
-    
 #align symm_diff_symm_diff_right' symmDiff_symmDiff_right'
 
 variable {a b c}
Diff
@@ -461,7 +461,7 @@ theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
 theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩
-  rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h
+  rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h 
   exact h.of_disjoint_inf_of_le le_sup_left
 #align symm_diff_eq_sup symmDiff_eq_sup
 
@@ -469,7 +469,7 @@ theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
 theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, fun h => h.symm_diff_eq_sup.symm ▸ le_sup_left⟩
-  rw [symmDiff_eq_sup_sdiff_inf] at h
+  rw [symmDiff_eq_sup_sdiff_inf] at h 
   exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le
 #align le_symm_diff_iff_left le_symmDiff_iff_left
 
Diff
@@ -98,33 +98,15 @@ theorem bihimp_def [Inf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a 
 #align bihimp_def bihimp_def
 -/
 
-/- warning: symm_diff_eq_xor -> symmDiff_eq_Xor' is a dubious translation:
-lean 3 declaration is
-  forall (p : Prop) (q : Prop), Eq.{1} Prop (symmDiff.{0} Prop (SemilatticeSup.toHasSup.{0} Prop (Lattice.toSemilatticeSup.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHasSdiff.{0} Prop Prop.booleanAlgebra) p q) (Xor' p q)
-but is expected to have type
-  forall (p : Prop) (q : Prop), Eq.{1} Prop (symmDiff.{0} Prop (SemilatticeSup.toSup.{0} Prop (Lattice.toSemilatticeSup.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra)))))) (BooleanAlgebra.toSDiff.{0} Prop Prop.booleanAlgebra) p q) (Xor' p q)
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_xor symmDiff_eq_Xor'ₓ'. -/
 theorem symmDiff_eq_Xor' (p q : Prop) : p ∆ q = Xor' p q :=
   rfl
 #align symm_diff_eq_xor symmDiff_eq_Xor'
 
-/- warning: bihimp_iff_iff -> bihimp_iff_iff is a dubious translation:
-lean 3 declaration is
-  forall {p : Prop} {q : Prop}, Iff (bihimp.{0} Prop (SemilatticeInf.toHasInf.{0} Prop (Lattice.toSemilatticeInf.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHasHimp.{0} Prop Prop.booleanAlgebra) p q) (Iff p q)
-but is expected to have type
-  forall {p : Prop} {q : Prop}, Iff (bihimp.{0} Prop (Lattice.toInf.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHImp.{0} Prop Prop.booleanAlgebra) p q) (Iff p q)
-Case conversion may be inaccurate. Consider using '#align bihimp_iff_iff bihimp_iff_iffₓ'. -/
 @[simp]
 theorem bihimp_iff_iff {p q : Prop} : p ⇔ q ↔ (p ↔ q) :=
   (iff_iff_implies_and_implies _ _).symm.trans Iff.comm
 #align bihimp_iff_iff bihimp_iff_iff
 
-/- warning: bool.symm_diff_eq_bxor -> Bool.symmDiff_eq_xor is a dubious translation:
-lean 3 declaration is
-  forall (p : Bool) (q : Bool), Eq.{1} Bool (symmDiff.{0} Bool (SemilatticeSup.toHasSup.{0} Bool (Lattice.toSemilatticeSup.{0} Bool (GeneralizedCoheytingAlgebra.toLattice.{0} Bool (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Bool (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Bool Bool.booleanAlgebra))))) (BooleanAlgebra.toHasSdiff.{0} Bool Bool.booleanAlgebra) p q) (xor p q)
-but is expected to have type
-  forall (p : Bool) (q : Bool), Eq.{1} Bool (symmDiff.{0} Bool (SemilatticeSup.toSup.{0} Bool (Lattice.toSemilatticeSup.{0} Bool (GeneralizedCoheytingAlgebra.toLattice.{0} Bool (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Bool (BiheytingAlgebra.toCoheytingAlgebra.{0} Bool (BooleanAlgebra.toBiheytingAlgebra.{0} Bool instBooleanAlgebraBool)))))) (BooleanAlgebra.toSDiff.{0} Bool instBooleanAlgebraBool) p q) (xor p q)
-Case conversion may be inaccurate. Consider using '#align bool.symm_diff_eq_bxor Bool.symmDiff_eq_xorₓ'. -/
 @[simp]
 theorem Bool.symmDiff_eq_xor : ∀ p q : Bool, p ∆ q = xor p q := by decide
 #align bool.symm_diff_eq_bxor Bool.symmDiff_eq_xor
@@ -147,162 +129,66 @@ theorem ofDual_bihimp (a b : αᵒᵈ) : ofDual (a ⇔ b) = ofDual a ∆ ofDual
 #align of_dual_bihimp ofDual_bihimp
 -/
 
-/- warning: symm_diff_comm -> symmDiff_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_comm symmDiff_commₓ'. -/
 theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm]
 #align symm_diff_comm symmDiff_comm
 
-/- warning: symm_diff_is_comm -> symmDiff_isCommutative is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1549 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1551 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1549 x._@.Mathlib.Order.SymmDiff._hyg.1551)
-Case conversion may be inaccurate. Consider using '#align symm_diff_is_comm symmDiff_isCommutativeₓ'. -/
 instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
 #align symm_diff_is_comm symmDiff_isCommutative
 
-/- warning: symm_diff_self -> symmDiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align symm_diff_self symmDiff_selfₓ'. -/
 @[simp]
 theorem symmDiff_self : a ∆ a = ⊥ := by rw [(· ∆ ·), sup_idem, sdiff_self]
 #align symm_diff_self symmDiff_self
 
-/- warning: symm_diff_bot -> symmDiff_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) a
-Case conversion may be inaccurate. Consider using '#align symm_diff_bot symmDiff_botₓ'. -/
 @[simp]
 theorem symmDiff_bot : a ∆ ⊥ = a := by rw [(· ∆ ·), sdiff_bot, bot_sdiff, sup_bot_eq]
 #align symm_diff_bot symmDiff_bot
 
-/- warning: bot_symm_diff -> bot_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1)) a) a
-Case conversion may be inaccurate. Consider using '#align bot_symm_diff bot_symmDiffₓ'. -/
 @[simp]
 theorem bot_symmDiff : ⊥ ∆ a = a := by rw [symmDiff_comm, symmDiff_bot]
 #align bot_symm_diff bot_symmDiff
 
-/- warning: symm_diff_eq_bot -> symmDiff_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_bot symmDiff_eq_botₓ'. -/
 @[simp]
 theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
   simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
 #align symm_diff_eq_bot symmDiff_eq_bot
 
-/- warning: symm_diff_of_le -> symmDiff_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a))
-Case conversion may be inaccurate. Consider using '#align symm_diff_of_le symmDiff_of_leₓ'. -/
 theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
 #align symm_diff_of_le symmDiff_of_le
 
-/- warning: symm_diff_of_ge -> symmDiff_of_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align symm_diff_of_ge symmDiff_of_geₓ'. -/
 theorem symmDiff_of_ge {a b : α} (h : b ≤ a) : a ∆ b = a \ b := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
 #align symm_diff_of_ge symmDiff_of_ge
 
-/- warning: symm_diff_le -> symmDiff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align symm_diff_le symmDiff_leₓ'. -/
 theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ∆ b ≤ c :=
   sup_le (sdiff_le_iff.2 ha) <| sdiff_le_iff.2 hb
 #align symm_diff_le symmDiff_le
 
-/- warning: symm_diff_le_iff -> symmDiff_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_le_iff symmDiff_le_iffₓ'. -/
 theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c := by
   simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
 #align symm_diff_le_iff symmDiff_le_iff
 
-/- warning: symm_diff_le_sup -> symmDiff_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_le_sup symmDiff_le_supₓ'. -/
 @[simp]
 theorem symmDiff_le_sup {a b : α} : a ∆ b ≤ a ⊔ b :=
   sup_le_sup sdiff_le sdiff_le
 #align symm_diff_le_sup symmDiff_le_sup
 
-/- warning: symm_diff_eq_sup_sdiff_inf -> symmDiff_eq_sup_sdiff_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_sup_sdiff_inf symmDiff_eq_sup_sdiff_infₓ'. -/
 theorem symmDiff_eq_sup_sdiff_inf : a ∆ b = (a ⊔ b) \ (a ⊓ b) := by simp [sup_sdiff, symmDiff]
 #align symm_diff_eq_sup_sdiff_inf symmDiff_eq_sup_sdiff_inf
 
-/- warning: disjoint.symm_diff_eq_sup -> Disjoint.symmDiff_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_eq_sup Disjoint.symmDiff_eq_supₓ'. -/
 theorem Disjoint.symmDiff_eq_sup {a b : α} (h : Disjoint a b) : a ∆ b = a ⊔ b := by
   rw [(· ∆ ·), h.sdiff_eq_left, h.sdiff_eq_right]
 #align disjoint.symm_diff_eq_sup Disjoint.symmDiff_eq_sup
 
-/- warning: symm_diff_sdiff -> symmDiff_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff symmDiff_sdiffₓ'. -/
 theorem symmDiff_sdiff : a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) := by
   rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
 #align symm_diff_sdiff symmDiff_sdiff
 
-/- warning: symm_diff_sdiff_inf -> symmDiff_sdiff_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_inf symmDiff_sdiff_infₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b := by rw [symmDiff_sdiff]; simp [symmDiff]
 #align symm_diff_sdiff_inf symmDiff_sdiff_inf
 
-/- warning: symm_diff_sdiff_eq_sup -> symmDiff_sdiff_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_eq_sup symmDiff_sdiff_eq_supₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
   by
@@ -312,23 +198,11 @@ theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
       (sup_le le_sdiff_sup <| le_sdiff_sup.trans <| sup_le le_sup_right le_sdiff_sup)
 #align symm_diff_sdiff_eq_sup symmDiff_sdiff_eq_sup
 
-/- warning: sdiff_symm_diff_eq_sup -> sdiff_symmDiff_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_eq_sup sdiff_symmDiff_eq_supₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_eq_sup : (a \ b) ∆ b = a ⊔ b := by
   rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
 #align sdiff_symm_diff_eq_sup sdiff_symmDiff_eq_sup
 
-/- warning: symm_diff_sup_inf -> symmDiff_sup_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_sup_inf symmDiff_sup_infₓ'. -/
 @[simp]
 theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
   by
@@ -341,44 +215,20 @@ theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
     exact le_sup_of_le_right le_sdiff_sup
 #align symm_diff_sup_inf symmDiff_sup_inf
 
-/- warning: inf_sup_symm_diff -> inf_sup_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align inf_sup_symm_diff inf_sup_symmDiffₓ'. -/
 @[simp]
 theorem inf_sup_symmDiff : a ⊓ b ⊔ a ∆ b = a ⊔ b := by rw [sup_comm, symmDiff_sup_inf]
 #align inf_sup_symm_diff inf_sup_symmDiff
 
-/- warning: symm_diff_symm_diff_inf -> symmDiff_symmDiff_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_inf symmDiff_symmDiff_infₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_inf : a ∆ b ∆ (a ⊓ b) = a ⊔ b := by
   rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
 #align symm_diff_symm_diff_inf symmDiff_symmDiff_inf
 
-/- warning: inf_symm_diff_symm_diff -> inf_symmDiff_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align inf_symm_diff_symm_diff inf_symmDiff_symmDiffₓ'. -/
 @[simp]
 theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
   rw [symmDiff_comm, symmDiff_symmDiff_inf]
 #align inf_symm_diff_symm_diff inf_symmDiff_symmDiff
 
-/- warning: symm_diff_triangle -> symmDiff_triangle is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_triangle symmDiff_triangleₓ'. -/
 theorem symmDiff_triangle : a ∆ c ≤ a ∆ b ⊔ b ∆ c :=
   by
   refine' (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq _
@@ -405,228 +255,96 @@ theorem ofDual_symmDiff (a b : αᵒᵈ) : ofDual (a ∆ b) = ofDual a ⇔ ofDua
 #align of_dual_symm_diff ofDual_symmDiff
 -/
 
-/- warning: bihimp_comm -> bihimp_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align bihimp_comm bihimp_commₓ'. -/
 theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 #align bihimp_comm bihimp_comm
 
-/- warning: bihimp_is_comm -> bihimp_isCommutative is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3052 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3054 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3052 x._@.Mathlib.Order.SymmDiff._hyg.3054)
-Case conversion may be inaccurate. Consider using '#align bihimp_is_comm bihimp_isCommutativeₓ'. -/
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
 #align bihimp_is_comm bihimp_isCommutative
 
-/- warning: bihimp_self -> bihimp_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align bihimp_self bihimp_selfₓ'. -/
 @[simp]
 theorem bihimp_self : a ⇔ a = ⊤ := by rw [(· ⇔ ·), inf_idem, himp_self]
 #align bihimp_self bihimp_self
 
-/- warning: bihimp_top -> bihimp_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) a
-Case conversion may be inaccurate. Consider using '#align bihimp_top bihimp_topₓ'. -/
 @[simp]
 theorem bihimp_top : a ⇔ ⊤ = a := by rw [(· ⇔ ·), himp_top, top_himp, inf_top_eq]
 #align bihimp_top bihimp_top
 
-/- warning: top_bihimp -> top_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1)) a) a
-Case conversion may be inaccurate. Consider using '#align top_bihimp top_bihimpₓ'. -/
 @[simp]
 theorem top_bihimp : ⊤ ⇔ a = a := by rw [bihimp_comm, bihimp_top]
 #align top_bihimp top_bihimp
 
-/- warning: bihimp_eq_top -> bihimp_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_top bihimp_eq_topₓ'. -/
 @[simp]
 theorem bihimp_eq_top {a b : α} : a ⇔ b = ⊤ ↔ a = b :=
   @symmDiff_eq_bot αᵒᵈ _ _ _
 #align bihimp_eq_top bihimp_eq_top
 
-/- warning: bihimp_of_le -> bihimp_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a))
-Case conversion may be inaccurate. Consider using '#align bihimp_of_le bihimp_of_leₓ'. -/
 theorem bihimp_of_le {a b : α} (h : a ≤ b) : a ⇔ b = b ⇨ a := by
   rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
 #align bihimp_of_le bihimp_of_le
 
-/- warning: bihimp_of_ge -> bihimp_of_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align bihimp_of_ge bihimp_of_geₓ'. -/
 theorem bihimp_of_ge {a b : α} (h : b ≤ a) : a ⇔ b = a ⇨ b := by
   rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
 #align bihimp_of_ge bihimp_of_ge
 
-/- warning: le_bihimp -> le_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align le_bihimp le_bihimpₓ'. -/
 theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤ b ⇔ c :=
   le_inf (le_himp_iff.2 hc) <| le_himp_iff.2 hb
 #align le_bihimp le_bihimp
 
-/- warning: le_bihimp_iff -> le_bihimp_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b))
-Case conversion may be inaccurate. Consider using '#align le_bihimp_iff le_bihimp_iffₓ'. -/
 theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b := by
   simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
 #align le_bihimp_iff le_bihimp_iff
 
-/- warning: inf_le_bihimp -> inf_le_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_le_bihimp inf_le_bihimpₓ'. -/
 @[simp]
 theorem inf_le_bihimp {a b : α} : a ⊓ b ≤ a ⇔ b :=
   inf_le_inf le_himp le_himp
 #align inf_le_bihimp inf_le_bihimp
 
-/- warning: bihimp_eq_inf_himp_inf -> bihimp_eq_inf_himp_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_inf_himp_inf bihimp_eq_inf_himp_infₓ'. -/
 theorem bihimp_eq_inf_himp_inf : a ⇔ b = a ⊔ b ⇨ a ⊓ b := by simp [himp_inf_distrib, bihimp]
 #align bihimp_eq_inf_himp_inf bihimp_eq_inf_himp_inf
 
-/- warning: codisjoint.bihimp_eq_inf -> Codisjoint.bihimp_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_eq_inf Codisjoint.bihimp_eq_infₓ'. -/
 theorem Codisjoint.bihimp_eq_inf {a b : α} (h : Codisjoint a b) : a ⇔ b = a ⊓ b := by
   rw [(· ⇔ ·), h.himp_eq_left, h.himp_eq_right]
 #align codisjoint.bihimp_eq_inf Codisjoint.bihimp_eq_inf
 
-/- warning: himp_bihimp -> himp_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c))
-Case conversion may be inaccurate. Consider using '#align himp_bihimp himp_bihimpₓ'. -/
 theorem himp_bihimp : a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) := by
   rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
 #align himp_bihimp himp_bihimp
 
-/- warning: sup_himp_bihimp -> sup_himp_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_himp_bihimp sup_himp_bihimpₓ'. -/
 @[simp]
 theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b := by rw [himp_bihimp]; simp [bihimp]
 #align sup_himp_bihimp sup_himp_bihimp
 
-/- warning: bihimp_himp_eq_inf -> bihimp_himp_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_himp_eq_inf bihimp_himp_eq_infₓ'. -/
 @[simp]
 theorem bihimp_himp_eq_inf : a ⇔ (a ⇨ b) = a ⊓ b :=
   @symmDiff_sdiff_eq_sup αᵒᵈ _ _ _
 #align bihimp_himp_eq_inf bihimp_himp_eq_inf
 
-/- warning: himp_bihimp_eq_inf -> himp_bihimp_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a) b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align himp_bihimp_eq_inf himp_bihimp_eq_infₓ'. -/
 @[simp]
 theorem himp_bihimp_eq_inf : (b ⇨ a) ⇔ b = a ⊓ b :=
   @sdiff_symmDiff_eq_sup αᵒᵈ _ _ _
 #align himp_bihimp_eq_inf himp_bihimp_eq_inf
 
-/- warning: bihimp_inf_sup -> bihimp_inf_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_inf_sup bihimp_inf_supₓ'. -/
 @[simp]
 theorem bihimp_inf_sup : a ⇔ b ⊓ (a ⊔ b) = a ⊓ b :=
   @symmDiff_sup_inf αᵒᵈ _ _ _
 #align bihimp_inf_sup bihimp_inf_sup
 
-/- warning: sup_inf_bihimp -> sup_inf_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align sup_inf_bihimp sup_inf_bihimpₓ'. -/
 @[simp]
 theorem sup_inf_bihimp : (a ⊔ b) ⊓ a ⇔ b = a ⊓ b :=
   @inf_sup_symmDiff αᵒᵈ _ _ _
 #align sup_inf_bihimp sup_inf_bihimp
 
-/- warning: bihimp_bihimp_sup -> bihimp_bihimp_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_sup bihimp_bihimp_supₓ'. -/
 @[simp]
 theorem bihimp_bihimp_sup : a ⇔ b ⇔ (a ⊔ b) = a ⊓ b :=
   @symmDiff_symmDiff_inf αᵒᵈ _ _ _
 #align bihimp_bihimp_sup bihimp_bihimp_sup
 
-/- warning: sup_bihimp_bihimp -> sup_bihimp_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align sup_bihimp_bihimp sup_bihimp_bihimpₓ'. -/
 @[simp]
 theorem sup_bihimp_bihimp : (a ⊔ b) ⇔ (a ⇔ b) = a ⊓ b :=
   @inf_symmDiff_symmDiff αᵒᵈ _ _ _
 #align sup_bihimp_bihimp sup_bihimp_bihimp
 
-/- warning: bihimp_triangle -> bihimp_triangle is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align bihimp_triangle bihimp_triangleₓ'. -/
 theorem bihimp_triangle : a ⇔ b ⊓ b ⇔ c ≤ a ⇔ c :=
   @symmDiff_triangle αᵒᵈ _ _ _ _
 #align bihimp_triangle bihimp_triangle
@@ -637,32 +355,14 @@ section CoheytingAlgebra
 
 variable [CoheytingAlgebra α] (a : α)
 
-/- warning: symm_diff_top' -> symmDiff_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_top' symmDiff_top'ₓ'. -/
 @[simp]
 theorem symmDiff_top' : a ∆ ⊤ = ¬a := by simp [symmDiff]
 #align symm_diff_top' symmDiff_top'
 
-/- warning: top_symm_diff' -> top_symmDiff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align top_symm_diff' top_symmDiff'ₓ'. -/
 @[simp]
 theorem top_symmDiff' : ⊤ ∆ a = ¬a := by simp [symmDiff]
 #align top_symm_diff' top_symmDiff'
 
-/- warning: hnot_symm_diff_self -> hnot_symmDiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align hnot_symm_diff_self hnot_symmDiff_selfₓ'. -/
 @[simp]
 theorem hnot_symmDiff_self : (¬a) ∆ a = ⊤ :=
   by
@@ -670,22 +370,10 @@ theorem hnot_symmDiff_self : (¬a) ∆ a = ⊤ :=
   exact Codisjoint.top_le codisjoint_hnot_left
 #align hnot_symm_diff_self hnot_symmDiff_self
 
-/- warning: symm_diff_hnot_self -> symmDiff_hnot_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align symm_diff_hnot_self symmDiff_hnot_selfₓ'. -/
 @[simp]
 theorem symmDiff_hnot_self : a ∆ (¬a) = ⊤ := by rw [symmDiff_comm, hnot_symmDiff_self]
 #align symm_diff_hnot_self symmDiff_hnot_self
 
-/- warning: is_compl.symm_diff_eq_top -> IsCompl.symmDiff_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align is_compl.symm_diff_eq_top IsCompl.symmDiff_eq_topₓ'. -/
 theorem IsCompl.symmDiff_eq_top {a b : α} (h : IsCompl a b) : a ∆ b = ⊤ := by
   rw [h.eq_hnot, hnot_symmDiff_self]
 #align is_compl.symm_diff_eq_top IsCompl.symmDiff_eq_top
@@ -696,54 +384,24 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] (a : α)
 
-/- warning: bihimp_bot -> bihimp_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align bihimp_bot bihimp_botₓ'. -/
 @[simp]
 theorem bihimp_bot : a ⇔ ⊥ = aᶜ := by simp [bihimp]
 #align bihimp_bot bihimp_bot
 
-/- warning: bot_bihimp -> bot_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align bot_bihimp bot_bihimpₓ'. -/
 @[simp]
 theorem bot_bihimp : ⊥ ⇔ a = aᶜ := by simp [bihimp]
 #align bot_bihimp bot_bihimp
 
-/- warning: compl_bihimp_self -> compl_bihimp_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align compl_bihimp_self compl_bihimp_selfₓ'. -/
 @[simp]
 theorem compl_bihimp_self : aᶜ ⇔ a = ⊥ :=
   @hnot_symmDiff_self αᵒᵈ _ _
 #align compl_bihimp_self compl_bihimp_self
 
-/- warning: bihimp_hnot_self -> bihimp_hnot_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align bihimp_hnot_self bihimp_hnot_selfₓ'. -/
 @[simp]
 theorem bihimp_hnot_self : a ⇔ aᶜ = ⊥ :=
   @symmDiff_hnot_self αᵒᵈ _ _
 #align bihimp_hnot_self bihimp_hnot_self
 
-/- warning: is_compl.bihimp_eq_bot -> IsCompl.bihimp_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align is_compl.bihimp_eq_bot IsCompl.bihimp_eq_botₓ'. -/
 theorem IsCompl.bihimp_eq_bot {a b : α} (h : IsCompl a b) : a ⇔ b = ⊥ := by
   rw [h.eq_compl, compl_bihimp_self]
 #align is_compl.bihimp_eq_bot IsCompl.bihimp_eq_bot
@@ -754,118 +412,52 @@ section GeneralizedBooleanAlgebra
 
 variable [GeneralizedBooleanAlgebra α] (a b c d : α)
 
-/- warning: sup_sdiff_symm_diff -> sup_sdiff_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_symm_diff sup_sdiff_symmDiffₓ'. -/
 @[simp]
 theorem sup_sdiff_symmDiff : (a ⊔ b) \ a ∆ b = a ⊓ b :=
   sdiff_eq_symm inf_le_sup (by rw [symmDiff_eq_sup_sdiff_inf])
 #align sup_sdiff_symm_diff sup_sdiff_symmDiff
 
-/- warning: disjoint_symm_diff_inf -> disjoint_symmDiff_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align disjoint_symm_diff_inf disjoint_symmDiff_infₓ'. -/
 theorem disjoint_symmDiff_inf : Disjoint (a ∆ b) (a ⊓ b) :=
   by
   rw [symmDiff_eq_sup_sdiff_inf]
   exact disjoint_sdiff_self_left
 #align disjoint_symm_diff_inf disjoint_symmDiff_inf
 
-/- warning: inf_symm_diff_distrib_left -> inf_symmDiff_distrib_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c))
-Case conversion may be inaccurate. Consider using '#align inf_symm_diff_distrib_left inf_symmDiff_distrib_leftₓ'. -/
 theorem inf_symmDiff_distrib_left : a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) := by
   rw [symmDiff_eq_sup_sdiff_inf, inf_sdiff_distrib_left, inf_sup_left, inf_inf_distrib_left,
     symmDiff_eq_sup_sdiff_inf]
 #align inf_symm_diff_distrib_left inf_symmDiff_distrib_left
 
-/- warning: inf_symm_diff_distrib_right -> inf_symmDiff_distrib_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align inf_symm_diff_distrib_right inf_symmDiff_distrib_rightₓ'. -/
 theorem inf_symmDiff_distrib_right : a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) := by
   simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left]
 #align inf_symm_diff_distrib_right inf_symmDiff_distrib_right
 
-/- warning: sdiff_symm_diff -> sdiff_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)))
-Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff sdiff_symmDiffₓ'. -/
 theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
   simp only [(· ∆ ·), sdiff_sdiff_sup_sdiff']
 #align sdiff_symm_diff sdiff_symmDiff
 
-/- warning: sdiff_symm_diff' -> sdiff_symmDiff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
-Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff' sdiff_symmDiff'ₓ'. -/
 theorem sdiff_symmDiff' : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) := by
   rw [sdiff_symmDiff, sdiff_sup, sup_comm]
 #align sdiff_symm_diff' sdiff_symmDiff'
 
-/- warning: symm_diff_sdiff_left -> symmDiff_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_left symmDiff_sdiff_leftₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_left : a ∆ b \ a = b \ a := by
   rw [symmDiff_def, sup_sdiff, sdiff_idem, sdiff_sdiff_self, bot_sup_eq]
 #align symm_diff_sdiff_left symmDiff_sdiff_left
 
-/- warning: symm_diff_sdiff_right -> symmDiff_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_right symmDiff_sdiff_rightₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_right : a ∆ b \ b = a \ b := by rw [symmDiff_comm, symmDiff_sdiff_left]
 #align symm_diff_sdiff_right symmDiff_sdiff_right
 
-/- warning: sdiff_symm_diff_left -> sdiff_symmDiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_left sdiff_symmDiff_leftₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_left : a \ a ∆ b = a ⊓ b := by simp [sdiff_symmDiff]
 #align sdiff_symm_diff_left sdiff_symmDiff_left
 
-/- warning: sdiff_symm_diff_right -> sdiff_symmDiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_right sdiff_symmDiff_rightₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
   rw [symmDiff_comm, inf_comm, sdiff_symmDiff_left]
 #align sdiff_symm_diff_right sdiff_symmDiff_right
 
-/- warning: symm_diff_eq_sup -> symmDiff_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_sup symmDiff_eq_supₓ'. -/
 theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   by
   refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩
@@ -873,12 +465,6 @@ theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   exact h.of_disjoint_inf_of_le le_sup_left
 #align symm_diff_eq_sup symmDiff_eq_sup
 
-/- warning: le_symm_diff_iff_left -> le_symmDiff_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_left le_symmDiff_iff_leftₓ'. -/
 @[simp]
 theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   by
@@ -887,23 +473,11 @@ theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
   exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le
 #align le_symm_diff_iff_left le_symmDiff_iff_left
 
-/- warning: le_symm_diff_iff_right -> le_symmDiff_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_right le_symmDiff_iff_rightₓ'. -/
 @[simp]
 theorem le_symmDiff_iff_right : b ≤ a ∆ b ↔ Disjoint a b := by
   rw [symmDiff_comm, le_symmDiff_iff_left, disjoint_comm]
 #align le_symm_diff_iff_right le_symmDiff_iff_right
 
-/- warning: symm_diff_symm_diff_left -> symmDiff_symmDiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_left symmDiff_symmDiff_leftₓ'. -/
 theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
   calc
     a ∆ b ∆ c = a ∆ b \ c ⊔ c \ a ∆ b := symmDiff_def _ _
@@ -913,12 +487,6 @@ theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
     
 #align symm_diff_symm_diff_left symmDiff_symmDiff_left
 
-/- warning: symm_diff_symm_diff_right -> symmDiff_symmDiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_right symmDiff_symmDiff_rightₓ'. -/
 theorem symmDiff_symmDiff_right :
     a ∆ (b ∆ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
   calc
@@ -929,176 +497,74 @@ theorem symmDiff_symmDiff_right :
     
 #align symm_diff_symm_diff_right symmDiff_symmDiff_right
 
-/- warning: symm_diff_assoc -> symmDiff_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_assoc symmDiff_assocₓ'. -/
 theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
   rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
 #align symm_diff_assoc symmDiff_assoc
 
-/- warning: symm_diff_is_assoc -> symmDiff_isAssociative is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6057 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6059 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6057 x._@.Mathlib.Order.SymmDiff._hyg.6059)
-Case conversion may be inaccurate. Consider using '#align symm_diff_is_assoc symmDiff_isAssociativeₓ'. -/
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
 #align symm_diff_is_assoc symmDiff_isAssociative
 
-/- warning: symm_diff_left_comm -> symmDiff_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_left_comm symmDiff_left_commₓ'. -/
 theorem symmDiff_left_comm : a ∆ (b ∆ c) = b ∆ (a ∆ c) := by
   simp_rw [← symmDiff_assoc, symmDiff_comm]
 #align symm_diff_left_comm symmDiff_left_comm
 
-/- warning: symm_diff_right_comm -> symmDiff_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_right_comm symmDiff_right_commₓ'. -/
 theorem symmDiff_right_comm : a ∆ b ∆ c = a ∆ c ∆ b := by simp_rw [symmDiff_assoc, symmDiff_comm]
 #align symm_diff_right_comm symmDiff_right_comm
 
-/- warning: symm_diff_symm_diff_symm_diff_comm -> symmDiff_symmDiff_symmDiff_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c d)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c d)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_symm_diff_comm symmDiff_symmDiff_symmDiff_commₓ'. -/
 theorem symmDiff_symmDiff_symmDiff_comm : a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b ∆ d) := by
   simp_rw [symmDiff_assoc, symmDiff_left_comm]
 #align symm_diff_symm_diff_symm_diff_comm symmDiff_symmDiff_symmDiff_comm
 
-/- warning: symm_diff_symm_diff_cancel_left -> symmDiff_symmDiff_cancel_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) b
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_cancel_left symmDiff_symmDiff_cancel_leftₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_cancel_left : a ∆ (a ∆ b) = b := by simp [← symmDiff_assoc]
 #align symm_diff_symm_diff_cancel_left symmDiff_symmDiff_cancel_left
 
-/- warning: symm_diff_symm_diff_cancel_right -> symmDiff_symmDiff_cancel_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a) a) b
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_cancel_right symmDiff_symmDiff_cancel_rightₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_cancel_right : b ∆ a ∆ a = b := by simp [symmDiff_assoc]
 #align symm_diff_symm_diff_cancel_right symmDiff_symmDiff_cancel_right
 
-/- warning: symm_diff_symm_diff_self' -> symmDiff_symmDiff_self' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) b
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_self' symmDiff_symmDiff_self'ₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_self' : a ∆ b ∆ a = b := by
   rw [symmDiff_comm, symmDiff_symmDiff_cancel_left]
 #align symm_diff_symm_diff_self' symmDiff_symmDiff_self'
 
-/- warning: symm_diff_left_involutive -> symmDiff_left_involutive is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_left_involutive symmDiff_left_involutiveₓ'. -/
 theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
   symmDiff_symmDiff_cancel_right _
 #align symm_diff_left_involutive symmDiff_left_involutive
 
-/- warning: symm_diff_right_involutive -> symmDiff_right_involutive is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6386 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6388 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6386 x._@.Mathlib.Order.SymmDiff._hyg.6388) a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_right_involutive symmDiff_right_involutiveₓ'. -/
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
 #align symm_diff_right_involutive symmDiff_right_involutive
 
-/- warning: symm_diff_left_injective -> symmDiff_left_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_left_injective symmDiff_left_injectiveₓ'. -/
 theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
   (symmDiff_left_involutive _).Injective
 #align symm_diff_left_injective symmDiff_left_injective
 
-/- warning: symm_diff_right_injective -> symmDiff_right_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6458 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6460 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6458 x._@.Mathlib.Order.SymmDiff._hyg.6460) a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_right_injective symmDiff_right_injectiveₓ'. -/
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
 #align symm_diff_right_injective symmDiff_right_injective
 
-/- warning: symm_diff_left_surjective -> symmDiff_left_surjective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_left_surjective symmDiff_left_surjectiveₓ'. -/
 theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
   (symmDiff_left_involutive _).Surjective
 #align symm_diff_left_surjective symmDiff_left_surjective
 
-/- warning: symm_diff_right_surjective -> symmDiff_right_surjective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6533 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6535 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6533 x._@.Mathlib.Order.SymmDiff._hyg.6535) a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_right_surjective symmDiff_right_surjectiveₓ'. -/
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
 #align symm_diff_right_surjective symmDiff_right_surjective
 
 variable {a b c}
 
-/- warning: symm_diff_left_inj -> symmDiff_left_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
-Case conversion may be inaccurate. Consider using '#align symm_diff_left_inj symmDiff_left_injₓ'. -/
 @[simp]
 theorem symmDiff_left_inj : a ∆ b = c ∆ b ↔ a = c :=
   (symmDiff_left_injective _).eq_iff
 #align symm_diff_left_inj symmDiff_left_inj
 
-/- warning: symm_diff_right_inj -> symmDiff_right_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
-Case conversion may be inaccurate. Consider using '#align symm_diff_right_inj symmDiff_right_injₓ'. -/
 @[simp]
 theorem symmDiff_right_inj : a ∆ b = a ∆ c ↔ b = c :=
   (symmDiff_right_injective _).eq_iff
 #align symm_diff_right_inj symmDiff_right_inj
 
-/- warning: symm_diff_eq_left -> symmDiff_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_left symmDiff_eq_leftₓ'. -/
 @[simp]
 theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
   calc
@@ -1107,44 +573,20 @@ theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
     
 #align symm_diff_eq_left symmDiff_eq_left
 
-/- warning: symm_diff_eq_right -> symmDiff_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_right symmDiff_eq_rightₓ'. -/
 @[simp]
 theorem symmDiff_eq_right : a ∆ b = b ↔ a = ⊥ := by rw [symmDiff_comm, symmDiff_eq_left]
 #align symm_diff_eq_right symmDiff_eq_right
 
-/- warning: disjoint.symm_diff_left -> Disjoint.symmDiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_left Disjoint.symmDiff_leftₓ'. -/
 protected theorem Disjoint.symmDiff_left (ha : Disjoint a c) (hb : Disjoint b c) :
     Disjoint (a ∆ b) c := by rw [symmDiff_eq_sup_sdiff_inf];
   exact (ha.sup_left hb).disjoint_sdiff_left
 #align disjoint.symm_diff_left Disjoint.symmDiff_left
 
-/- warning: disjoint.symm_diff_right -> Disjoint.symmDiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_right Disjoint.symmDiff_rightₓ'. -/
 protected theorem Disjoint.symmDiff_right (ha : Disjoint a b) (hb : Disjoint a c) :
     Disjoint a (b ∆ c) :=
   (ha.symm.symmDiff_left hb.symm).symm
 #align disjoint.symm_diff_right Disjoint.symmDiff_right
 
-/- warning: symm_diff_eq_iff_sdiff_eq -> symmDiff_eq_iff_sdiff_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) b))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_iff_sdiff_eq symmDiff_eq_iff_sdiff_eqₓ'. -/
 theorem symmDiff_eq_iff_sdiff_eq (ha : a ≤ c) : a ∆ b = c ↔ c \ a = b :=
   by
   rw [← symmDiff_of_le ha]
@@ -1161,305 +603,131 @@ variable [BooleanAlgebra α] (a b c d : α)
 the `generalized_boolean_algebra` ones -/
 section CogeneralizedBooleanAlgebra
 
-/- warning: inf_himp_bihimp -> inf_himp_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
-Case conversion may be inaccurate. Consider using '#align inf_himp_bihimp inf_himp_bihimpₓ'. -/
 @[simp]
 theorem inf_himp_bihimp : a ⇔ b ⇨ a ⊓ b = a ⊔ b :=
   @sup_sdiff_symmDiff αᵒᵈ _ _ _
 #align inf_himp_bihimp inf_himp_bihimp
 
-/- warning: codisjoint_bihimp_sup -> codisjoint_bihimp_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_bihimp_sup codisjoint_bihimp_supₓ'. -/
 theorem codisjoint_bihimp_sup : Codisjoint (a ⇔ b) (a ⊔ b) :=
   @disjoint_symmDiff_inf αᵒᵈ _ _ _
 #align codisjoint_bihimp_sup codisjoint_bihimp_sup
 
-/- warning: himp_bihimp_left -> himp_bihimp_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align himp_bihimp_left himp_bihimp_leftₓ'. -/
 @[simp]
 theorem himp_bihimp_left : a ⇨ a ⇔ b = a ⇨ b :=
   @symmDiff_sdiff_left αᵒᵈ _ _ _
 #align himp_bihimp_left himp_bihimp_left
 
-/- warning: himp_bihimp_right -> himp_bihimp_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align himp_bihimp_right himp_bihimp_rightₓ'. -/
 @[simp]
 theorem himp_bihimp_right : b ⇨ a ⇔ b = b ⇨ a :=
   @symmDiff_sdiff_right αᵒᵈ _ _ _
 #align himp_bihimp_right himp_bihimp_right
 
-/- warning: bihimp_himp_left -> bihimp_himp_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_himp_left bihimp_himp_leftₓ'. -/
 @[simp]
 theorem bihimp_himp_left : a ⇔ b ⇨ a = a ⊔ b :=
   @sdiff_symmDiff_left αᵒᵈ _ _ _
 #align bihimp_himp_left bihimp_himp_left
 
-/- warning: bihimp_himp_right -> bihimp_himp_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_himp_right bihimp_himp_rightₓ'. -/
 @[simp]
 theorem bihimp_himp_right : a ⇔ b ⇨ b = a ⊔ b :=
   @sdiff_symmDiff_right αᵒᵈ _ _ _
 #align bihimp_himp_right bihimp_himp_right
 
-/- warning: bihimp_eq_inf -> bihimp_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_inf bihimp_eq_infₓ'. -/
 @[simp]
 theorem bihimp_eq_inf : a ⇔ b = a ⊓ b ↔ Codisjoint a b :=
   @symmDiff_eq_sup αᵒᵈ _ _ _
 #align bihimp_eq_inf bihimp_eq_inf
 
-/- warning: bihimp_le_iff_left -> bihimp_le_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_left bihimp_le_iff_leftₓ'. -/
 @[simp]
 theorem bihimp_le_iff_left : a ⇔ b ≤ a ↔ Codisjoint a b :=
   @le_symmDiff_iff_left αᵒᵈ _ _ _
 #align bihimp_le_iff_left bihimp_le_iff_left
 
-/- warning: bihimp_le_iff_right -> bihimp_le_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_right bihimp_le_iff_rightₓ'. -/
 @[simp]
 theorem bihimp_le_iff_right : a ⇔ b ≤ b ↔ Codisjoint a b :=
   @le_symmDiff_iff_right αᵒᵈ _ _ _
 #align bihimp_le_iff_right bihimp_le_iff_right
 
-/- warning: bihimp_assoc -> bihimp_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align bihimp_assoc bihimp_assocₓ'. -/
 theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
   @symmDiff_assoc αᵒᵈ _ _ _ _
 #align bihimp_assoc bihimp_assoc
 
-/- warning: bihimp_is_assoc -> bihimp_isAssociative is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7456 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7458 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7456 x._@.Mathlib.Order.SymmDiff._hyg.7458)
-Case conversion may be inaccurate. Consider using '#align bihimp_is_assoc bihimp_isAssociativeₓ'. -/
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
 #align bihimp_is_assoc bihimp_isAssociative
 
-/- warning: bihimp_left_comm -> bihimp_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align bihimp_left_comm bihimp_left_commₓ'. -/
 theorem bihimp_left_comm : a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) := by simp_rw [← bihimp_assoc, bihimp_comm]
 #align bihimp_left_comm bihimp_left_comm
 
-/- warning: bihimp_right_comm -> bihimp_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align bihimp_right_comm bihimp_right_commₓ'. -/
 theorem bihimp_right_comm : a ⇔ b ⇔ c = a ⇔ c ⇔ b := by simp_rw [bihimp_assoc, bihimp_comm]
 #align bihimp_right_comm bihimp_right_comm
 
-/- warning: bihimp_bihimp_bihimp_comm -> bihimp_bihimp_bihimp_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) c d)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c d)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_bihimp_comm bihimp_bihimp_bihimp_commₓ'. -/
 theorem bihimp_bihimp_bihimp_comm : a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d) := by
   simp_rw [bihimp_assoc, bihimp_left_comm]
 #align bihimp_bihimp_bihimp_comm bihimp_bihimp_bihimp_comm
 
-/- warning: bihimp_bihimp_cancel_left -> bihimp_bihimp_cancel_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) b
-Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_cancel_left bihimp_bihimp_cancel_leftₓ'. -/
 @[simp]
 theorem bihimp_bihimp_cancel_left : a ⇔ (a ⇔ b) = b := by simp [← bihimp_assoc]
 #align bihimp_bihimp_cancel_left bihimp_bihimp_cancel_left
 
-/- warning: bihimp_bihimp_cancel_right -> bihimp_bihimp_cancel_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b a) a) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b a) a) b
-Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_cancel_right bihimp_bihimp_cancel_rightₓ'. -/
 @[simp]
 theorem bihimp_bihimp_cancel_right : b ⇔ a ⇔ a = b := by simp [bihimp_assoc]
 #align bihimp_bihimp_cancel_right bihimp_bihimp_cancel_right
 
-/- warning: bihimp_bihimp_self -> bihimp_bihimp_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) b
-Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_self bihimp_bihimp_selfₓ'. -/
 @[simp]
 theorem bihimp_bihimp_self : a ⇔ b ⇔ a = b := by rw [bihimp_comm, bihimp_bihimp_cancel_left]
 #align bihimp_bihimp_self bihimp_bihimp_self
 
-/- warning: bihimp_left_involutive -> bihimp_left_involutive is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align bihimp_left_involutive bihimp_left_involutiveₓ'. -/
 theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
   bihimp_bihimp_cancel_right _
 #align bihimp_left_involutive bihimp_left_involutive
 
-/- warning: bihimp_right_involutive -> bihimp_right_involutive is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7785 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7787 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7785 x._@.Mathlib.Order.SymmDiff._hyg.7787) a)
-Case conversion may be inaccurate. Consider using '#align bihimp_right_involutive bihimp_right_involutiveₓ'. -/
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
 #align bihimp_right_involutive bihimp_right_involutive
 
-/- warning: bihimp_left_injective -> bihimp_left_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align bihimp_left_injective bihimp_left_injectiveₓ'. -/
 theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
   @symmDiff_left_injective αᵒᵈ _ _
 #align bihimp_left_injective bihimp_left_injective
 
-/- warning: bihimp_right_injective -> bihimp_right_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7858 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7860 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7858 x._@.Mathlib.Order.SymmDiff._hyg.7860) a)
-Case conversion may be inaccurate. Consider using '#align bihimp_right_injective bihimp_right_injectiveₓ'. -/
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
 #align bihimp_right_injective bihimp_right_injective
 
-/- warning: bihimp_left_surjective -> bihimp_left_surjective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
-Case conversion may be inaccurate. Consider using '#align bihimp_left_surjective bihimp_left_surjectiveₓ'. -/
 theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
   @symmDiff_left_surjective αᵒᵈ _ _
 #align bihimp_left_surjective bihimp_left_surjective
 
-/- warning: bihimp_right_surjective -> bihimp_right_surjective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7935 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7937 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7935 x._@.Mathlib.Order.SymmDiff._hyg.7937) a)
-Case conversion may be inaccurate. Consider using '#align bihimp_right_surjective bihimp_right_surjectiveₓ'. -/
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
 #align bihimp_right_surjective bihimp_right_surjective
 
 variable {a b c}
 
-/- warning: bihimp_left_inj -> bihimp_left_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
-Case conversion may be inaccurate. Consider using '#align bihimp_left_inj bihimp_left_injₓ'. -/
 @[simp]
 theorem bihimp_left_inj : a ⇔ b = c ⇔ b ↔ a = c :=
   (bihimp_left_injective _).eq_iff
 #align bihimp_left_inj bihimp_left_inj
 
-/- warning: bihimp_right_inj -> bihimp_right_inj is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
-Case conversion may be inaccurate. Consider using '#align bihimp_right_inj bihimp_right_injₓ'. -/
 @[simp]
 theorem bihimp_right_inj : a ⇔ b = a ⇔ c ↔ b = c :=
   (bihimp_right_injective _).eq_iff
 #align bihimp_right_inj bihimp_right_inj
 
-/- warning: bihimp_eq_left -> bihimp_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_left bihimp_eq_leftₓ'. -/
 @[simp]
 theorem bihimp_eq_left : a ⇔ b = a ↔ b = ⊤ :=
   @symmDiff_eq_left αᵒᵈ _ _ _
 #align bihimp_eq_left bihimp_eq_left
 
-/- warning: bihimp_eq_right -> bihimp_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_right bihimp_eq_rightₓ'. -/
 @[simp]
 theorem bihimp_eq_right : a ⇔ b = b ↔ a = ⊤ :=
   @symmDiff_eq_right αᵒᵈ _ _ _
 #align bihimp_eq_right bihimp_eq_right
 
-/- warning: codisjoint.bihimp_left -> Codisjoint.bihimp_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_left Codisjoint.bihimp_leftₓ'. -/
 protected theorem Codisjoint.bihimp_left (ha : Codisjoint a c) (hb : Codisjoint b c) :
     Codisjoint (a ⇔ b) c :=
   (ha.inf_left hb).mono_left inf_le_bihimp
 #align codisjoint.bihimp_left Codisjoint.bihimp_left
 
-/- warning: codisjoint.bihimp_right -> Codisjoint.bihimp_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_right Codisjoint.bihimp_rightₓ'. -/
 protected theorem Codisjoint.bihimp_right (ha : Codisjoint a b) (hb : Codisjoint a c) :
     Codisjoint a (b ⇔ c) :=
   (ha.inf_right hb).mono_right inf_le_bihimp
@@ -1467,160 +735,70 @@ protected theorem Codisjoint.bihimp_right (ha : Codisjoint a b) (hb : Codisjoint
 
 end CogeneralizedBooleanAlgebra
 
-/- warning: symm_diff_eq -> symmDiff_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq symmDiff_eqₓ'. -/
 theorem symmDiff_eq : a ∆ b = a ⊓ bᶜ ⊔ b ⊓ aᶜ := by simp only [(· ∆ ·), sdiff_eq]
 #align symm_diff_eq symmDiff_eq
 
-/- warning: bihimp_eq -> bihimp_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
-Case conversion may be inaccurate. Consider using '#align bihimp_eq bihimp_eqₓ'. -/
 theorem bihimp_eq : a ⇔ b = (a ⊔ bᶜ) ⊓ (b ⊔ aᶜ) := by simp only [(· ⇔ ·), himp_eq]
 #align bihimp_eq bihimp_eq
 
-/- warning: symm_diff_eq' -> symmDiff_eq' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq' symmDiff_eq'ₓ'. -/
 theorem symmDiff_eq' : a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ) := by
   rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf]
 #align symm_diff_eq' symmDiff_eq'
 
-/- warning: bihimp_eq' -> bihimp_eq' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align bihimp_eq' bihimp_eq'ₓ'. -/
 theorem bihimp_eq' : a ⇔ b = a ⊓ b ⊔ aᶜ ⊓ bᶜ :=
   @symmDiff_eq' αᵒᵈ _ _ _
 #align bihimp_eq' bihimp_eq'
 
-/- warning: symm_diff_top -> symmDiff_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align symm_diff_top symmDiff_topₓ'. -/
 theorem symmDiff_top : a ∆ ⊤ = aᶜ :=
   symmDiff_top' _
 #align symm_diff_top symmDiff_top
 
-/- warning: top_symm_diff -> top_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align top_symm_diff top_symmDiffₓ'. -/
 theorem top_symmDiff : ⊤ ∆ a = aᶜ :=
   top_symmDiff' _
 #align top_symm_diff top_symmDiff
 
-/- warning: compl_symm_diff -> compl_symmDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align compl_symm_diff compl_symmDiffₓ'. -/
 @[simp]
 theorem compl_symmDiff : (a ∆ b)ᶜ = a ⇔ b := by
   simp_rw [symmDiff, compl_sup_distrib, compl_sdiff, bihimp, inf_comm]
 #align compl_symm_diff compl_symmDiff
 
-/- warning: compl_bihimp -> compl_bihimp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align compl_bihimp compl_bihimpₓ'. -/
 @[simp]
 theorem compl_bihimp : (a ⇔ b)ᶜ = a ∆ b :=
   @compl_symmDiff αᵒᵈ _ _ _
 #align compl_bihimp compl_bihimp
 
-/- warning: compl_symm_diff_compl -> compl_symmDiff_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align compl_symm_diff_compl compl_symmDiff_complₓ'. -/
 @[simp]
 theorem compl_symmDiff_compl : aᶜ ∆ bᶜ = a ∆ b :=
   sup_comm.trans <| by simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq]
 #align compl_symm_diff_compl compl_symmDiff_compl
 
-/- warning: compl_bihimp_compl -> compl_bihimp_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align compl_bihimp_compl compl_bihimp_complₓ'. -/
 @[simp]
 theorem compl_bihimp_compl : aᶜ ⇔ bᶜ = a ⇔ b :=
   @compl_symmDiff_compl αᵒᵈ _ _ _
 #align compl_bihimp_compl compl_bihimp_compl
 
-/- warning: symm_diff_eq_top -> symmDiff_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align symm_diff_eq_top symmDiff_eq_topₓ'. -/
 @[simp]
 theorem symmDiff_eq_top : a ∆ b = ⊤ ↔ IsCompl a b := by
   rw [symmDiff_eq', ← compl_inf, inf_eq_top_iff, compl_eq_top, isCompl_iff, disjoint_iff,
     codisjoint_iff, and_comm]
 #align symm_diff_eq_top symmDiff_eq_top
 
-/- warning: bihimp_eq_bot -> bihimp_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Bot.bot.{u1} α (BooleanAlgebra.toHasBot.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Bot.bot.{u1} α (BooleanAlgebra.toBot.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align bihimp_eq_bot bihimp_eq_botₓ'. -/
 @[simp]
 theorem bihimp_eq_bot : a ⇔ b = ⊥ ↔ IsCompl a b := by
   rw [bihimp_eq', ← compl_sup, sup_eq_bot_iff, compl_eq_bot, isCompl_iff, disjoint_iff,
     codisjoint_iff]
 #align bihimp_eq_bot bihimp_eq_bot
 
-/- warning: compl_symm_diff_self -> compl_symmDiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align compl_symm_diff_self compl_symmDiff_selfₓ'. -/
 @[simp]
 theorem compl_symmDiff_self : aᶜ ∆ a = ⊤ :=
   hnot_symmDiff_self _
 #align compl_symm_diff_self compl_symmDiff_self
 
-/- warning: symm_diff_compl_self -> symmDiff_compl_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align symm_diff_compl_self symmDiff_compl_selfₓ'. -/
 @[simp]
 theorem symmDiff_compl_self : a ∆ aᶜ = ⊤ :=
   symmDiff_hnot_self _
 #align symm_diff_compl_self symmDiff_compl_self
 
-/- warning: symm_diff_symm_diff_right' -> symmDiff_symmDiff_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
-Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_right' symmDiff_symmDiff_right'ₓ'. -/
 theorem symmDiff_symmDiff_right' :
     a ∆ (b ∆ c) = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c :=
   calc
@@ -1639,12 +817,6 @@ theorem symmDiff_symmDiff_right' :
 
 variable {a b c}
 
-/- warning: disjoint.le_symm_diff_sup_symm_diff_left -> Disjoint.le_symmDiff_sup_symmDiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_left Disjoint.le_symmDiff_sup_symmDiff_leftₓ'. -/
 theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆ c ⊔ b ∆ c :=
   by
   trans c \ (a ⊓ b)
@@ -1653,32 +825,14 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆
     exact sup_le_sup le_sup_right le_sup_right
 #align disjoint.le_symm_diff_sup_symm_diff_left Disjoint.le_symmDiff_sup_symmDiff_left
 
-/- warning: disjoint.le_symm_diff_sup_symm_diff_right -> Disjoint.le_symmDiff_sup_symmDiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c)))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_rightₓ'. -/
 theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆ b ⊔ a ∆ c := by
   simp_rw [symmDiff_comm a]; exact h.le_symm_diff_sup_symm_diff_left
 #align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_right
 
-/- warning: codisjoint.bihimp_inf_bihimp_le_left -> Codisjoint.bihimp_inf_bihimp_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_left Codisjoint.bihimp_inf_bihimp_le_leftₓ'. -/
 theorem Codisjoint.bihimp_inf_bihimp_le_left (h : Codisjoint a b) : a ⇔ c ⊓ b ⇔ c ≤ c :=
   h.dual.le_symmDiff_sup_symmDiff_left
 #align codisjoint.bihimp_inf_bihimp_le_left Codisjoint.bihimp_inf_bihimp_le_left
 
-/- warning: codisjoint.bihimp_inf_bihimp_le_right -> Codisjoint.bihimp_inf_bihimp_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_right Codisjoint.bihimp_inf_bihimp_le_rightₓ'. -/
 theorem Codisjoint.bihimp_inf_bihimp_le_right (h : Codisjoint b c) : a ⇔ b ⊓ a ⇔ c ≤ a :=
   h.dual.le_symmDiff_sup_symmDiff_right
 #align codisjoint.bihimp_inf_bihimp_le_right Codisjoint.bihimp_inf_bihimp_le_right
@@ -1690,48 +844,24 @@ end BooleanAlgebra
 
 section Prod
 
-/- warning: symm_diff_fst -> symmDiff_fst is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (symmDiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasSdiff.{u1, u2} α β (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2)) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instSupProd.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align symm_diff_fst symmDiff_fstₓ'. -/
 @[simp]
 theorem symmDiff_fst [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
     (a ∆ b).1 = a.1 ∆ b.1 :=
   rfl
 #align symm_diff_fst symmDiff_fst
 
-/- warning: symm_diff_snd -> symmDiff_snd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (symmDiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasSdiff.{u1, u2} α β (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2)) a b)) (symmDiff.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2) (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instSupProd.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u1} β (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align symm_diff_snd symmDiff_sndₓ'. -/
 @[simp]
 theorem symmDiff_snd [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
     (a ∆ b).2 = a.2 ∆ b.2 :=
   rfl
 #align symm_diff_snd symmDiff_snd
 
-/- warning: bihimp_fst -> bihimp_fst is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] [_inst_2 : GeneralizedHeytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (bihimp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasHimp.{u1, u2} α β (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2)) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instInfProd.{u2, u1} α β (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u2} α (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align bihimp_fst bihimp_fstₓ'. -/
 @[simp]
 theorem bihimp_fst [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
     (a ⇔ b).1 = a.1 ⇔ b.1 :=
   rfl
 #align bihimp_fst bihimp_fst
 
-/- warning: bihimp_snd -> bihimp_snd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] [_inst_2 : GeneralizedHeytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (bihimp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasHimp.{u1, u2} α β (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2)) a b)) (bihimp.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2) (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instInfProd.{u2, u1} α β (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u1} β (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2)) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align bihimp_snd bihimp_sndₓ'. -/
 @[simp]
 theorem bihimp_snd [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
     (a ⇔ b).2 = a.2 ⇔ b.2 :=
@@ -1745,46 +875,22 @@ end Prod
 
 namespace Pi
 
-/- warning: pi.symm_diff_def -> Pi.symmDiff_def is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{succ (max u1 u2)} (forall (i : ι), π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.hasSup.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => symmDiff.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
-Case conversion may be inaccurate. Consider using '#align pi.symm_diff_def Pi.symmDiff_defₓ'. -/
 theorem symmDiff_def [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ∆ b = fun i => a i ∆ b i :=
   rfl
 #align pi.symm_diff_def Pi.symmDiff_def
 
-/- warning: pi.bihimp_def -> Pi.bihimp_def is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{succ (max u1 u2)} (forall (i : ι), π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.hasInf.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.hasHimp.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => bihimp.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i)) (a i) (b i))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => bihimp.{u2} (π i) (Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
-Case conversion may be inaccurate. Consider using '#align pi.bihimp_def Pi.bihimp_defₓ'. -/
 theorem bihimp_def [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ⇔ b = fun i => a i ⇔ b i :=
   rfl
 #align pi.bihimp_def Pi.bihimp_def
 
-/- warning: pi.symm_diff_apply -> Pi.symmDiff_apply is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.hasSup.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i))) a b i) (symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b i) (symmDiff.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
-Case conversion may be inaccurate. Consider using '#align pi.symm_diff_apply Pi.symmDiff_applyₓ'. -/
 @[simp]
 theorem symmDiff_apply [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :
     (a ∆ b) i = a i ∆ b i :=
   rfl
 #align pi.symm_diff_apply Pi.symmDiff_apply
 
-/- warning: pi.bihimp_apply -> Pi.bihimp_apply is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.hasInf.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.hasHimp.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i))) a b i) (bihimp.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i)) (a i) (b i))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b i) (bihimp.{u2} (π i) (Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
-Case conversion may be inaccurate. Consider using '#align pi.bihimp_apply Pi.bihimp_applyₓ'. -/
 @[simp]
 theorem bihimp_apply [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :
     (a ⇔ b) i = a i ⇔ b i :=
Diff
@@ -294,10 +294,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_inf symmDiff_sdiff_infₓ'. -/
 @[simp]
-theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b :=
-  by
-  rw [symmDiff_sdiff]
-  simp [symmDiff]
+theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b := by rw [symmDiff_sdiff]; simp [symmDiff]
 #align symm_diff_sdiff_inf symmDiff_sdiff_inf
 
 /- warning: symm_diff_sdiff_eq_sup -> symmDiff_sdiff_eq_sup is a dubious translation:
@@ -555,10 +552,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sup_himp_bihimp sup_himp_bihimpₓ'. -/
 @[simp]
-theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b :=
-  by
-  rw [himp_bihimp]
-  simp [bihimp]
+theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b := by rw [himp_bihimp]; simp [bihimp]
 #align sup_himp_bihimp sup_himp_bihimp
 
 /- warning: bihimp_himp_eq_inf -> bihimp_himp_eq_inf is a dubious translation:
@@ -1130,8 +1124,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_left Disjoint.symmDiff_leftₓ'. -/
 protected theorem Disjoint.symmDiff_left (ha : Disjoint a c) (hb : Disjoint b c) :
-    Disjoint (a ∆ b) c := by
-  rw [symmDiff_eq_sup_sdiff_inf]
+    Disjoint (a ∆ b) c := by rw [symmDiff_eq_sup_sdiff_inf];
   exact (ha.sup_left hb).disjoint_sdiff_left
 #align disjoint.symm_diff_left Disjoint.symmDiff_left
 
@@ -1666,10 +1659,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_rightₓ'. -/
-theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆ b ⊔ a ∆ c :=
-  by
-  simp_rw [symmDiff_comm a]
-  exact h.le_symm_diff_sup_symm_diff_left
+theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆ b ⊔ a ∆ c := by
+  simp_rw [symmDiff_comm a]; exact h.le_symm_diff_sup_symm_diff_left
 #align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_right
 
 /- warning: codisjoint.bihimp_inf_bihimp_le_left -> Codisjoint.bihimp_inf_bihimp_le_left is a dubious translation:
Diff
@@ -160,7 +160,7 @@ theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1545 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1547 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1545 x._@.Mathlib.Order.SymmDiff._hyg.1547)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1549 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1551 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1549 x._@.Mathlib.Order.SymmDiff._hyg.1551)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_comm symmDiff_isCommutativeₓ'. -/
 instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
@@ -421,7 +421,7 @@ theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3048 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3050 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3048 x._@.Mathlib.Order.SymmDiff._hyg.3050)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3052 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3054 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3052 x._@.Mathlib.Order.SymmDiff._hyg.3054)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_comm bihimp_isCommutativeₓ'. -/
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
@@ -949,7 +949,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6053 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6055 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6053 x._@.Mathlib.Order.SymmDiff._hyg.6055)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6057 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6059 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6057 x._@.Mathlib.Order.SymmDiff._hyg.6059)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_assoc symmDiff_isAssociativeₓ'. -/
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
@@ -1029,7 +1029,7 @@ theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6382 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6384 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6382 x._@.Mathlib.Order.SymmDiff._hyg.6384) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6386 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6388 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6386 x._@.Mathlib.Order.SymmDiff._hyg.6388) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_involutive symmDiff_right_involutiveₓ'. -/
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
@@ -1049,7 +1049,7 @@ theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6454 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6456 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6454 x._@.Mathlib.Order.SymmDiff._hyg.6456) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6458 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6460 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6458 x._@.Mathlib.Order.SymmDiff._hyg.6460) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_injective symmDiff_right_injectiveₓ'. -/
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
@@ -1069,7 +1069,7 @@ theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6529 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6531 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6529 x._@.Mathlib.Order.SymmDiff._hyg.6531) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6533 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6535 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6533 x._@.Mathlib.Order.SymmDiff._hyg.6535) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_surjective symmDiff_right_surjectiveₓ'. -/
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
@@ -1280,7 +1280,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7452 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7454 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7452 x._@.Mathlib.Order.SymmDiff._hyg.7454)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7456 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7458 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7456 x._@.Mathlib.Order.SymmDiff._hyg.7458)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_assoc bihimp_isAssociativeₓ'. -/
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
@@ -1358,7 +1358,7 @@ theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7781 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7783 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7781 x._@.Mathlib.Order.SymmDiff._hyg.7783) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7785 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7787 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7785 x._@.Mathlib.Order.SymmDiff._hyg.7787) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_involutive bihimp_right_involutiveₓ'. -/
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
@@ -1378,7 +1378,7 @@ theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7854 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7856 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7854 x._@.Mathlib.Order.SymmDiff._hyg.7856) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7858 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7860 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7858 x._@.Mathlib.Order.SymmDiff._hyg.7860) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_injective bihimp_right_injectiveₓ'. -/
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
@@ -1398,7 +1398,7 @@ theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7931 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7933 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7931 x._@.Mathlib.Order.SymmDiff._hyg.7933) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7935 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7937 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7935 x._@.Mathlib.Order.SymmDiff._hyg.7937) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_surjective bihimp_right_surjectiveₓ'. -/
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
Diff
@@ -209,7 +209,7 @@ theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
 
 /- warning: symm_diff_of_le -> symmDiff_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a))
 Case conversion may be inaccurate. Consider using '#align symm_diff_of_le symmDiff_of_leₓ'. -/
@@ -219,7 +219,7 @@ theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
 
 /- warning: symm_diff_of_ge -> symmDiff_of_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_of_ge symmDiff_of_geₓ'. -/
@@ -229,7 +229,7 @@ theorem symmDiff_of_ge {a b : α} (h : b ≤ a) : a ∆ b = a \ b := by
 
 /- warning: symm_diff_le -> symmDiff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align symm_diff_le symmDiff_leₓ'. -/
@@ -239,7 +239,7 @@ theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a 
 
 /- warning: symm_diff_le_iff -> symmDiff_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_le_iff symmDiff_le_iffₓ'. -/
@@ -249,7 +249,7 @@ theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤
 
 /- warning: symm_diff_le_sup -> symmDiff_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_le_sup symmDiff_le_supₓ'. -/
@@ -378,7 +378,7 @@ theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
 
 /- warning: symm_diff_triangle -> symmDiff_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_triangle symmDiff_triangleₓ'. -/
@@ -470,7 +470,7 @@ theorem bihimp_eq_top {a b : α} : a ⇔ b = ⊤ ↔ a = b :=
 
 /- warning: bihimp_of_le -> bihimp_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a))
 Case conversion may be inaccurate. Consider using '#align bihimp_of_le bihimp_of_leₓ'. -/
@@ -480,7 +480,7 @@ theorem bihimp_of_le {a b : α} (h : a ≤ b) : a ⇔ b = b ⇨ a := by
 
 /- warning: bihimp_of_ge -> bihimp_of_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align bihimp_of_ge bihimp_of_geₓ'. -/
@@ -490,7 +490,7 @@ theorem bihimp_of_ge {a b : α} (h : b ≤ a) : a ⇔ b = a ⇨ b := by
 
 /- warning: le_bihimp -> le_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align le_bihimp le_bihimpₓ'. -/
@@ -500,7 +500,7 @@ theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤
 
 /- warning: le_bihimp_iff -> le_bihimp_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b))
 Case conversion may be inaccurate. Consider using '#align le_bihimp_iff le_bihimp_iffₓ'. -/
@@ -510,7 +510,7 @@ theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c
 
 /- warning: inf_le_bihimp -> inf_le_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align inf_le_bihimp inf_le_bihimpₓ'. -/
@@ -629,7 +629,7 @@ theorem sup_bihimp_bihimp : (a ⊔ b) ⇔ (a ⇔ b) = a ⊓ b :=
 
 /- warning: bihimp_triangle -> bihimp_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align bihimp_triangle bihimp_triangleₓ'. -/
@@ -881,7 +881,7 @@ theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
 
 /- warning: le_symm_diff_iff_left -> le_symmDiff_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_left le_symmDiff_iff_leftₓ'. -/
@@ -895,7 +895,7 @@ theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
 
 /- warning: le_symm_diff_iff_right -> le_symmDiff_iff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_right le_symmDiff_iff_rightₓ'. -/
@@ -1148,7 +1148,7 @@ protected theorem Disjoint.symmDiff_right (ha : Disjoint a b) (hb : Disjoint a c
 
 /- warning: symm_diff_eq_iff_sdiff_eq -> symmDiff_eq_iff_sdiff_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_iff_sdiff_eq symmDiff_eq_iff_sdiff_eqₓ'. -/
@@ -1246,7 +1246,7 @@ theorem bihimp_eq_inf : a ⇔ b = a ⊓ b ↔ Codisjoint a b :=
 
 /- warning: bihimp_le_iff_left -> bihimp_le_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_left bihimp_le_iff_leftₓ'. -/
@@ -1257,7 +1257,7 @@ theorem bihimp_le_iff_left : a ⇔ b ≤ a ↔ Codisjoint a b :=
 
 /- warning: bihimp_le_iff_right -> bihimp_le_iff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_right bihimp_le_iff_rightₓ'. -/
@@ -1648,7 +1648,7 @@ variable {a b c}
 
 /- warning: disjoint.le_symm_diff_sup_symm_diff_left -> Disjoint.le_symmDiff_sup_symmDiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_left Disjoint.le_symmDiff_sup_symmDiff_leftₓ'. -/
@@ -1662,7 +1662,7 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆
 
 /- warning: disjoint.le_symm_diff_sup_symm_diff_right -> Disjoint.le_symmDiff_sup_symmDiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_rightₓ'. -/
@@ -1674,7 +1674,7 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆
 
 /- warning: codisjoint.bihimp_inf_bihimp_le_left -> Codisjoint.bihimp_inf_bihimp_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_left Codisjoint.bihimp_inf_bihimp_le_leftₓ'. -/
@@ -1684,7 +1684,7 @@ theorem Codisjoint.bihimp_inf_bihimp_le_left (h : Codisjoint a b) : a ⇔ c ⊓
 
 /- warning: codisjoint.bihimp_inf_bihimp_le_right -> Codisjoint.bihimp_inf_bihimp_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_right Codisjoint.bihimp_inf_bihimp_le_rightₓ'. -/
Diff
@@ -421,7 +421,7 @@ theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3052 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3054 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3052 x._@.Mathlib.Order.SymmDiff._hyg.3054)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3048 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3050 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3048 x._@.Mathlib.Order.SymmDiff._hyg.3050)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_comm bihimp_isCommutativeₓ'. -/
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
@@ -949,7 +949,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6061 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6063 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6061 x._@.Mathlib.Order.SymmDiff._hyg.6063)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6053 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6055 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6053 x._@.Mathlib.Order.SymmDiff._hyg.6055)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_assoc symmDiff_isAssociativeₓ'. -/
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
@@ -1029,7 +1029,7 @@ theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6396 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6398 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6396 x._@.Mathlib.Order.SymmDiff._hyg.6398) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6382 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6384 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6382 x._@.Mathlib.Order.SymmDiff._hyg.6384) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_involutive symmDiff_right_involutiveₓ'. -/
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
@@ -1049,7 +1049,7 @@ theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6468 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6470 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6468 x._@.Mathlib.Order.SymmDiff._hyg.6470) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6454 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6456 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6454 x._@.Mathlib.Order.SymmDiff._hyg.6456) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_injective symmDiff_right_injectiveₓ'. -/
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
@@ -1069,7 +1069,7 @@ theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6543 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6545 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6543 x._@.Mathlib.Order.SymmDiff._hyg.6545) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6529 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6531 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6529 x._@.Mathlib.Order.SymmDiff._hyg.6531) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_surjective symmDiff_right_surjectiveₓ'. -/
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
@@ -1280,7 +1280,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7466 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7468 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7466 x._@.Mathlib.Order.SymmDiff._hyg.7468)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7452 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7454 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7452 x._@.Mathlib.Order.SymmDiff._hyg.7454)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_assoc bihimp_isAssociativeₓ'. -/
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
@@ -1358,7 +1358,7 @@ theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7801 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7803 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7801 x._@.Mathlib.Order.SymmDiff._hyg.7803) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7781 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7783 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7781 x._@.Mathlib.Order.SymmDiff._hyg.7783) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_involutive bihimp_right_involutiveₓ'. -/
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
@@ -1378,7 +1378,7 @@ theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7874 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7876 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7874 x._@.Mathlib.Order.SymmDiff._hyg.7876) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7854 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7856 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7854 x._@.Mathlib.Order.SymmDiff._hyg.7856) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_injective bihimp_right_injectiveₓ'. -/
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
@@ -1398,7 +1398,7 @@ theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7951 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7953 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7951 x._@.Mathlib.Order.SymmDiff._hyg.7953) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7931 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7933 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7931 x._@.Mathlib.Order.SymmDiff._hyg.7933) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_surjective bihimp_right_surjectiveₓ'. -/
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
Diff
@@ -160,7 +160,7 @@ theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1539 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1541 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1539 x._@.Mathlib.Order.SymmDiff._hyg.1541)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1545 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1547 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1545 x._@.Mathlib.Order.SymmDiff._hyg.1547)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_comm symmDiff_isCommutativeₓ'. -/
 instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
@@ -421,7 +421,7 @@ theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3040 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3042 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3040 x._@.Mathlib.Order.SymmDiff._hyg.3042)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3052 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3054 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3052 x._@.Mathlib.Order.SymmDiff._hyg.3054)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_comm bihimp_isCommutativeₓ'. -/
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
@@ -949,7 +949,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6049 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6051 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6049 x._@.Mathlib.Order.SymmDiff._hyg.6051)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6061 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6063 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6061 x._@.Mathlib.Order.SymmDiff._hyg.6063)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_assoc symmDiff_isAssociativeₓ'. -/
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
@@ -1029,7 +1029,7 @@ theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6384 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6386 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6384 x._@.Mathlib.Order.SymmDiff._hyg.6386) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6396 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6398 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6396 x._@.Mathlib.Order.SymmDiff._hyg.6398) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_involutive symmDiff_right_involutiveₓ'. -/
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
@@ -1049,7 +1049,7 @@ theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6456 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6458 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6456 x._@.Mathlib.Order.SymmDiff._hyg.6458) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6468 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6470 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6468 x._@.Mathlib.Order.SymmDiff._hyg.6470) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_injective symmDiff_right_injectiveₓ'. -/
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
@@ -1069,7 +1069,7 @@ theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6531 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6533 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6531 x._@.Mathlib.Order.SymmDiff._hyg.6533) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6543 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6545 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6543 x._@.Mathlib.Order.SymmDiff._hyg.6545) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_surjective symmDiff_right_surjectiveₓ'. -/
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
@@ -1280,7 +1280,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7454 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7456 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7454 x._@.Mathlib.Order.SymmDiff._hyg.7456)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7466 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7468 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7466 x._@.Mathlib.Order.SymmDiff._hyg.7468)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_assoc bihimp_isAssociativeₓ'. -/
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
@@ -1358,7 +1358,7 @@ theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7789 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7791 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7789 x._@.Mathlib.Order.SymmDiff._hyg.7791) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7801 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7803 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7801 x._@.Mathlib.Order.SymmDiff._hyg.7803) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_involutive bihimp_right_involutiveₓ'. -/
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
@@ -1378,7 +1378,7 @@ theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7862 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7864 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7862 x._@.Mathlib.Order.SymmDiff._hyg.7864) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7874 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7876 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7874 x._@.Mathlib.Order.SymmDiff._hyg.7876) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_injective bihimp_right_injectiveₓ'. -/
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
@@ -1398,7 +1398,7 @@ theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7939 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7941 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7939 x._@.Mathlib.Order.SymmDiff._hyg.7941) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7951 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7953 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7951 x._@.Mathlib.Order.SymmDiff._hyg.7953) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_surjective bihimp_right_surjectiveₓ'. -/
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
Diff
@@ -64,7 +64,7 @@ variable {ι α β : Type _} {π : ι → Type _}
 
 #print symmDiff /-
 /-- The symmetric difference operator on a type with `⊔` and `\` is `(A \ B) ⊔ (B \ A)`. -/
-def symmDiff [HasSup α] [SDiff α] (a b : α) : α :=
+def symmDiff [Sup α] [SDiff α] (a b : α) : α :=
   a \ b ⊔ b \ a
 #align symm_diff symmDiff
 -/
@@ -72,7 +72,7 @@ def symmDiff [HasSup α] [SDiff α] (a b : α) : α :=
 #print bihimp /-
 /-- The Heyting bi-implication is `(b ⇨ a) ⊓ (a ⇨ b)`. This generalizes equivalence of
 propositions. -/
-def bihimp [HasInf α] [HImp α] (a b : α) : α :=
+def bihimp [Inf α] [HImp α] (a b : α) : α :=
   (b ⇨ a) ⊓ (a ⇨ b)
 #align bihimp bihimp
 -/
@@ -87,13 +87,13 @@ infixl:100
 infixl:100 " ⇔ " => bihimp
 
 #print symmDiff_def /-
-theorem symmDiff_def [HasSup α] [SDiff α] (a b : α) : a ∆ b = a \ b ⊔ b \ a :=
+theorem symmDiff_def [Sup α] [SDiff α] (a b : α) : a ∆ b = a \ b ⊔ b \ a :=
   rfl
 #align symm_diff_def symmDiff_def
 -/
 
 #print bihimp_def /-
-theorem bihimp_def [HasInf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a ⇨ b) :=
+theorem bihimp_def [Inf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a ⇨ b) :=
   rfl
 #align bihimp_def bihimp_def
 -/
@@ -102,7 +102,7 @@ theorem bihimp_def [HasInf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a
 lean 3 declaration is
   forall (p : Prop) (q : Prop), Eq.{1} Prop (symmDiff.{0} Prop (SemilatticeSup.toHasSup.{0} Prop (Lattice.toSemilatticeSup.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHasSdiff.{0} Prop Prop.booleanAlgebra) p q) (Xor' p q)
 but is expected to have type
-  forall (p : Prop) (q : Prop), Eq.{1} Prop (symmDiff.{0} Prop (SemilatticeSup.toHasSup.{0} Prop (Lattice.toSemilatticeSup.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra)))))) (BooleanAlgebra.toSDiff.{0} Prop Prop.booleanAlgebra) p q) (Xor' p q)
+  forall (p : Prop) (q : Prop), Eq.{1} Prop (symmDiff.{0} Prop (SemilatticeSup.toSup.{0} Prop (Lattice.toSemilatticeSup.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra)))))) (BooleanAlgebra.toSDiff.{0} Prop Prop.booleanAlgebra) p q) (Xor' p q)
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_xor symmDiff_eq_Xor'ₓ'. -/
 theorem symmDiff_eq_Xor' (p q : Prop) : p ∆ q = Xor' p q :=
   rfl
@@ -112,7 +112,7 @@ theorem symmDiff_eq_Xor' (p q : Prop) : p ∆ q = Xor' p q :=
 lean 3 declaration is
   forall {p : Prop} {q : Prop}, Iff (bihimp.{0} Prop (SemilatticeInf.toHasInf.{0} Prop (Lattice.toSemilatticeInf.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHasHimp.{0} Prop Prop.booleanAlgebra) p q) (Iff p q)
 but is expected to have type
-  forall {p : Prop} {q : Prop}, Iff (bihimp.{0} Prop (Lattice.toHasInf.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHImp.{0} Prop Prop.booleanAlgebra) p q) (Iff p q)
+  forall {p : Prop} {q : Prop}, Iff (bihimp.{0} Prop (Lattice.toInf.{0} Prop (GeneralizedCoheytingAlgebra.toLattice.{0} Prop (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Prop (BiheytingAlgebra.toCoheytingAlgebra.{0} Prop (BooleanAlgebra.toBiheytingAlgebra.{0} Prop Prop.booleanAlgebra))))) (BooleanAlgebra.toHImp.{0} Prop Prop.booleanAlgebra) p q) (Iff p q)
 Case conversion may be inaccurate. Consider using '#align bihimp_iff_iff bihimp_iff_iffₓ'. -/
 @[simp]
 theorem bihimp_iff_iff {p q : Prop} : p ⇔ q ↔ (p ↔ q) :=
@@ -123,7 +123,7 @@ theorem bihimp_iff_iff {p q : Prop} : p ⇔ q ↔ (p ↔ q) :=
 lean 3 declaration is
   forall (p : Bool) (q : Bool), Eq.{1} Bool (symmDiff.{0} Bool (SemilatticeSup.toHasSup.{0} Bool (Lattice.toSemilatticeSup.{0} Bool (GeneralizedCoheytingAlgebra.toLattice.{0} Bool (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{0} Bool (BooleanAlgebra.toGeneralizedBooleanAlgebra.{0} Bool Bool.booleanAlgebra))))) (BooleanAlgebra.toHasSdiff.{0} Bool Bool.booleanAlgebra) p q) (xor p q)
 but is expected to have type
-  forall (p : Bool) (q : Bool), Eq.{1} Bool (symmDiff.{0} Bool (SemilatticeSup.toHasSup.{0} Bool (Lattice.toSemilatticeSup.{0} Bool (GeneralizedCoheytingAlgebra.toLattice.{0} Bool (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Bool (BiheytingAlgebra.toCoheytingAlgebra.{0} Bool (BooleanAlgebra.toBiheytingAlgebra.{0} Bool instBooleanAlgebraBool)))))) (BooleanAlgebra.toSDiff.{0} Bool instBooleanAlgebraBool) p q) (xor p q)
+  forall (p : Bool) (q : Bool), Eq.{1} Bool (symmDiff.{0} Bool (SemilatticeSup.toSup.{0} Bool (Lattice.toSemilatticeSup.{0} Bool (GeneralizedCoheytingAlgebra.toLattice.{0} Bool (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{0} Bool (BiheytingAlgebra.toCoheytingAlgebra.{0} Bool (BooleanAlgebra.toBiheytingAlgebra.{0} Bool instBooleanAlgebraBool)))))) (BooleanAlgebra.toSDiff.{0} Bool instBooleanAlgebraBool) p q) (xor p q)
 Case conversion may be inaccurate. Consider using '#align bool.symm_diff_eq_bxor Bool.symmDiff_eq_xorₓ'. -/
 @[simp]
 theorem Bool.symmDiff_eq_xor : ∀ p q : Bool, p ∆ q = xor p q := by decide
@@ -151,7 +151,7 @@ theorem ofDual_bihimp (a b : αᵒᵈ) : ofDual (a ⇔ b) = ofDual a ∆ ofDual
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_comm symmDiff_commₓ'. -/
 theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm]
 #align symm_diff_comm symmDiff_comm
@@ -160,7 +160,7 @@ theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [(· ∆ ·), sup_comm
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1539 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1541 : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1539 x._@.Mathlib.Order.SymmDiff._hyg.1541)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.1539 : α) (x._@.Mathlib.Order.SymmDiff._hyg.1541 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.1539 x._@.Mathlib.Order.SymmDiff._hyg.1541)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_comm symmDiff_isCommutativeₓ'. -/
 instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
   ⟨symmDiff_comm⟩
@@ -170,7 +170,7 @@ instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align symm_diff_self symmDiff_selfₓ'. -/
 @[simp]
 theorem symmDiff_self : a ∆ a = ⊥ := by rw [(· ∆ ·), sup_idem, sdiff_self]
@@ -180,7 +180,7 @@ theorem symmDiff_self : a ∆ a = ⊥ := by rw [(· ∆ ·), sup_idem, sdiff_sel
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) a
 Case conversion may be inaccurate. Consider using '#align symm_diff_bot symmDiff_botₓ'. -/
 @[simp]
 theorem symmDiff_bot : a ∆ ⊥ = a := by rw [(· ∆ ·), sdiff_bot, bot_sdiff, sup_bot_eq]
@@ -190,7 +190,7 @@ theorem symmDiff_bot : a ∆ ⊥ = a := by rw [(· ∆ ·), sdiff_bot, bot_sdiff
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1)) a) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1)) a) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1)) a) a
 Case conversion may be inaccurate. Consider using '#align bot_symm_diff bot_symmDiffₓ'. -/
 @[simp]
 theorem bot_symmDiff : ⊥ ∆ a = a := by rw [symmDiff_comm, symmDiff_bot]
@@ -200,7 +200,7 @@ theorem bot_symmDiff : ⊥ ∆ a = a := by rw [symmDiff_comm, symmDiff_bot]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) (Eq.{succ u1} α a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_bot symmDiff_eq_botₓ'. -/
 @[simp]
 theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
@@ -211,7 +211,7 @@ theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a))
 Case conversion may be inaccurate. Consider using '#align symm_diff_of_le symmDiff_of_leₓ'. -/
 theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
@@ -221,7 +221,7 @@ theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_of_ge symmDiff_of_geₓ'. -/
 theorem symmDiff_of_ge {a b : α} (h : b ≤ a) : a ∆ b = a \ b := by
   rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
@@ -229,9 +229,9 @@ theorem symmDiff_of_ge {a b : α} (h : b ≤ a) : a ∆ b = a \ b := by
 
 /- warning: symm_diff_le -> symmDiff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align symm_diff_le symmDiff_leₓ'. -/
 theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ∆ b ≤ c :=
   sup_le (sdiff_le_iff.2 ha) <| sdiff_le_iff.2 hb
@@ -239,9 +239,9 @@ theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a 
 
 /- warning: symm_diff_le_iff -> symmDiff_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_le_iff symmDiff_le_iffₓ'. -/
 theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c := by
   simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
@@ -249,9 +249,9 @@ theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤
 
 /- warning: symm_diff_le_sup -> symmDiff_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_le_sup symmDiff_le_supₓ'. -/
 @[simp]
 theorem symmDiff_le_sup {a b : α} : a ∆ b ≤ a ⊔ b :=
@@ -260,18 +260,18 @@ theorem symmDiff_le_sup {a b : α} : a ∆ b ≤ a ⊔ b :=
 
 /- warning: symm_diff_eq_sup_sdiff_inf -> symmDiff_eq_sup_sdiff_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_sup_sdiff_inf symmDiff_eq_sup_sdiff_infₓ'. -/
 theorem symmDiff_eq_sup_sdiff_inf : a ∆ b = (a ⊔ b) \ (a ⊓ b) := by simp [sup_sdiff, symmDiff]
 #align symm_diff_eq_sup_sdiff_inf symmDiff_eq_sup_sdiff_inf
 
 /- warning: disjoint.symm_diff_eq_sup -> Disjoint.symmDiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_eq_sup Disjoint.symmDiff_eq_supₓ'. -/
 theorem Disjoint.symmDiff_eq_sup {a b : α} (h : Disjoint a b) : a ∆ b = a ⊔ b := by
   rw [(· ∆ ·), h.sdiff_eq_left, h.sdiff_eq_right]
@@ -279,9 +279,9 @@ theorem Disjoint.symmDiff_eq_sup {a b : α} (h : Disjoint a b) : a ∆ b = a ⊔
 
 /- warning: symm_diff_sdiff -> symmDiff_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff symmDiff_sdiffₓ'. -/
 theorem symmDiff_sdiff : a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) := by
   rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
@@ -289,9 +289,9 @@ theorem symmDiff_sdiff : a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) := by
 
 /- warning: symm_diff_sdiff_inf -> symmDiff_sdiff_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_inf symmDiff_sdiff_infₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b :=
@@ -302,9 +302,9 @@ theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b :=
 
 /- warning: symm_diff_sdiff_eq_sup -> symmDiff_sdiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_eq_sup symmDiff_sdiff_eq_supₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
@@ -317,9 +317,9 @@ theorem symmDiff_sdiff_eq_sup : a ∆ (b \ a) = a ⊔ b :=
 
 /- warning: sdiff_symm_diff_eq_sup -> sdiff_symmDiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_eq_sup sdiff_symmDiff_eq_supₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_eq_sup : (a \ b) ∆ b = a ⊔ b := by
@@ -328,9 +328,9 @@ theorem sdiff_symmDiff_eq_sup : (a \ b) ∆ b = a ⊔ b := by
 
 /- warning: symm_diff_sup_inf -> symmDiff_sup_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sup_inf symmDiff_sup_infₓ'. -/
 @[simp]
 theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
@@ -346,9 +346,9 @@ theorem symmDiff_sup_inf : a ∆ b ⊔ a ⊓ b = a ⊔ b :=
 
 /- warning: inf_sup_symm_diff -> inf_sup_symmDiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align inf_sup_symm_diff inf_sup_symmDiffₓ'. -/
 @[simp]
 theorem inf_sup_symmDiff : a ⊓ b ⊔ a ∆ b = a ⊔ b := by rw [sup_comm, symmDiff_sup_inf]
@@ -356,9 +356,9 @@ theorem inf_sup_symmDiff : a ⊓ b ⊔ a ∆ b = a ⊔ b := by rw [sup_comm, sym
 
 /- warning: symm_diff_symm_diff_inf -> symmDiff_symmDiff_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_inf symmDiff_symmDiff_infₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_inf : a ∆ b ∆ (a ⊓ b) = a ⊔ b := by
@@ -367,9 +367,9 @@ theorem symmDiff_symmDiff_inf : a ∆ b ∆ (a ⊓ b) = a ⊔ b := by
 
 /- warning: inf_symm_diff_symm_diff -> inf_symmDiff_symmDiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align inf_symm_diff_symm_diff inf_symmDiff_symmDiffₓ'. -/
 @[simp]
 theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
@@ -378,9 +378,9 @@ theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
 
 /- warning: symm_diff_triangle -> symmDiff_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_triangle symmDiff_triangleₓ'. -/
 theorem symmDiff_triangle : a ∆ c ≤ a ∆ b ⊔ b ∆ c :=
   by
@@ -412,7 +412,7 @@ theorem ofDual_symmDiff (a b : αᵒᵈ) : ofDual (a ∆ b) = ofDual a ⇔ ofDua
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align bihimp_comm bihimp_commₓ'. -/
 theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 #align bihimp_comm bihimp_comm
@@ -421,7 +421,7 @@ theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3040 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3042 : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3040 x._@.Mathlib.Order.SymmDiff._hyg.3042)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], IsCommutative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.3040 : α) (x._@.Mathlib.Order.SymmDiff._hyg.3042 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.3040 x._@.Mathlib.Order.SymmDiff._hyg.3042)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_comm bihimp_isCommutativeₓ'. -/
 instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
   ⟨bihimp_comm⟩
@@ -431,7 +431,7 @@ instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align bihimp_self bihimp_selfₓ'. -/
 @[simp]
 theorem bihimp_self : a ⇔ a = ⊤ := by rw [(· ⇔ ·), inf_idem, himp_self]
@@ -441,7 +441,7 @@ theorem bihimp_self : a ⇔ a = ⊤ := by rw [(· ⇔ ·), inf_idem, himp_self]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) a
 Case conversion may be inaccurate. Consider using '#align bihimp_top bihimp_topₓ'. -/
 @[simp]
 theorem bihimp_top : a ⇔ ⊤ = a := by rw [(· ⇔ ·), himp_top, top_himp, inf_top_eq]
@@ -451,7 +451,7 @@ theorem bihimp_top : a ⇔ ⊤ = a := by rw [(· ⇔ ·), himp_top, top_himp, in
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1)) a) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1)) a) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1)) a) a
 Case conversion may be inaccurate. Consider using '#align top_bihimp top_bihimpₓ'. -/
 @[simp]
 theorem top_bihimp : ⊤ ⇔ a = a := by rw [bihimp_comm, bihimp_top]
@@ -461,7 +461,7 @@ theorem top_bihimp : ⊤ ⇔ a = a := by rw [bihimp_comm, bihimp_top]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (Eq.{succ u1} α a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_top bihimp_eq_topₓ'. -/
 @[simp]
 theorem bihimp_eq_top {a b : α} : a ⇔ b = ⊤ ↔ a = b :=
@@ -472,7 +472,7 @@ theorem bihimp_eq_top {a b : α} : a ⇔ b = ⊤ ↔ a = b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a))
 Case conversion may be inaccurate. Consider using '#align bihimp_of_le bihimp_of_leₓ'. -/
 theorem bihimp_of_le {a b : α} (h : a ≤ b) : a ⇔ b = b ⇨ a := by
   rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
@@ -482,7 +482,7 @@ theorem bihimp_of_le {a b : α} (h : a ≤ b) : a ⇔ b = b ⇨ a := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align bihimp_of_ge bihimp_of_geₓ'. -/
 theorem bihimp_of_ge {a b : α} (h : b ≤ a) : a ⇔ b = a ⇨ b := by
   rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
@@ -490,9 +490,9 @@ theorem bihimp_of_ge {a b : α} (h : b ≤ a) : a ⇔ b = a ⇨ b := by
 
 /- warning: le_bihimp -> le_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align le_bihimp le_bihimpₓ'. -/
 theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤ b ⇔ c :=
   le_inf (le_himp_iff.2 hc) <| le_himp_iff.2 hb
@@ -500,9 +500,9 @@ theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤
 
 /- warning: le_bihimp_iff -> le_bihimp_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b))
 Case conversion may be inaccurate. Consider using '#align le_bihimp_iff le_bihimp_iffₓ'. -/
 theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b := by
   simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
@@ -510,9 +510,9 @@ theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c
 
 /- warning: inf_le_bihimp -> inf_le_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align inf_le_bihimp inf_le_bihimpₓ'. -/
 @[simp]
 theorem inf_le_bihimp {a b : α} : a ⊓ b ≤ a ⇔ b :=
@@ -521,18 +521,18 @@ theorem inf_le_bihimp {a b : α} : a ⊓ b ≤ a ⇔ b :=
 
 /- warning: bihimp_eq_inf_himp_inf -> bihimp_eq_inf_himp_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_inf_himp_inf bihimp_eq_inf_himp_infₓ'. -/
 theorem bihimp_eq_inf_himp_inf : a ⇔ b = a ⊔ b ⇨ a ⊓ b := by simp [himp_inf_distrib, bihimp]
 #align bihimp_eq_inf_himp_inf bihimp_eq_inf_himp_inf
 
 /- warning: codisjoint.bihimp_eq_inf -> Codisjoint.bihimp_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_eq_inf Codisjoint.bihimp_eq_infₓ'. -/
 theorem Codisjoint.bihimp_eq_inf {a b : α} (h : Codisjoint a b) : a ⇔ b = a ⊓ b := by
   rw [(· ⇔ ·), h.himp_eq_left, h.himp_eq_right]
@@ -540,9 +540,9 @@ theorem Codisjoint.bihimp_eq_inf {a b : α} (h : Codisjoint a b) : a ⇔ b = a 
 
 /- warning: himp_bihimp -> himp_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a c) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c))
 Case conversion may be inaccurate. Consider using '#align himp_bihimp himp_bihimpₓ'. -/
 theorem himp_bihimp : a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) := by
   rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
@@ -550,9 +550,9 @@ theorem himp_bihimp : a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) := by
 
 /- warning: sup_himp_bihimp -> sup_himp_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sup_himp_bihimp sup_himp_bihimpₓ'. -/
 @[simp]
 theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b :=
@@ -563,9 +563,9 @@ theorem sup_himp_bihimp : a ⊔ b ⇨ a ⇔ b = a ⇔ b :=
 
 /- warning: bihimp_himp_eq_inf -> bihimp_himp_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_himp_eq_inf bihimp_himp_eq_infₓ'. -/
 @[simp]
 theorem bihimp_himp_eq_inf : a ⇔ (a ⇨ b) = a ⊓ b :=
@@ -574,9 +574,9 @@ theorem bihimp_himp_eq_inf : a ⇔ (a ⇨ b) = a ⊓ b :=
 
 /- warning: himp_bihimp_eq_inf -> himp_bihimp_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a) b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a) b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a) b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align himp_bihimp_eq_inf himp_bihimp_eq_infₓ'. -/
 @[simp]
 theorem himp_bihimp_eq_inf : (b ⇨ a) ⇔ b = a ⊓ b :=
@@ -585,9 +585,9 @@ theorem himp_bihimp_eq_inf : (b ⇨ a) ⇔ b = a ⊓ b :=
 
 /- warning: bihimp_inf_sup -> bihimp_inf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_inf_sup bihimp_inf_supₓ'. -/
 @[simp]
 theorem bihimp_inf_sup : a ⇔ b ⊓ (a ⊔ b) = a ⊓ b :=
@@ -596,9 +596,9 @@ theorem bihimp_inf_sup : a ⇔ b ⊓ (a ⊔ b) = a ⊓ b :=
 
 /- warning: sup_inf_bihimp -> sup_inf_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align sup_inf_bihimp sup_inf_bihimpₓ'. -/
 @[simp]
 theorem sup_inf_bihimp : (a ⊔ b) ⊓ a ⇔ b = a ⊓ b :=
@@ -607,9 +607,9 @@ theorem sup_inf_bihimp : (a ⊔ b) ⊓ a ⇔ b = a ⊓ b :=
 
 /- warning: bihimp_bihimp_sup -> bihimp_bihimp_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_sup bihimp_bihimp_supₓ'. -/
 @[simp]
 theorem bihimp_bihimp_sup : a ⇔ b ⇔ (a ⊔ b) = a ⊓ b :=
@@ -618,9 +618,9 @@ theorem bihimp_bihimp_sup : a ⇔ b ⇔ (a ⊔ b) = a ⊓ b :=
 
 /- warning: sup_bihimp_bihimp -> sup_bihimp_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align sup_bihimp_bihimp sup_bihimp_bihimpₓ'. -/
 @[simp]
 theorem sup_bihimp_bihimp : (a ⊔ b) ⇔ (a ⇔ b) = a ⊓ b :=
@@ -629,9 +629,9 @@ theorem sup_bihimp_bihimp : (a ⊔ b) ⇔ (a ⇔ b) = a ⊓ b :=
 
 /- warning: bihimp_triangle -> bihimp_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align bihimp_triangle bihimp_triangleₓ'. -/
 theorem bihimp_triangle : a ⇔ b ⊓ b ⇔ c ≤ a ⇔ c :=
   @symmDiff_triangle αᵒᵈ _ _ _ _
@@ -647,7 +647,7 @@ variable [CoheytingAlgebra α] (a : α)
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_top' symmDiff_top'ₓ'. -/
 @[simp]
 theorem symmDiff_top' : a ∆ ⊤ = ¬a := by simp [symmDiff]
@@ -657,7 +657,7 @@ theorem symmDiff_top' : a ∆ ⊤ = ¬a := by simp [symmDiff]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align top_symm_diff' top_symmDiff'ₓ'. -/
 @[simp]
 theorem top_symmDiff' : ⊤ ∆ a = ¬a := by simp [symmDiff]
@@ -667,7 +667,7 @@ theorem top_symmDiff' : ⊤ ∆ a = ¬a := by simp [symmDiff]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align hnot_symm_diff_self hnot_symmDiff_selfₓ'. -/
 @[simp]
 theorem hnot_symmDiff_self : (¬a) ∆ a = ⊤ :=
@@ -680,7 +680,7 @@ theorem hnot_symmDiff_self : (¬a) ∆ a = ⊤ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align symm_diff_hnot_self symmDiff_hnot_selfₓ'. -/
 @[simp]
 theorem symmDiff_hnot_self : a ∆ (¬a) = ⊤ := by rw [symmDiff_comm, hnot_symmDiff_self]
@@ -690,7 +690,7 @@ theorem symmDiff_hnot_self : a ∆ (¬a) = ⊤ := by rw [symmDiff_comm, hnot_sy
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align is_compl.symm_diff_eq_top IsCompl.symmDiff_eq_topₓ'. -/
 theorem IsCompl.symmDiff_eq_top {a b : α} (h : IsCompl a b) : a ∆ b = ⊤ := by
   rw [h.eq_hnot, hnot_symmDiff_self]
@@ -706,7 +706,7 @@ variable [HeytingAlgebra α] (a : α)
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_bot bihimp_botₓ'. -/
 @[simp]
 theorem bihimp_bot : a ⇔ ⊥ = aᶜ := by simp [bihimp]
@@ -716,7 +716,7 @@ theorem bihimp_bot : a ⇔ ⊥ = aᶜ := by simp [bihimp]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align bot_bihimp bot_bihimpₓ'. -/
 @[simp]
 theorem bot_bihimp : ⊥ ⇔ a = aᶜ := by simp [bihimp]
@@ -726,7 +726,7 @@ theorem bot_bihimp : ⊥ ⇔ a = aᶜ := by simp [bihimp]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align compl_bihimp_self compl_bihimp_selfₓ'. -/
 @[simp]
 theorem compl_bihimp_self : aᶜ ⇔ a = ⊥ :=
@@ -737,7 +737,7 @@ theorem compl_bihimp_self : aᶜ ⇔ a = ⊥ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align bihimp_hnot_self bihimp_hnot_selfₓ'. -/
 @[simp]
 theorem bihimp_hnot_self : a ⇔ aᶜ = ⊥ :=
@@ -748,7 +748,7 @@ theorem bihimp_hnot_self : a ⇔ aᶜ = ⊥ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align is_compl.bihimp_eq_bot IsCompl.bihimp_eq_botₓ'. -/
 theorem IsCompl.bihimp_eq_bot {a b : α} (h : IsCompl a b) : a ⇔ b = ⊥ := by
   rw [h.eq_compl, compl_bihimp_self]
@@ -762,9 +762,9 @@ variable [GeneralizedBooleanAlgebra α] (a b c d : α)
 
 /- warning: sup_sdiff_symm_diff -> sup_sdiff_symmDiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_symm_diff sup_sdiff_symmDiffₓ'. -/
 @[simp]
 theorem sup_sdiff_symmDiff : (a ⊔ b) \ a ∆ b = a ⊓ b :=
@@ -773,9 +773,9 @@ theorem sup_sdiff_symmDiff : (a ⊔ b) \ a ∆ b = a ⊓ b :=
 
 /- warning: disjoint_symm_diff_inf -> disjoint_symmDiff_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_symm_diff_inf disjoint_symmDiff_infₓ'. -/
 theorem disjoint_symmDiff_inf : Disjoint (a ∆ b) (a ⊓ b) :=
   by
@@ -785,9 +785,9 @@ theorem disjoint_symmDiff_inf : Disjoint (a ∆ b) (a ⊓ b) :=
 
 /- warning: inf_symm_diff_distrib_left -> inf_symmDiff_distrib_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c))
 Case conversion may be inaccurate. Consider using '#align inf_symm_diff_distrib_left inf_symmDiff_distrib_leftₓ'. -/
 theorem inf_symmDiff_distrib_left : a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) := by
   rw [symmDiff_eq_sup_sdiff_inf, inf_sdiff_distrib_left, inf_sup_left, inf_inf_distrib_left,
@@ -796,9 +796,9 @@ theorem inf_symmDiff_distrib_left : a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) := b
 
 /- warning: inf_symm_diff_distrib_right -> inf_symmDiff_distrib_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align inf_symm_diff_distrib_right inf_symmDiff_distrib_rightₓ'. -/
 theorem inf_symmDiff_distrib_right : a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) := by
   simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left]
@@ -806,9 +806,9 @@ theorem inf_symmDiff_distrib_right : a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) :=
 
 /- warning: sdiff_symm_diff -> sdiff_symmDiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c b)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)))
 Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff sdiff_symmDiffₓ'. -/
 theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
   simp only [(· ∆ ·), sdiff_sdiff_sup_sdiff']
@@ -816,9 +816,9 @@ theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
 
 /- warning: sdiff_symm_diff' -> sdiff_symmDiff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) c a) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)))
 Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff' sdiff_symmDiff'ₓ'. -/
 theorem sdiff_symmDiff' : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) := by
   rw [sdiff_symmDiff, sdiff_sup, sup_comm]
@@ -828,7 +828,7 @@ theorem sdiff_symmDiff' : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_left symmDiff_sdiff_leftₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_left : a ∆ b \ a = b \ a := by
@@ -839,7 +839,7 @@ theorem symmDiff_sdiff_left : a ∆ b \ a = b \ a := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_sdiff_right symmDiff_sdiff_rightₓ'. -/
 @[simp]
 theorem symmDiff_sdiff_right : a ∆ b \ b = a \ b := by rw [symmDiff_comm, symmDiff_sdiff_left]
@@ -847,9 +847,9 @@ theorem symmDiff_sdiff_right : a ∆ b \ b = a \ b := by rw [symmDiff_comm, symm
 
 /- warning: sdiff_symm_diff_left -> sdiff_symmDiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_left sdiff_symmDiff_leftₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_left : a \ a ∆ b = a ⊓ b := by simp [sdiff_symmDiff]
@@ -857,9 +857,9 @@ theorem sdiff_symmDiff_left : a \ a ∆ b = a ⊓ b := by simp [sdiff_symmDiff]
 
 /- warning: sdiff_symm_diff_right -> sdiff_symmDiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_symm_diff_right sdiff_symmDiff_rightₓ'. -/
 @[simp]
 theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
@@ -868,9 +868,9 @@ theorem sdiff_symmDiff_right : b \ a ∆ b = a ⊓ b := by
 
 /- warning: symm_diff_eq_sup -> symmDiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_sup symmDiff_eq_supₓ'. -/
 theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
   by
@@ -883,7 +883,7 @@ theorem symmDiff_eq_sup : a ∆ b = a ⊔ b ↔ Disjoint a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_left le_symmDiff_iff_leftₓ'. -/
 @[simp]
 theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
@@ -897,7 +897,7 @@ theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_symm_diff_iff_right le_symmDiff_iff_rightₓ'. -/
 @[simp]
 theorem le_symmDiff_iff_right : b ≤ a ∆ b ↔ Disjoint a b := by
@@ -906,9 +906,9 @@ theorem le_symmDiff_iff_right : b ≤ a ∆ b ↔ Disjoint a b := by
 
 /- warning: symm_diff_symm_diff_left -> symmDiff_symmDiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_left symmDiff_symmDiff_leftₓ'. -/
 theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
   calc
@@ -921,9 +921,9 @@ theorem symmDiff_symmDiff_left : a ∆ b ∆ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
 
 /- warning: symm_diff_symm_diff_right -> symmDiff_symmDiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b) c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) b c)) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a c))) (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b) c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_right symmDiff_symmDiff_rightₓ'. -/
 theorem symmDiff_symmDiff_right :
     a ∆ (b ∆ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c :=
@@ -939,7 +939,7 @@ theorem symmDiff_symmDiff_right :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_assoc symmDiff_assocₓ'. -/
 theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
   rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
@@ -949,7 +949,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6049 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6051 : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6049 x._@.Mathlib.Order.SymmDiff._hyg.6051)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.6049 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6051 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6049 x._@.Mathlib.Order.SymmDiff._hyg.6051)
 Case conversion may be inaccurate. Consider using '#align symm_diff_is_assoc symmDiff_isAssociativeₓ'. -/
 instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
@@ -959,7 +959,7 @@ instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_left_comm symmDiff_left_commₓ'. -/
 theorem symmDiff_left_comm : a ∆ (b ∆ c) = b ∆ (a ∆ c) := by
   simp_rw [← symmDiff_assoc, symmDiff_comm]
@@ -969,7 +969,7 @@ theorem symmDiff_left_comm : a ∆ (b ∆ c) = b ∆ (a ∆ c) := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_comm symmDiff_right_commₓ'. -/
 theorem symmDiff_right_comm : a ∆ b ∆ c = a ∆ c ∆ b := by simp_rw [symmDiff_assoc, symmDiff_comm]
 #align symm_diff_right_comm symmDiff_right_comm
@@ -978,7 +978,7 @@ theorem symmDiff_right_comm : a ∆ b ∆ c = a ∆ c ∆ b := by simp_rw [symmD
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c d)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b d))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c d)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b d))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c d)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b d))
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_symm_diff_comm symmDiff_symmDiff_symmDiff_commₓ'. -/
 theorem symmDiff_symmDiff_symmDiff_comm : a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b ∆ d) := by
   simp_rw [symmDiff_assoc, symmDiff_left_comm]
@@ -988,7 +988,7 @@ theorem symmDiff_symmDiff_symmDiff_comm : a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) b
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_cancel_left symmDiff_symmDiff_cancel_leftₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_cancel_left : a ∆ (a ∆ b) = b := by simp [← symmDiff_assoc]
@@ -998,7 +998,7 @@ theorem symmDiff_symmDiff_cancel_left : a ∆ (a ∆ b) = b := by simp [← symm
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a) a) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b a) a) b
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_cancel_right symmDiff_symmDiff_cancel_rightₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_cancel_right : b ∆ a ∆ a = b := by simp [symmDiff_assoc]
@@ -1008,7 +1008,7 @@ theorem symmDiff_symmDiff_cancel_right : b ∆ a ∆ a = b := by simp [symmDiff_
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) b
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_self' symmDiff_symmDiff_self'ₓ'. -/
 @[simp]
 theorem symmDiff_symmDiff_self' : a ∆ b ∆ a = b := by
@@ -1019,7 +1019,7 @@ theorem symmDiff_symmDiff_self' : a ∆ b ∆ a = b := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_left_involutive symmDiff_left_involutiveₓ'. -/
 theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
   symmDiff_symmDiff_cancel_right _
@@ -1029,7 +1029,7 @@ theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6384 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6386 : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6384 x._@.Mathlib.Order.SymmDiff._hyg.6386) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6384 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6386 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6384 x._@.Mathlib.Order.SymmDiff._hyg.6386) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_involutive symmDiff_right_involutiveₓ'. -/
 theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
   symmDiff_symmDiff_cancel_left _
@@ -1039,7 +1039,7 @@ theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_left_injective symmDiff_left_injectiveₓ'. -/
 theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
   (symmDiff_left_involutive _).Injective
@@ -1049,7 +1049,7 @@ theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6456 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6458 : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6456 x._@.Mathlib.Order.SymmDiff._hyg.6458) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6456 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6458 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6456 x._@.Mathlib.Order.SymmDiff._hyg.6458) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_injective symmDiff_right_injectiveₓ'. -/
 theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Injective
@@ -1059,7 +1059,7 @@ theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_left_surjective symmDiff_left_surjectiveₓ'. -/
 theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
   (symmDiff_left_involutive _).Surjective
@@ -1069,7 +1069,7 @@ theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6531 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6533 : α) => symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6531 x._@.Mathlib.Order.SymmDiff._hyg.6533) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.6531 : α) (x._@.Mathlib.Order.SymmDiff._hyg.6533 : α) => symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.6531 x._@.Mathlib.Order.SymmDiff._hyg.6533) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_surjective symmDiff_right_surjectiveₓ'. -/
 theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
   (symmDiff_right_involutive _).Surjective
@@ -1081,7 +1081,7 @@ variable {a b c}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
 Case conversion may be inaccurate. Consider using '#align symm_diff_left_inj symmDiff_left_injₓ'. -/
 @[simp]
 theorem symmDiff_left_inj : a ∆ b = c ∆ b ↔ a = c :=
@@ -1092,7 +1092,7 @@ theorem symmDiff_left_inj : a ∆ b = c ∆ b ↔ a = c :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
 Case conversion may be inaccurate. Consider using '#align symm_diff_right_inj symmDiff_right_injₓ'. -/
 @[simp]
 theorem symmDiff_right_inj : a ∆ b = a ∆ c ↔ b = c :=
@@ -1103,7 +1103,7 @@ theorem symmDiff_right_inj : a ∆ b = a ∆ c ↔ b = c :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_left symmDiff_eq_leftₓ'. -/
 @[simp]
 theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
@@ -1117,7 +1117,7 @@ theorem symmDiff_eq_left : a ∆ b = a ↔ b = ⊥ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Bot.bot.{u1} α (GeneralizedBooleanAlgebra.toBot.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_right symmDiff_eq_rightₓ'. -/
 @[simp]
 theorem symmDiff_eq_right : a ∆ b = b ↔ a = ⊥ := by rw [symmDiff_comm, symmDiff_eq_left]
@@ -1127,7 +1127,7 @@ theorem symmDiff_eq_right : a ∆ b = b ↔ a = ⊥ := by rw [symmDiff_comm, sym
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_left Disjoint.symmDiff_leftₓ'. -/
 protected theorem Disjoint.symmDiff_left (ha : Disjoint a c) (hb : Disjoint b c) :
     Disjoint (a ∆ b) c := by
@@ -1139,7 +1139,7 @@ protected theorem Disjoint.symmDiff_left (ha : Disjoint a c) (hb : Disjoint b c)
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint.symm_diff_right Disjoint.symmDiff_rightₓ'. -/
 protected theorem Disjoint.symmDiff_right (ha : Disjoint a b) (hb : Disjoint a c) :
     Disjoint a (b ∆ c) :=
@@ -1150,7 +1150,7 @@ protected theorem Disjoint.symmDiff_right (ha : Disjoint a b) (hb : Disjoint a c
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toHasSdiff.{u1} α _inst_1) c a) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedBooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a c) -> (Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedBooleanAlgebra.toSDiff.{u1} α _inst_1) c a) b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_iff_sdiff_eq symmDiff_eq_iff_sdiff_eqₓ'. -/
 theorem symmDiff_eq_iff_sdiff_eq (ha : a ≤ c) : a ∆ b = c ↔ c \ a = b :=
   by
@@ -1170,9 +1170,9 @@ section CogeneralizedBooleanAlgebra
 
 /- warning: inf_himp_bihimp -> inf_himp_bihimp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
 Case conversion may be inaccurate. Consider using '#align inf_himp_bihimp inf_himp_bihimpₓ'. -/
 @[simp]
 theorem inf_himp_bihimp : a ⇔ b ⇨ a ⊓ b = a ⊔ b :=
@@ -1181,9 +1181,9 @@ theorem inf_himp_bihimp : a ⇔ b ⇨ a ⊓ b = a ⊔ b :=
 
 /- warning: codisjoint_bihimp_sup -> codisjoint_bihimp_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_bihimp_sup codisjoint_bihimp_supₓ'. -/
 theorem codisjoint_bihimp_sup : Codisjoint (a ⇔ b) (a ⊔ b) :=
   @disjoint_symmDiff_inf αᵒᵈ _ _ _
@@ -1193,7 +1193,7 @@ theorem codisjoint_bihimp_sup : Codisjoint (a ⇔ b) (a ⊔ b) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align himp_bihimp_left himp_bihimp_leftₓ'. -/
 @[simp]
 theorem himp_bihimp_left : a ⇨ a ⇔ b = a ⇨ b :=
@@ -1204,7 +1204,7 @@ theorem himp_bihimp_left : a ⇨ a ⇔ b = a ⇨ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align himp_bihimp_right himp_bihimp_rightₓ'. -/
 @[simp]
 theorem himp_bihimp_right : b ⇨ a ⇔ b = b ⇨ a :=
@@ -1213,9 +1213,9 @@ theorem himp_bihimp_right : b ⇨ a ⇔ b = b ⇨ a :=
 
 /- warning: bihimp_himp_left -> bihimp_himp_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_himp_left bihimp_himp_leftₓ'. -/
 @[simp]
 theorem bihimp_himp_left : a ⇔ b ⇨ a = a ⊔ b :=
@@ -1224,9 +1224,9 @@ theorem bihimp_himp_left : a ⇔ b ⇨ a = a ⊔ b :=
 
 /- warning: bihimp_himp_right -> bihimp_himp_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_himp_right bihimp_himp_rightₓ'. -/
 @[simp]
 theorem bihimp_himp_right : a ⇔ b ⇨ b = a ⊔ b :=
@@ -1235,9 +1235,9 @@ theorem bihimp_himp_right : a ⇔ b ⇨ b = a ⊔ b :=
 
 /- warning: bihimp_eq_inf -> bihimp_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b)) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_inf bihimp_eq_infₓ'. -/
 @[simp]
 theorem bihimp_eq_inf : a ⇔ b = a ⊓ b ↔ Codisjoint a b :=
@@ -1248,7 +1248,7 @@ theorem bihimp_eq_inf : a ⇔ b = a ⊓ b ↔ Codisjoint a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_left bihimp_le_iff_leftₓ'. -/
 @[simp]
 theorem bihimp_le_iff_left : a ⇔ b ≤ a ↔ Codisjoint a b :=
@@ -1259,7 +1259,7 @@ theorem bihimp_le_iff_left : a ⇔ b ≤ a ↔ Codisjoint a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_le_iff_right bihimp_le_iff_rightₓ'. -/
 @[simp]
 theorem bihimp_le_iff_right : a ⇔ b ≤ b ↔ Codisjoint a b :=
@@ -1270,7 +1270,7 @@ theorem bihimp_le_iff_right : a ⇔ b ≤ b ↔ Codisjoint a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align bihimp_assoc bihimp_assocₓ'. -/
 theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
   @symmDiff_assoc αᵒᵈ _ _ _ _
@@ -1280,7 +1280,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7454 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7456 : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7454 x._@.Mathlib.Order.SymmDiff._hyg.7456)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α], IsAssociative.{u1} α (fun (x._@.Mathlib.Order.SymmDiff._hyg.7454 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7456 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7454 x._@.Mathlib.Order.SymmDiff._hyg.7456)
 Case conversion may be inaccurate. Consider using '#align bihimp_is_assoc bihimp_isAssociativeₓ'. -/
 instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
@@ -1290,7 +1290,7 @@ instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align bihimp_left_comm bihimp_left_commₓ'. -/
 theorem bihimp_left_comm : a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) := by simp_rw [← bihimp_assoc, bihimp_comm]
 #align bihimp_left_comm bihimp_left_comm
@@ -1299,7 +1299,7 @@ theorem bihimp_left_comm : a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) := by simp_rw [←
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_comm bihimp_right_commₓ'. -/
 theorem bihimp_right_comm : a ⇔ b ⇔ c = a ⇔ c ⇔ b := by simp_rw [bihimp_assoc, bihimp_comm]
 #align bihimp_right_comm bihimp_right_comm
@@ -1308,7 +1308,7 @@ theorem bihimp_right_comm : a ⇔ b ⇔ c = a ⇔ c ⇔ b := by simp_rw [bihimp_
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) c d)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b d))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c d)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b d))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c d)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b d))
 Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_bihimp_comm bihimp_bihimp_bihimp_commₓ'. -/
 theorem bihimp_bihimp_bihimp_comm : a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d) := by
   simp_rw [bihimp_assoc, bihimp_left_comm]
@@ -1318,7 +1318,7 @@ theorem bihimp_bihimp_bihimp_comm : a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) b
 Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_cancel_left bihimp_bihimp_cancel_leftₓ'. -/
 @[simp]
 theorem bihimp_bihimp_cancel_left : a ⇔ (a ⇔ b) = b := by simp [← bihimp_assoc]
@@ -1328,7 +1328,7 @@ theorem bihimp_bihimp_cancel_left : a ⇔ (a ⇔ b) = b := by simp [← bihimp_a
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b a) a) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b a) a) b
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b a) a) b
 Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_cancel_right bihimp_bihimp_cancel_rightₓ'. -/
 @[simp]
 theorem bihimp_bihimp_cancel_right : b ⇔ a ⇔ a = b := by simp [bihimp_assoc]
@@ -1338,7 +1338,7 @@ theorem bihimp_bihimp_cancel_right : b ⇔ a ⇔ a = b := by simp [bihimp_assoc]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) b
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) b
 Case conversion may be inaccurate. Consider using '#align bihimp_bihimp_self bihimp_bihimp_selfₓ'. -/
 @[simp]
 theorem bihimp_bihimp_self : a ⇔ b ⇔ a = b := by rw [bihimp_comm, bihimp_bihimp_cancel_left]
@@ -1348,7 +1348,7 @@ theorem bihimp_bihimp_self : a ⇔ b ⇔ a = b := by rw [bihimp_comm, bihimp_bih
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align bihimp_left_involutive bihimp_left_involutiveₓ'. -/
 theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
   bihimp_bihimp_cancel_right _
@@ -1358,7 +1358,7 @@ theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7789 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7791 : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7789 x._@.Mathlib.Order.SymmDiff._hyg.7791) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Involutive.{succ u1} α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7789 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7791 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7789 x._@.Mathlib.Order.SymmDiff._hyg.7791) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_involutive bihimp_right_involutiveₓ'. -/
 theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
   bihimp_bihimp_cancel_left _
@@ -1368,7 +1368,7 @@ theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align bihimp_left_injective bihimp_left_injectiveₓ'. -/
 theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
   @symmDiff_left_injective αᵒᵈ _ _
@@ -1378,7 +1378,7 @@ theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7862 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7864 : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7862 x._@.Mathlib.Order.SymmDiff._hyg.7864) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Injective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7862 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7864 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7862 x._@.Mathlib.Order.SymmDiff._hyg.7864) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_injective bihimp_right_injectiveₓ'. -/
 theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
   @symmDiff_right_injective αᵒᵈ _ _
@@ -1388,7 +1388,7 @@ theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) _x a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (fun (_x : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) _x a)
 Case conversion may be inaccurate. Consider using '#align bihimp_left_surjective bihimp_left_surjectiveₓ'. -/
 theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
   @symmDiff_left_surjective αᵒᵈ _ _
@@ -1398,7 +1398,7 @@ theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7939 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7941 : α) => bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7939 x._@.Mathlib.Order.SymmDiff._hyg.7941) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Function.Surjective.{succ u1, succ u1} α α ((fun (x._@.Mathlib.Order.SymmDiff._hyg.7939 : α) (x._@.Mathlib.Order.SymmDiff._hyg.7941 : α) => bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) x._@.Mathlib.Order.SymmDiff._hyg.7939 x._@.Mathlib.Order.SymmDiff._hyg.7941) a)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_surjective bihimp_right_surjectiveₓ'. -/
 theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
   @symmDiff_right_surjective αᵒᵈ _ _
@@ -1410,7 +1410,7 @@ variable {a b c}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) c b)) (Eq.{succ u1} α a c)
 Case conversion may be inaccurate. Consider using '#align bihimp_left_inj bihimp_left_injₓ'. -/
 @[simp]
 theorem bihimp_left_inj : a ⇔ b = c ⇔ b ↔ a = c :=
@@ -1421,7 +1421,7 @@ theorem bihimp_left_inj : a ⇔ b = c ⇔ b ↔ a = c :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) (Eq.{succ u1} α b c)
 Case conversion may be inaccurate. Consider using '#align bihimp_right_inj bihimp_right_injₓ'. -/
 @[simp]
 theorem bihimp_right_inj : a ⇔ b = a ⇔ c ↔ b = c :=
@@ -1432,7 +1432,7 @@ theorem bihimp_right_inj : a ⇔ b = a ⇔ c ↔ b = c :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) a) (Eq.{succ u1} α b (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_left bihimp_eq_leftₓ'. -/
 @[simp]
 theorem bihimp_eq_left : a ⇔ b = a ↔ b = ⊤ :=
@@ -1443,7 +1443,7 @@ theorem bihimp_eq_left : a ⇔ b = a ↔ b = ⊤ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) b) (Eq.{succ u1} α a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_right bihimp_eq_rightₓ'. -/
 @[simp]
 theorem bihimp_eq_right : a ⇔ b = b ↔ a = ⊤ :=
@@ -1454,7 +1454,7 @@ theorem bihimp_eq_right : a ⇔ b = b ↔ a = ⊤ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_left Codisjoint.bihimp_leftₓ'. -/
 protected theorem Codisjoint.bihimp_left (ha : Codisjoint a c) (hb : Codisjoint b c) :
     Codisjoint (a ⇔ b) c :=
@@ -1465,7 +1465,7 @@ protected theorem Codisjoint.bihimp_left (ha : Codisjoint a c) (hb : Codisjoint
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_right Codisjoint.bihimp_rightₓ'. -/
 protected theorem Codisjoint.bihimp_right (ha : Codisjoint a b) (hb : Codisjoint a c) :
     Codisjoint a (b ⇔ c) :=
@@ -1476,27 +1476,27 @@ end CogeneralizedBooleanAlgebra
 
 /- warning: symm_diff_eq -> symmDiff_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq symmDiff_eqₓ'. -/
 theorem symmDiff_eq : a ∆ b = a ⊓ bᶜ ⊔ b ⊓ aᶜ := by simp only [(· ∆ ·), sdiff_eq]
 #align symm_diff_eq symmDiff_eq
 
 /- warning: bihimp_eq -> bihimp_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)))
 Case conversion may be inaccurate. Consider using '#align bihimp_eq bihimp_eqₓ'. -/
 theorem bihimp_eq : a ⇔ b = (a ⊔ bᶜ) ⊓ (b ⊔ aᶜ) := by simp only [(· ⇔ ·), himp_eq]
 #align bihimp_eq bihimp_eq
 
 /- warning: symm_diff_eq' -> symmDiff_eq' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq' symmDiff_eq'ₓ'. -/
 theorem symmDiff_eq' : a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ) := by
   rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf]
@@ -1504,9 +1504,9 @@ theorem symmDiff_eq' : a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ) := by
 
 /- warning: bihimp_eq' -> bihimp_eq' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)))
 Case conversion may be inaccurate. Consider using '#align bihimp_eq' bihimp_eq'ₓ'. -/
 theorem bihimp_eq' : a ⇔ b = a ⊓ b ⊔ aᶜ ⊓ bᶜ :=
   @symmDiff_eq' αᵒᵈ _ _ _
@@ -1516,7 +1516,7 @@ theorem bihimp_eq' : a ⇔ b = a ⊓ b ⊔ aᶜ ⊓ bᶜ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align symm_diff_top symmDiff_topₓ'. -/
 theorem symmDiff_top : a ∆ ⊤ = aᶜ :=
   symmDiff_top' _
@@ -1526,7 +1526,7 @@ theorem symmDiff_top : a ∆ ⊤ = aᶜ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1)) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align top_symm_diff top_symmDiffₓ'. -/
 theorem top_symmDiff : ⊤ ∆ a = aᶜ :=
   top_symmDiff' _
@@ -1536,7 +1536,7 @@ theorem top_symmDiff : ⊤ ∆ a = aᶜ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align compl_symm_diff compl_symmDiffₓ'. -/
 @[simp]
 theorem compl_symmDiff : (a ∆ b)ᶜ = a ⇔ b := by
@@ -1547,7 +1547,7 @@ theorem compl_symmDiff : (a ∆ b)ᶜ = a ⇔ b := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align compl_bihimp compl_bihimpₓ'. -/
 @[simp]
 theorem compl_bihimp : (a ⇔ b)ᶜ = a ∆ b :=
@@ -1558,7 +1558,7 @@ theorem compl_bihimp : (a ⇔ b)ᶜ = a ∆ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align compl_symm_diff_compl compl_symmDiff_complₓ'. -/
 @[simp]
 theorem compl_symmDiff_compl : aᶜ ∆ bᶜ = a ∆ b :=
@@ -1569,7 +1569,7 @@ theorem compl_symmDiff_compl : aᶜ ∆ bᶜ = a ∆ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align compl_bihimp_compl compl_bihimp_complₓ'. -/
 @[simp]
 theorem compl_bihimp_compl : aᶜ ⇔ bᶜ = a ⇔ b :=
@@ -1580,7 +1580,7 @@ theorem compl_bihimp_compl : aᶜ ⇔ bᶜ = a ⇔ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align symm_diff_eq_top symmDiff_eq_topₓ'. -/
 @[simp]
 theorem symmDiff_eq_top : a ∆ b = ⊤ ↔ IsCompl a b := by
@@ -1592,7 +1592,7 @@ theorem symmDiff_eq_top : a ∆ b = ⊤ ↔ IsCompl a b := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (Bot.bot.{u1} α (BooleanAlgebra.toHasBot.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Bot.bot.{u1} α (BooleanAlgebra.toBot.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α), Iff (Eq.{succ u1} α (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (Bot.bot.{u1} α (BooleanAlgebra.toBot.{u1} α _inst_1))) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align bihimp_eq_bot bihimp_eq_botₓ'. -/
 @[simp]
 theorem bihimp_eq_bot : a ⇔ b = ⊥ ↔ IsCompl a b := by
@@ -1604,7 +1604,7 @@ theorem bihimp_eq_bot : a ⇔ b = ⊥ ↔ IsCompl a b := by
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align compl_symm_diff_self compl_symmDiff_selfₓ'. -/
 @[simp]
 theorem compl_symmDiff_self : aᶜ ∆ a = ⊤ :=
@@ -1615,7 +1615,7 @@ theorem compl_symmDiff_self : aᶜ ∆ a = ⊤ :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)) (Top.top.{u1} α (BooleanAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a)) (Top.top.{u1} α (BooleanAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align symm_diff_compl_self symmDiff_compl_selfₓ'. -/
 @[simp]
 theorem symmDiff_compl_self : a ∆ aᶜ = ⊤ :=
@@ -1624,9 +1624,9 @@ theorem symmDiff_compl_self : a ∆ aᶜ = ⊤ :=
 
 /- warning: symm_diff_symm_diff_right' -> symmDiff_symmDiff_right' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) c) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) c) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a b) c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) a (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) c))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α _inst_1) b)) c))
 Case conversion may be inaccurate. Consider using '#align symm_diff_symm_diff_right' symmDiff_symmDiff_right'ₓ'. -/
 theorem symmDiff_symmDiff_right' :
     a ∆ (b ∆ c) = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c :=
@@ -1648,9 +1648,9 @@ variable {a b c}
 
 /- warning: disjoint.le_symm_diff_sup_symm_diff_left -> Disjoint.le_symmDiff_sup_symmDiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) b c)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) c (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) b c)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_left Disjoint.le_symmDiff_sup_symmDiff_leftₓ'. -/
 theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆ c ⊔ b ∆ c :=
   by
@@ -1662,9 +1662,9 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_left (h : Disjoint a b) : c ≤ a ∆
 
 /- warning: disjoint.le_symm_diff_sup_symm_diff_right -> Disjoint.le_symmDiff_sup_symmDiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u1} α _inst_1) a c)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c)))
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a b) (symmDiff.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u1} α _inst_1) a c)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_symm_diff_sup_symm_diff_right Disjoint.le_symmDiff_sup_symmDiff_rightₓ'. -/
 theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆ b ⊔ a ∆ c :=
   by
@@ -1674,9 +1674,9 @@ theorem Disjoint.le_symmDiff_sup_symmDiff_right (h : Disjoint b c) : a ≤ a ∆
 
 /- warning: codisjoint.bihimp_inf_bihimp_le_left -> Codisjoint.bihimp_inf_bihimp_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) b c)) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) c)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) b c)) c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_left Codisjoint.bihimp_inf_bihimp_le_leftₓ'. -/
 theorem Codisjoint.bihimp_inf_bihimp_le_left (h : Codisjoint a b) : a ⇔ c ⊓ b ⇔ c ≤ c :=
   h.dual.le_symmDiff_sup_symmDiff_left
@@ -1684,9 +1684,9 @@ theorem Codisjoint.bihimp_inf_bihimp_le_left (h : Codisjoint a b) : a ⇔ c ⊓
 
 /- warning: codisjoint.bihimp_inf_bihimp_le_right -> Codisjoint.bihimp_inf_bihimp_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a b) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHasHimp.{u1} α _inst_1) a c)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) a)
+  forall {α : Type.{u1}} [_inst_1 : BooleanAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u1} α _inst_1)) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1)))))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a b) (bihimp.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α (BooleanAlgebra.toBiheytingAlgebra.{u1} α _inst_1))))) (BooleanAlgebra.toHImp.{u1} α _inst_1) a c)) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint.bihimp_inf_bihimp_le_right Codisjoint.bihimp_inf_bihimp_le_rightₓ'. -/
 theorem Codisjoint.bihimp_inf_bihimp_le_right (h : Codisjoint b c) : a ⇔ b ⊓ a ⇔ c ≤ a :=
   h.dual.le_symmDiff_sup_symmDiff_right
@@ -1703,7 +1703,7 @@ section Prod
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (symmDiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasSdiff.{u1, u2} α β (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2)) a b)) (symmDiff.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instHasSupProd.{u2, u1} α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toHasSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instSupProd.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_fst symmDiff_fstₓ'. -/
 @[simp]
 theorem symmDiff_fst [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
@@ -1715,7 +1715,7 @@ theorem symmDiff_fst [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgeb
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (symmDiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasSdiff.{u1, u2} α β (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2)) a b)) (symmDiff.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_2))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_2) (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instHasSupProd.{u2, u1} α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toHasSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u1} β (SemilatticeSup.toHasSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u2} α] [_inst_2 : GeneralizedCoheytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (symmDiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instSupProd.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α _inst_1))) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2)))) (Prod.sdiff.{u2, u1} α β (GeneralizedCoheytingAlgebra.toSDiff.{u2} α _inst_1) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2)) a b)) (symmDiff.{u1} β (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β (GeneralizedCoheytingAlgebra.toLattice.{u1} β _inst_2))) (GeneralizedCoheytingAlgebra.toSDiff.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
 Case conversion may be inaccurate. Consider using '#align symm_diff_snd symmDiff_sndₓ'. -/
 @[simp]
 theorem symmDiff_snd [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a b : α × β) :
@@ -1727,7 +1727,7 @@ theorem symmDiff_snd [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgeb
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] [_inst_2 : GeneralizedHeytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (bihimp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasHimp.{u1, u2} α β (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2)) a b)) (bihimp.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instHasInfProd.{u2, u1} α β (Lattice.toHasInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toHasInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u2} α (Lattice.toHasInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instInfProd.{u2, u1} α β (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u2} α (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
 Case conversion may be inaccurate. Consider using '#align bihimp_fst bihimp_fstₓ'. -/
 @[simp]
 theorem bihimp_fst [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
@@ -1739,7 +1739,7 @@ theorem bihimp_fst [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] [_inst_2 : GeneralizedHeytingAlgebra.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (bihimp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2)))) (Prod.hasHimp.{u1, u2} α β (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2)) a b)) (bihimp.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_2))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_2) (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instHasInfProd.{u2, u1} α β (Lattice.toHasInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toHasInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u1} β (Lattice.toHasInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2)) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u2} α] [_inst_2 : GeneralizedHeytingAlgebra.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (bihimp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instInfProd.{u2, u1} α β (Lattice.toInf.{u2} α (GeneralizedHeytingAlgebra.toLattice.{u2} α _inst_1)) (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2))) (Prod.himp.{u2, u1} α β (GeneralizedHeytingAlgebra.toHImp.{u2} α _inst_1) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2)) a b)) (bihimp.{u1} β (Lattice.toInf.{u1} β (GeneralizedHeytingAlgebra.toLattice.{u1} β _inst_2)) (GeneralizedHeytingAlgebra.toHImp.{u1} β _inst_2) (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
 Case conversion may be inaccurate. Consider using '#align bihimp_snd bihimp_sndₓ'. -/
 @[simp]
 theorem bihimp_snd [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a b : α × β) :
@@ -1758,7 +1758,7 @@ namespace Pi
 lean 3 declaration is
   forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{succ (max u1 u2)} (forall (i : ι), π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.hasSup.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
 but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instHasSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => symmDiff.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
 Case conversion may be inaccurate. Consider using '#align pi.symm_diff_def Pi.symmDiff_defₓ'. -/
 theorem symmDiff_def [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ∆ b = fun i => a i ∆ b i :=
@@ -1769,7 +1769,7 @@ theorem symmDiff_def [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, 
 lean 3 declaration is
   forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{succ (max u1 u2)} (forall (i : ι), π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.hasInf.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.hasHimp.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => bihimp.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i)) (a i) (b i))
 but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instHasInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toHasInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => bihimp.{u2} (π i) (Lattice.toHasInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i), Eq.{max (succ u1) (succ u2)} (forall (i : ι), π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b) (fun (i : ι) => bihimp.{u2} (π i) (Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
 Case conversion may be inaccurate. Consider using '#align pi.bihimp_def Pi.bihimp_defₓ'. -/
 theorem bihimp_def [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) :
     a ⇔ b = fun i => a i ⇔ b i :=
@@ -1780,7 +1780,7 @@ theorem bihimp_def [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i)
 lean 3 declaration is
   forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.hasSup.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i))) a b i) (symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
 but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instHasSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b i) (symmDiff.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedCoheytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (symmDiff.{max u1 u2} (forall (i : ι), π i) (Pi.instSupForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.sdiff.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i))) a b i) (symmDiff.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (Lattice.toSemilatticeSup.{u2} (π i) (GeneralizedCoheytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedCoheytingAlgebra.toSDiff.{u2} (π i) (_inst_1 i)) (a i) (b i))
 Case conversion may be inaccurate. Consider using '#align pi.symm_diff_apply Pi.symmDiff_applyₓ'. -/
 @[simp]
 theorem symmDiff_apply [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :
@@ -1792,7 +1792,7 @@ theorem symmDiff_apply [∀ i, GeneralizedCoheytingAlgebra (π i)] (a b : ∀ i,
 lean 3 declaration is
   forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.hasInf.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))))) (Pi.hasHimp.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i))) a b i) (bihimp.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (Lattice.toSemilatticeInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (GeneralizedHeytingAlgebra.toHasHimp.{u2} (π i) (_inst_1 i)) (a i) (b i))
 but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instHasInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toHasInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b i) (bihimp.{u2} (π i) (Lattice.toHasInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : forall (i : ι), GeneralizedHeytingAlgebra.{u2} (π i)] (a : forall (i : ι), π i) (b : forall (i : ι), π i) (i : ι), Eq.{succ u2} (π i) (bihimp.{max u1 u2} (forall (i : ι), π i) (Pi.instInfForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i)))) (Pi.instHImpForAll.{u1, u2} ι (fun (i : ι) => π i) (fun (i : ι) => GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i))) a b i) (bihimp.{u2} (π i) (Lattice.toInf.{u2} (π i) (GeneralizedHeytingAlgebra.toLattice.{u2} (π i) (_inst_1 i))) (GeneralizedHeytingAlgebra.toHImp.{u2} (π i) (_inst_1 i)) (a i) (b i))
 Case conversion may be inaccurate. Consider using '#align pi.bihimp_apply Pi.bihimp_applyₓ'. -/
 @[simp]
 theorem bihimp_apply [∀ i, GeneralizedHeytingAlgebra (π i)] (a b : ∀ i, π i) (i : ι) :

Changes in mathlib4

mathlib3
mathlib4
feat: add 3 lemmas linking iSup and symmDiff (#12340)

Add 3 lemmas to show that the symmetric difference of two iSups/biSups is less or equal to the iSup/biSup of the symmetric differences.

Diff
@@ -215,6 +215,12 @@ theorem symmDiff_triangle : a ∆ c ≤ a ∆ b ⊔ b ∆ c := by
   rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
 #align symm_diff_triangle symmDiff_triangle
 
+theorem le_symmDiff_sup_right (a b : α) : a ≤ (a ∆ b) ⊔ b := by
+  convert symmDiff_triangle a b ⊥ <;> rw [symmDiff_bot]
+
+theorem le_symmDiff_sup_left (a b : α) : b ≤ (a ∆ b) ⊔ a :=
+  symmDiff_comm a b ▸ le_symmDiff_sup_right ..
+
 end GeneralizedCoheytingAlgebra
 
 section GeneralizedHeytingAlgebra
doc: convert many comments into doc comments (#11940)

All of these changes appear to be oversights to me.

Diff
@@ -571,7 +571,7 @@ section BooleanAlgebra
 
 variable [BooleanAlgebra α] (a b c d : α)
 
-/- `CogeneralizedBooleanAlgebra` isn't actually a typeclass, but the lemmas in here are dual to
+/-! `CogeneralizedBooleanAlgebra` isn't actually a typeclass, but the lemmas in here are dual to
 the `GeneralizedBooleanAlgebra` ones -/
 section CogeneralizedBooleanAlgebra
 
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -212,7 +212,7 @@ theorem inf_symmDiff_symmDiff : (a ⊓ b) ∆ (a ∆ b) = a ⊔ b := by
 
 theorem symmDiff_triangle : a ∆ c ≤ a ∆ b ⊔ b ∆ c := by
   refine' (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq _
-  rw [@sup_comm _ _ (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
+  rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
 #align symm_diff_triangle symmDiff_triangle
 
 end GeneralizedCoheytingAlgebra
@@ -405,7 +405,7 @@ theorem inf_symmDiff_distrib_left : a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) := b
 #align inf_symm_diff_distrib_left inf_symmDiff_distrib_left
 
 theorem inf_symmDiff_distrib_right : a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) := by
-  simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left]
+  simp_rw [inf_comm _ c, inf_symmDiff_distrib_left]
 #align inf_symm_diff_distrib_right inf_symmDiff_distrib_right
 
 theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
@@ -457,7 +457,7 @@ theorem symmDiff_symmDiff_left :
   calc
     a ∆ b ∆ c = a ∆ b \ c ⊔ c \ a ∆ b := symmDiff_def _ _
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) := by
-        { rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff] }
+        { rw [sdiff_symmDiff', sup_comm (c ⊓ a ⊓ b), symmDiff_sdiff] }
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
 #align symm_diff_symm_diff_left symmDiff_symmDiff_left
 
@@ -466,7 +466,7 @@ theorem symmDiff_symmDiff_right :
   calc
     a ∆ (b ∆ c) = a \ b ∆ c ⊔ b ∆ c \ a := symmDiff_def _ _
     _ = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) := by
-        { rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff] }
+        { rw [sdiff_symmDiff', sup_comm (a ⊓ b ⊓ c), symmDiff_sdiff] }
     _ = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c := by ac_rfl
 #align symm_diff_symm_diff_right symmDiff_symmDiff_right
 
@@ -741,7 +741,7 @@ theorem compl_bihimp : (a ⇔ b)ᶜ = a ∆ b :=
 
 @[simp]
 theorem compl_symmDiff_compl : aᶜ ∆ bᶜ = a ∆ b :=
-  sup_comm.trans <| by simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq]
+  (sup_comm _ _).trans <| by simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq]
 #align compl_symm_diff_compl compl_symmDiff_compl
 
 @[simp]
chore: Remove unnecessary "rw"s (#10704)

Remove unnecessary "rw"s.

Diff
@@ -413,7 +413,7 @@ theorem sdiff_symmDiff : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b := by
 #align sdiff_symm_diff sdiff_symmDiff
 
 theorem sdiff_symmDiff' : c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) := by
-  rw [sdiff_symmDiff, sdiff_sup, sup_comm]
+  rw [sdiff_symmDiff, sdiff_sup]
 #align sdiff_symm_diff' sdiff_symmDiff'
 
 @[simp]
chore: move to v4.6.0-rc1, merging adaptations from bump/v4.6.0 (#10176)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Joachim Breitner <mail@joachim-breitner.de>

Diff
@@ -113,7 +113,7 @@ theorem ofDual_bihimp (a b : αᵒᵈ) : ofDual (a ⇔ b) = ofDual a ∆ ofDual
 theorem symmDiff_comm : a ∆ b = b ∆ a := by simp only [symmDiff, sup_comm]
 #align symm_diff_comm symmDiff_comm
 
-instance symmDiff_isCommutative : IsCommutative α (· ∆ ·) :=
+instance symmDiff_isCommutative : Std.Commutative (α := α) (· ∆ ·) :=
   ⟨symmDiff_comm⟩
 #align symm_diff_is_comm symmDiff_isCommutative
 
@@ -234,7 +234,7 @@ theorem ofDual_symmDiff (a b : αᵒᵈ) : ofDual (a ∆ b) = ofDual a ⇔ ofDua
 theorem bihimp_comm : a ⇔ b = b ⇔ a := by simp only [(· ⇔ ·), inf_comm]
 #align bihimp_comm bihimp_comm
 
-instance bihimp_isCommutative : IsCommutative α (· ⇔ ·) :=
+instance bihimp_isCommutative : Std.Commutative (α := α) (· ⇔ ·) :=
   ⟨bihimp_comm⟩
 #align bihimp_is_comm bihimp_isCommutative
 
@@ -474,7 +474,7 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
   rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
 #align symm_diff_assoc symmDiff_assoc
 
-instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
+instance symmDiff_isAssociative : Std.Associative (α := α)  (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
 #align symm_diff_is_assoc symmDiff_isAssociative
 
@@ -623,7 +623,7 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
   @symmDiff_assoc αᵒᵈ _ _ _ _
 #align bihimp_assoc bihimp_assoc
 
-instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
+instance bihimp_isAssociative : Std.Associative (α := α) (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
 #align bihimp_is_assoc bihimp_isAssociative
 
chore: scope symmDiff notations (#9844)

Those notations are not scoped whereas the file is very low in the import hierarchy.

Diff
@@ -67,13 +67,13 @@ def bihimp [Inf α] [HImp α] (a b : α) : α :=
   (b ⇨ a) ⊓ (a ⇨ b)
 #align bihimp bihimp
 
-/- This notation might conflict with the Laplacian once we have it. Feel free to put it in locale
-  `order` or `symmDiff` if that happens. -/
 /-- Notation for symmDiff -/
-infixl:100 " ∆ " => symmDiff
+scoped[symmDiff] infixl:100 " ∆ " => symmDiff
 
 /-- Notation for bihimp -/
-infixl:100 " ⇔ " => bihimp
+scoped[symmDiff] infixl:100 " ⇔ " => bihimp
+
+open scoped symmDiff
 
 theorem symmDiff_def [Sup α] [SDiff α] (a b : α) : a ∆ b = a \ b ⊔ b \ a :=
   rfl
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -506,7 +506,7 @@ theorem symmDiff_left_involutive (a : α) : Involutive (· ∆ a) :=
   symmDiff_symmDiff_cancel_right _
 #align symm_diff_left_involutive symmDiff_left_involutive
 
-theorem symmDiff_right_involutive (a : α) : Involutive ((· ∆ ·) a) :=
+theorem symmDiff_right_involutive (a : α) : Involutive (a ∆ ·) :=
   symmDiff_symmDiff_cancel_left _
 #align symm_diff_right_involutive symmDiff_right_involutive
 
@@ -514,7 +514,7 @@ theorem symmDiff_left_injective (a : α) : Injective (· ∆ a) :=
   Function.Involutive.injective (symmDiff_left_involutive a)
 #align symm_diff_left_injective symmDiff_left_injective
 
-theorem symmDiff_right_injective (a : α) : Injective ((· ∆ ·) a) :=
+theorem symmDiff_right_injective (a : α) : Injective (a ∆ ·) :=
   Function.Involutive.injective (symmDiff_right_involutive _)
 #align symm_diff_right_injective symmDiff_right_injective
 
@@ -522,7 +522,7 @@ theorem symmDiff_left_surjective (a : α) : Surjective (· ∆ a) :=
   Function.Involutive.surjective (symmDiff_left_involutive _)
 #align symm_diff_left_surjective symmDiff_left_surjective
 
-theorem symmDiff_right_surjective (a : α) : Surjective ((· ∆ ·) a) :=
+theorem symmDiff_right_surjective (a : α) : Surjective (a ∆ ·) :=
   Function.Involutive.surjective (symmDiff_right_involutive _)
 #align symm_diff_right_surjective symmDiff_right_surjective
 
@@ -653,7 +653,7 @@ theorem bihimp_left_involutive (a : α) : Involutive (· ⇔ a) :=
   bihimp_bihimp_cancel_right _
 #align bihimp_left_involutive bihimp_left_involutive
 
-theorem bihimp_right_involutive (a : α) : Involutive ((· ⇔ ·) a) :=
+theorem bihimp_right_involutive (a : α) : Involutive (a ⇔ ·) :=
   bihimp_bihimp_cancel_left _
 #align bihimp_right_involutive bihimp_right_involutive
 
@@ -661,7 +661,7 @@ theorem bihimp_left_injective (a : α) : Injective (· ⇔ a) :=
   @symmDiff_left_injective αᵒᵈ _ _
 #align bihimp_left_injective bihimp_left_injective
 
-theorem bihimp_right_injective (a : α) : Injective ((· ⇔ ·) a) :=
+theorem bihimp_right_injective (a : α) : Injective (a ⇔ ·) :=
   @symmDiff_right_injective αᵒᵈ _ _
 #align bihimp_right_injective bihimp_right_injective
 
@@ -669,7 +669,7 @@ theorem bihimp_left_surjective (a : α) : Surjective (· ⇔ a) :=
   @symmDiff_left_surjective αᵒᵈ _ _
 #align bihimp_left_surjective bihimp_left_surjective
 
-theorem bihimp_right_surjective (a : α) : Surjective ((· ⇔ ·) a) :=
+theorem bihimp_right_surjective (a : α) : Surjective (a ⇔ ·) :=
   @symmDiff_right_surjective αᵒᵈ _ _
 #align bihimp_right_surjective bihimp_right_surjective
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -54,7 +54,7 @@ Heyting
 
 open Function OrderDual
 
-variable {ι α β : Type _} {π : ι → Type _}
+variable {ι α β : Type*} {π : ι → Type*}
 
 /-- The symmetric difference operator on a type with `⊔` and `\` is `(A \ B) ⊔ (B \ A)`. -/
 def symmDiff [Sup α] [SDiff α] (a b : α) : α :=
chore: remove 'Ported by' headers (#6018)

Briefly during the port we were adding "Ported by" headers, but only ~60 / 3000 files ended up with such a header.

I propose deleting them.

We could consider adding these uniformly via a script, as part of the great history rewrite...?

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,7 +2,6 @@
 Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz, Bryan Gin-ge Chen, Yaël Dillies
-Ported by: Frédéric Dupuis
 -/
 import Mathlib.Order.BooleanAlgebra
 import Mathlib.Logic.Equiv.Basic
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -3,15 +3,12 @@ Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz, Bryan Gin-ge Chen, Yaël Dillies
 Ported by: Frédéric Dupuis
-
-! This file was ported from Lean 3 source module order.symm_diff
-! leanprover-community/mathlib commit 6eb334bd8f3433d5b08ba156b8ec3e6af47e1904
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.BooleanAlgebra
 import Mathlib.Logic.Equiv.Basic
 
+#align_import order.symm_diff from "leanprover-community/mathlib"@"6eb334bd8f3433d5b08ba156b8ec3e6af47e1904"
+
 /-!
 # Symmetric difference and bi-implication
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -74,7 +74,7 @@ def bihimp [Inf α] [HImp α] (a b : α) : α :=
 /- This notation might conflict with the Laplacian once we have it. Feel free to put it in locale
   `order` or `symmDiff` if that happens. -/
 /-- Notation for symmDiff -/
-infixl:100 " ∆ " =>  symmDiff
+infixl:100 " ∆ " => symmDiff
 
 /-- Notation for bihimp -/
 infixl:100 " ⇔ " => bihimp
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -72,7 +72,7 @@ def bihimp [Inf α] [HImp α] (a b : α) : α :=
 #align bihimp bihimp
 
 /- This notation might conflict with the Laplacian once we have it. Feel free to put it in locale
-  `order` or `symm_diff` if that happens. -/
+  `order` or `symmDiff` if that happens. -/
 /-- Notation for symmDiff -/
 infixl:100 " ∆ " =>  symmDiff
 
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -61,13 +61,13 @@ open Function OrderDual
 variable {ι α β : Type _} {π : ι → Type _}
 
 /-- The symmetric difference operator on a type with `⊔` and `\` is `(A \ B) ⊔ (B \ A)`. -/
-def symmDiff [HasSup α] [SDiff α] (a b : α) : α :=
+def symmDiff [Sup α] [SDiff α] (a b : α) : α :=
   a \ b ⊔ b \ a
 #align symm_diff symmDiff
 
 /-- The Heyting bi-implication is `(b ⇨ a) ⊓ (a ⇨ b)`. This generalizes equivalence of
 propositions. -/
-def bihimp [HasInf α] [HImp α] (a b : α) : α :=
+def bihimp [Inf α] [HImp α] (a b : α) : α :=
   (b ⇨ a) ⊓ (a ⇨ b)
 #align bihimp bihimp
 
@@ -79,11 +79,11 @@ infixl:100 " ∆ " =>  symmDiff
 /-- Notation for bihimp -/
 infixl:100 " ⇔ " => bihimp
 
-theorem symmDiff_def [HasSup α] [SDiff α] (a b : α) : a ∆ b = a \ b ⊔ b \ a :=
+theorem symmDiff_def [Sup α] [SDiff α] (a b : α) : a ∆ b = a \ b ⊔ b \ a :=
   rfl
 #align symm_diff_def symmDiff_def
 
-theorem bihimp_def [HasInf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a ⇨ b) :=
+theorem bihimp_def [Inf α] [HImp α] (a b : α) : a ⇔ b = (b ⇨ a) ⊓ (a ⇨ b) :=
   rfl
 #align bihimp_def bihimp_def
 
Diff
@@ -453,7 +453,7 @@ theorem le_symmDiff_iff_left : a ≤ a ∆ b ↔ Disjoint a b := by
 
 @[simp]
 theorem le_symmDiff_iff_right : b ≤ a ∆ b ↔ Disjoint a b := by
-  rw [symmDiff_comm, le_symmDiff_iff_left, Disjoint.comm]
+  rw [symmDiff_comm, le_symmDiff_iff_left, disjoint_comm]
 #align le_symm_diff_iff_right le_symmDiff_iff_right
 
 theorem symmDiff_symmDiff_left :
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -478,9 +478,9 @@ theorem symmDiff_assoc : a ∆ b ∆ c = a ∆ (b ∆ c) := by
   rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
 #align symm_diff_assoc symmDiff_assoc
 
-instance symmDiff_is_assoc : IsAssociative α (· ∆ ·) :=
+instance symmDiff_isAssociative : IsAssociative α (· ∆ ·) :=
   ⟨symmDiff_assoc⟩
-#align symm_diff_is_assoc symmDiff_is_assoc
+#align symm_diff_is_assoc symmDiff_isAssociative
 
 theorem symmDiff_left_comm : a ∆ (b ∆ c) = b ∆ (a ∆ c) := by
   simp_rw [← symmDiff_assoc, symmDiff_comm]
@@ -627,9 +627,9 @@ theorem bihimp_assoc : a ⇔ b ⇔ c = a ⇔ (b ⇔ c) :=
   @symmDiff_assoc αᵒᵈ _ _ _ _
 #align bihimp_assoc bihimp_assoc
 
-instance bihimp_is_assoc : IsAssociative α (· ⇔ ·) :=
+instance bihimp_isAssociative : IsAssociative α (· ⇔ ·) :=
   ⟨bihimp_assoc⟩
-#align bihimp_is_assoc bihimp_is_assoc
+#align bihimp_is_assoc bihimp_isAssociative
 
 theorem bihimp_left_comm : a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) := by simp_rw [← bihimp_assoc, bihimp_comm]
 #align bihimp_left_comm bihimp_left_comm
chore: update lean4/std4 (#1096)
Diff
@@ -136,7 +136,6 @@ theorem bot_symmDiff : ⊥ ∆ a = a := by rw [symmDiff_comm, symmDiff_bot]
 @[simp]
 theorem symmDiff_eq_bot {a b : α} : a ∆ b = ⊥ ↔ a = b := by
   simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
-  rfl
 #align symm_diff_eq_bot symmDiff_eq_bot
 
 theorem symmDiff_of_le {a b : α} (h : a ≤ b) : a ∆ b = b \ a := by
@@ -153,7 +152,6 @@ theorem symmDiff_le {a b c : α} (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a 
 
 theorem symmDiff_le_iff {a b c : α} : a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c := by
   simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
-  rfl
 #align symm_diff_le_iff symmDiff_le_iff
 
 @[simp]
@@ -275,7 +273,6 @@ theorem le_bihimp {a b c : α} (hb : a ⊓ b ≤ c) (hc : a ⊓ c ≤ b) : a ≤
 
 theorem le_bihimp_iff {a b c : α} : a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b := by
   simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
-  rfl
 #align le_bihimp_iff le_bihimp_iff
 
 @[simp]
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -3,6 +3,11 @@ Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz, Bryan Gin-ge Chen, Yaël Dillies
 Ported by: Frédéric Dupuis
+
+! This file was ported from Lean 3 source module order.symm_diff
+! leanprover-community/mathlib commit 6eb334bd8f3433d5b08ba156b8ec3e6af47e1904
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Order.BooleanAlgebra
 import Mathlib.Logic.Equiv.Basic

Dependencies 33

34 files ported (100.0%)
17394 lines ported (100.0%)

All dependencies are ported!