ring_theory.dedekind_domain.pid
⟷
Mathlib.RingTheory.DedekindDomain.PID
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -92,7 +92,7 @@ theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {
set J := Submodule.comap (Algebra.linearMap R A) (I * Submodule.span R {v})
have hJ : IsLocalization.coeSubmodule A J = I * Submodule.span R {v} :=
by
- rw [Subtype.ext_iff, FractionalIdeal.coe_mul, FractionalIdeal.coe_one] at hinv
+ rw [Subtype.ext_iff, FractionalIdeal.coe_mul, FractionalIdeal.coe_one] at hinv
apply Submodule.map_comap_eq_self
rw [← Submodule.one_eq_range, ← hinv]
exact Submodule.mul_le_mul_right ((Submodule.span_singleton_le_iff_mem _ _).2 hv)
@@ -123,7 +123,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
Submodule.IsPrincipal (I : Submodule R A) :=
by
have hinv' := hinv
- rw [Subtype.ext_iff, FractionalIdeal.coe_mul] at hinv
+ rw [Subtype.ext_iff, FractionalIdeal.coe_mul] at hinv
let s := hf.to_finset
haveI := Classical.decEq (Ideal R)
have coprime : ∀ M ∈ s, ∀ M' ∈ s.erase M, M ⊔ M' = ⊤ :=
@@ -161,24 +161,24 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
obtain ⟨c, hc⟩ := this _ (ha M hM) v hv
refine' IsLocalization.coeSubmodule_mono _ hJM ⟨c, _, hc⟩
have := Submodule.mul_mem_mul (ha M hM) (Submodule.mem_span_singleton_self v)
- rwa [← hc] at this
- simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
- rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
+ rwa [← hc] at this
+ simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
+ rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
· refine' hm M hM _
obtain ⟨c, hc : algebraMap R A c = a M * b M⟩ := this _ (ha M hM) _ (hb M hM)
rw [← hc] at hmem ⊢
- rw [Algebra.smul_def, ← _root_.map_mul] at hmem
+ rw [Algebra.smul_def, ← _root_.map_mul] at hmem
obtain ⟨d, hdM, he⟩ := hmem
- rw [IsLocalization.injective _ hS he] at hdM
+ rw [IsLocalization.injective _ hS he] at hdM
exact
Submodule.mem_map_of_mem
(((hf.mem_to_finset.1 hM).IsPrime.mem_or_mem hdM).resolve_left <| hum M hM)
· refine' Submodule.sum_mem _ fun M' hM' => _
- rw [Finset.mem_erase] at hM'
+ rw [Finset.mem_erase] at hM'
obtain ⟨c, hc⟩ := this _ (ha M hM) _ (hb M' hM'.2)
rw [← hc, Algebra.smul_def, ← _root_.map_mul]
specialize hu M' hM'.2
- simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
+ simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -136,7 +136,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
((hf.mem_to_finset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_iInf_eq_top <| coprime M hM).symm)
have : ∀ M ∈ s, ∃ a ∈ I, ∃ b ∈ I', a * b ∉ IsLocalization.coeSubmodule A M :=
by
- intro M hM; by_contra' h
+ intro M hM; by_contra! h
obtain ⟨x, hx, hxM⟩ :=
SetLike.exists_of_lt
((IsLocalization.coeSubmodule_strictMono hS (hf.mem_to_finset.1 hM).ne_top.lt_top).trans_eq
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2023 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
-import Mathbin.RingTheory.DedekindDomain.Dvr
-import Mathbin.RingTheory.DedekindDomain.Ideal
+import RingTheory.DedekindDomain.Dvr
+import RingTheory.DedekindDomain.Ideal
#align_import ring_theory.dedekind_domain.pid from "leanprover-community/mathlib"@"6b31d1eebd64eab86d5bd9936bfaada6ca8b5842"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -259,7 +259,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (
hpu (LocalRing.maximalIdeal _) ⟨this, _⟩, hpu (comap _ _) ⟨_, _⟩]
· exact le_rfl
· have hRS : Algebra.IsIntegral R S :=
- isIntegral_of_noetherian (isNoetherian_of_fg_of_noetherian' Module.Finite.out)
+ isIntegral_of_noetherian (isNoetherian_of_isNoetherianRing_of_finite Module.Finite.out)
exact mt (Ideal.eq_bot_of_comap_eq_bot (isIntegral_localization hRS)) hP0
· exact Ideal.comap_isPrime (algebraMap (Localization.AtPrime p) Sₚ) P
· exact (LocalRing.maximalIdeal.isMaximal _).IsPrime
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2023 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-
-! This file was ported from Lean 3 source module ring_theory.dedekind_domain.pid
-! leanprover-community/mathlib commit 6b31d1eebd64eab86d5bd9936bfaada6ca8b5842
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.RingTheory.DedekindDomain.Dvr
import Mathbin.RingTheory.DedekindDomain.Ideal
+#align_import ring_theory.dedekind_domain.pid from "leanprover-community/mathlib"@"6b31d1eebd64eab86d5bd9936bfaada6ca8b5842"
+
/-!
# Proving a Dedekind domain is a PID
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -84,6 +84,7 @@ theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Id
#align ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne
-/
+#print FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top /-
theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R A : Type _}
[CommRing R] [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A]
(I : (FractionalIdeal S A)ˣ) {v : A} (hv : v ∈ (↑I⁻¹ : FractionalIdeal S A))
@@ -112,7 +113,9 @@ theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {
· rw [FractionalIdeal.one_le, ← hvw, mul_comm]
exact FractionalIdeal.mul_mem_mul hv (FractionalIdeal.mem_spanSingleton_self _ _)
#align fractional_ideal.is_principal_of_unit_of_comap_mul_span_singleton_eq_top FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top
+-/
+#print FractionalIdeal.isPrincipal.of_finite_maximals_of_inv /-
/--
An invertible fractional ideal of a commutative ring with finitely many maximal ideals is principal.
@@ -181,7 +184,9 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
+-/
+#print Ideal.IsPrincipal.of_finite_maximals_of_isUnit /-
/-- An invertible ideal in a commutative ring with finitely many maximal ideals is principal.
https://math.stackexchange.com/a/95857 -/
@@ -191,6 +196,7 @@ theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : {I : Ideal R | I.Is
(FractionalIdeal.isPrincipal.of_finite_maximals_of_inv le_rfl hf I
(↑hI.Unit⁻¹ : FractionalIdeal R⁰ (FractionRing R)) hI.Unit.mul_inv)
#align ideal.is_principal.of_finite_maximals_of_is_unit Ideal.IsPrincipal.of_finite_maximals_of_isUnit
+-/
#print IsPrincipalIdealRing.of_finite_primes /-
/-- A Dedekind domain is a PID if its set of primes is finite. -/
@@ -223,8 +229,7 @@ variable [Algebra R Sₚ] [IsScalarTower R S Sₚ]
second, so we leave it to the user to provide (automatically). -/
variable [IsDomain Sₚ] [IsDedekindDomain Sₚ]
-include S hp0
-
+#print IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime /-
/-- If `p` is a prime in the Dedekind domain `R`, `S` an extension of `R` and `Sₚ` the localization
of `S` at `p`, then all primes in `Sₚ` are factors of the image of `p` in `Sₚ`. -/
theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (Ideal Sₚ)]
@@ -267,7 +272,9 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (
exact
(IsLocalization.injective Sₚ non_zero_div).comp (NoZeroSMulDivisors.algebraMap_injective _ _)
#align is_localization.over_prime.mem_normalized_factors_of_is_prime IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime
+-/
+#print IsDedekindDomain.isPrincipalIdealRing_localization_over_prime /-
/-- Let `p` be a prime in the Dedekind domain `R` and `S` be an integral extension of `R`,
then the localization `Sₚ` of `S` at `p` is a PID. -/
theorem IsDedekindDomain.isPrincipalIdealRing_localization_over_prime : IsPrincipalIdealRing Sₚ :=
@@ -286,4 +293,5 @@ theorem IsDedekindDomain.isPrincipalIdealRing_localization_over_prime : IsPrinci
and_iff_right_of_imp fun hP =>
or_iff_not_imp_left.mpr (IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime S p hp0 hP)
#align is_dedekind_domain.is_principal_ideal_ring_localization_over_prime IsDedekindDomain.isPrincipalIdealRing_localization_over_prime
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3e83f0fa4391c8740f7d773a7a9b74e311ae2a3
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
! This file was ported from Lean 3 source module ring_theory.dedekind_domain.pid
-! leanprover-community/mathlib commit 6010cf523816335f7bae7f8584cb2edaace73940
+! leanprover-community/mathlib commit 6b31d1eebd64eab86d5bd9936bfaada6ca8b5842
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -14,6 +14,9 @@ import Mathbin.RingTheory.DedekindDomain.Ideal
/-!
# Proving a Dedekind domain is a PID
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file contains some results that we can use to show all ideals in a Dedekind domain are
principal.
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -38,6 +38,7 @@ open scoped nonZeroDivisors
open UniqueFactorizationMonoid
+#print Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne /-
/-- Let `P` be a prime ideal, `x ∈ P \ P²` and `x ∉ Q` for all prime ideals `Q ≠ P`.
Then `P` is generated by `x`. -/
theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Ideal R}
@@ -78,6 +79,7 @@ theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Id
(is_prime_of_prime
(irreducible_iff_prime.mp (irreducible_of_normalized_factor _ hQi)))).le
#align ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne
+-/
theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R A : Type _}
[CommRing R] [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A]
@@ -187,6 +189,7 @@ theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : {I : Ideal R | I.Is
(↑hI.Unit⁻¹ : FractionalIdeal R⁰ (FractionRing R)) hI.Unit.mul_inv)
#align ideal.is_principal.of_finite_maximals_of_is_unit Ideal.IsPrincipal.of_finite_maximals_of_isUnit
+#print IsPrincipalIdealRing.of_finite_primes /-
/-- A Dedekind domain is a PID if its set of primes is finite. -/
theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
(h : {I : Ideal R | I.IsPrime}.Finite) : IsPrincipalIdealRing R :=
@@ -197,6 +200,7 @@ theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
· apply h.subset; exact @Ideal.IsMaximal.isPrime _ _
· exact isUnit_of_mul_eq_one _ _ (FractionalIdeal.coe_ideal_mul_inv I hI)⟩
#align is_principal_ideal_ring.of_finite_primes IsPrincipalIdealRing.of_finite_primes
+-/
variable [IsDomain R] [IsDedekindDomain R]
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -114,7 +114,7 @@ An invertible fractional ideal of a commutative ring with finitely many maximal
https://math.stackexchange.com/a/95857 -/
theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [CommRing A]
[Algebra R A] {S : Submonoid R} [IsLocalization S A] (hS : S ≤ R⁰)
- (hf : { I : Ideal R | I.IsMaximal }.Finite) (I I' : FractionalIdeal S A) (hinv : I * I' = 1) :
+ (hf : {I : Ideal R | I.IsMaximal}.Finite) (I I' : FractionalIdeal S A) (hinv : I * I' = 1) :
Submodule.IsPrincipal (I : Submodule R A) :=
by
have hinv' := hinv
@@ -180,7 +180,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
/-- An invertible ideal in a commutative ring with finitely many maximal ideals is principal.
https://math.stackexchange.com/a/95857 -/
-theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : { I : Ideal R | I.IsMaximal }.Finite)
+theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : {I : Ideal R | I.IsMaximal}.Finite)
{I : Ideal R} (hI : IsUnit (I : FractionalIdeal R⁰ (FractionRing R))) : I.IsPrincipal :=
(IsLocalization.coeSubmodule_isPrincipal _ le_rfl).mp
(FractionalIdeal.isPrincipal.of_finite_maximals_of_inv le_rfl hf I
@@ -189,7 +189,7 @@ theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : { I : Ideal R | I.I
/-- A Dedekind domain is a PID if its set of primes is finite. -/
theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
- (h : { I : Ideal R | I.IsPrime }.Finite) : IsPrincipalIdealRing R :=
+ (h : {I : Ideal R | I.IsPrime}.Finite) : IsPrincipalIdealRing R :=
⟨fun I => by
obtain rfl | hI := eq_or_ne I ⊥
· exact bot_isPrincipal
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -89,7 +89,7 @@ theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {
set J := Submodule.comap (Algebra.linearMap R A) (I * Submodule.span R {v})
have hJ : IsLocalization.coeSubmodule A J = I * Submodule.span R {v} :=
by
- rw [Subtype.ext_iff, FractionalIdeal.coe_mul, FractionalIdeal.coe_one] at hinv
+ rw [Subtype.ext_iff, FractionalIdeal.coe_mul, FractionalIdeal.coe_one] at hinv
apply Submodule.map_comap_eq_self
rw [← Submodule.one_eq_range, ← hinv]
exact Submodule.mul_le_mul_right ((Submodule.span_singleton_le_iff_mem _ _).2 hv)
@@ -118,7 +118,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
Submodule.IsPrincipal (I : Submodule R A) :=
by
have hinv' := hinv
- rw [Subtype.ext_iff, FractionalIdeal.coe_mul] at hinv
+ rw [Subtype.ext_iff, FractionalIdeal.coe_mul] at hinv
let s := hf.to_finset
haveI := Classical.decEq (Ideal R)
have coprime : ∀ M ∈ s, ∀ M' ∈ s.erase M, M ⊔ M' = ⊤ :=
@@ -156,24 +156,24 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
obtain ⟨c, hc⟩ := this _ (ha M hM) v hv
refine' IsLocalization.coeSubmodule_mono _ hJM ⟨c, _, hc⟩
have := Submodule.mul_mem_mul (ha M hM) (Submodule.mem_span_singleton_self v)
- rwa [← hc] at this
- simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
- rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
+ rwa [← hc] at this
+ simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
+ rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
· refine' hm M hM _
obtain ⟨c, hc : algebraMap R A c = a M * b M⟩ := this _ (ha M hM) _ (hb M hM)
- rw [← hc] at hmem⊢
- rw [Algebra.smul_def, ← _root_.map_mul] at hmem
+ rw [← hc] at hmem ⊢
+ rw [Algebra.smul_def, ← _root_.map_mul] at hmem
obtain ⟨d, hdM, he⟩ := hmem
- rw [IsLocalization.injective _ hS he] at hdM
+ rw [IsLocalization.injective _ hS he] at hdM
exact
Submodule.mem_map_of_mem
(((hf.mem_to_finset.1 hM).IsPrime.mem_or_mem hdM).resolve_left <| hum M hM)
· refine' Submodule.sum_mem _ fun M' hM' => _
- rw [Finset.mem_erase] at hM'
+ rw [Finset.mem_erase] at hM'
obtain ⟨c, hc⟩ := this _ (ha M hM) _ (hb M' hM'.2)
rw [← hc, Algebra.smul_def, ← _root_.map_mul]
specialize hu M' hM'.2
- simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
+ simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
@@ -236,7 +236,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (
(IsLocalization.AtPrime.discreteValuationRing_of_dedekind_domain R hp0 _)
have : LocalRing.maximalIdeal (Localization.AtPrime p) ≠ ⊥ :=
by
- rw [Submodule.ne_bot_iff] at hp0⊢
+ rw [Submodule.ne_bot_iff] at hp0 ⊢
obtain ⟨x, x_mem, x_ne⟩ := hp0
exact
⟨algebraMap _ _ x, (IsLocalization.AtPrime.to_map_mem_maximal_iff _ _ _).mpr x_mem,
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -32,9 +32,9 @@ open Ideal
open UniqueFactorizationMonoid
-open BigOperators
+open scoped BigOperators
-open nonZeroDivisors
+open scoped nonZeroDivisors
open UniqueFactorizationMonoid
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -131,14 +131,12 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
((hf.mem_to_finset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_iInf_eq_top <| coprime M hM).symm)
have : ∀ M ∈ s, ∃ a ∈ I, ∃ b ∈ I', a * b ∉ IsLocalization.coeSubmodule A M :=
by
- intro M hM
- by_contra' h
+ intro M hM; by_contra' h
obtain ⟨x, hx, hxM⟩ :=
SetLike.exists_of_lt
((IsLocalization.coeSubmodule_strictMono hS (hf.mem_to_finset.1 hM).ne_top.lt_top).trans_eq
hinv.symm)
- refine' hxM (Submodule.map₂_le.2 _ hx)
- exact h
+ refine' hxM (Submodule.map₂_le.2 _ hx); exact h
choose! a ha b hb hm using this
choose! u hu hum using fun M hM => SetLike.not_le_iff_exists.1 (nle M hM)
let v := ∑ M in s, u M • b M
@@ -150,8 +148,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
replace hM := hf.mem_to_finset.2 hM
have : ∀ a ∈ I, ∀ b ∈ I', ∃ c, algebraMap R _ c = a * b :=
by
- intro a ha b hb
- have hi := hinv.le
+ intro a ha b hb; have hi := hinv.le
obtain ⟨c, -, hc⟩ := hi (Submodule.mul_mem_mul ha hb)
exact ⟨c, hc⟩
have hmem : a M * v ∈ IsLocalization.coeSubmodule A M :=
@@ -197,8 +194,7 @@ theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
obtain rfl | hI := eq_or_ne I ⊥
· exact bot_isPrincipal
apply Ideal.IsPrincipal.of_finite_maximals_of_isUnit
- · apply h.subset
- exact @Ideal.IsMaximal.isPrime _ _
+ · apply h.subset; exact @Ideal.IsMaximal.isPrime _ _
· exact isUnit_of_mul_eq_one _ _ (FractionalIdeal.coe_ideal_mul_inv I hI)⟩
#align is_principal_ideal_ring.of_finite_primes IsPrincipalIdealRing.of_finite_primes
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -128,7 +128,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
exact Ideal.IsMaximal.coprime_of_ne hM hM' hne.symm
have nle : ∀ M ∈ s, ¬(⨅ M' ∈ s.erase M, M') ≤ M := fun M hM =>
left_lt_sup.1
- ((hf.mem_to_finset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_infᵢ_eq_top <| coprime M hM).symm)
+ ((hf.mem_to_finset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_iInf_eq_top <| coprime M hM).symm)
have : ∀ M ∈ s, ∃ a ∈ I, ∃ b ∈ I', a * b ∉ IsLocalization.coeSubmodule A M :=
by
intro M hM
@@ -176,7 +176,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
obtain ⟨c, hc⟩ := this _ (ha M hM) _ (hb M' hM'.2)
rw [← hc, Algebra.smul_def, ← _root_.map_mul]
specialize hu M' hM'.2
- simp_rw [Ideal.mem_infᵢ, Finset.mem_erase] at hu
+ simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -238,7 +238,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [IsDomain S]
exact mt (Ideal.eq_bot_of_comap_eq_bot (isIntegral_localization hRS)) hP0
· exact Ideal.comap_isPrime (algebraMap (Localization.AtPrime p) Sₚ) P
· exact (LocalRing.maximalIdeal.isMaximal _).isPrime
- · rw [Ne.def, zero_eq_bot, Ideal.map_eq_bot_iff_of_injective]
+ · rw [Ne, zero_eq_bot, Ideal.map_eq_bot_iff_of_injective]
· assumption
rw [IsScalarTower.algebraMap_eq R S Sₚ]
exact
Probably because in mathlib4
the definition IsDedekindDomain
extends Domain
, and this was not the case in mathlib3
, there are unused hypothesis of the form
variable [IsDomain R] [IsDedekindDomain R]
and this PR removes the first one, that can be inferred by the second, both in variable declarations and in theorem/definition assumptions. A regex search has been performed on the library to search for all occurrences and none is left.
@@ -9,9 +9,9 @@ import Mathlib.RingTheory.DedekindDomain.Ideal
#align_import ring_theory.dedekind_domain.pid from "leanprover-community/mathlib"@"6010cf523816335f7bae7f8584cb2edaace73940"
/-!
-# Proving a Dedekind domain is a PID
+# Criteria under which a Dedekind domain is a PID
-This file contains some results that we can use to show all ideals in a Dedekind domain are
+This file contains some results that we can use to test wether all ideals in a Dedekind domain are
principal.
## Main results
@@ -38,7 +38,7 @@ open UniqueFactorizationMonoid
/-- Let `P` be a prime ideal, `x ∈ P \ P²` and `x ∉ Q` for all prime ideals `Q ≠ P`.
Then `P` is generated by `x`. -/
theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Ideal R}
- (hP : P.IsPrime) [IsDomain R] [IsDedekindDomain R] {x : R} (x_mem : x ∈ P) (hxP2 : x ∉ P ^ 2)
+ (hP : P.IsPrime) [IsDedekindDomain R] {x : R} (x_mem : x ∈ P) (hxP2 : x ∉ P ^ 2)
(hxQ : ∀ Q : Ideal R, IsPrime Q → Q ≠ P → x ∉ Q) : P = Ideal.span {x} := by
letI := Classical.decEq (Ideal R)
have hx0 : x ≠ 0 := by
@@ -181,7 +181,7 @@ theorem Ideal.IsPrincipal.of_finite_maximals_of_isUnit (hf : {I : Ideal R | I.Is
#align ideal.is_principal.of_finite_maximals_of_is_unit Ideal.IsPrincipal.of_finite_maximals_of_isUnit
/-- A Dedekind domain is a PID if its set of primes is finite. -/
-theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
+theorem IsPrincipalIdealRing.of_finite_primes [IsDedekindDomain R]
(h : {I : Ideal R | I.IsPrime}.Finite) : IsPrincipalIdealRing R :=
⟨fun I => by
obtain rfl | hI := eq_or_ne I ⊥
@@ -191,8 +191,8 @@ theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
· exact isUnit_of_mul_eq_one _ _ (FractionalIdeal.coe_ideal_mul_inv I hI)⟩
#align is_principal_ideal_ring.of_finite_primes IsPrincipalIdealRing.of_finite_primes
-variable [IsDomain R] [IsDedekindDomain R]
-variable (S : Type*) [CommRing S] [IsDomain S]
+variable [IsDedekindDomain R]
+variable (S : Type*) [CommRing S]
variable [Algebra R S] [Module.Free R S] [Module.Finite R S]
variable (p : Ideal R) (hp0 : p ≠ ⊥) [IsPrime p]
variable {Sₚ : Type*} [CommRing Sₚ] [Algebra S Sₚ]
@@ -201,12 +201,13 @@ variable [Algebra R Sₚ] [IsScalarTower R S Sₚ]
/- The first hypothesis below follows from properties of the localization but is needed for the
second, so we leave it to the user to provide (automatically). -/
-variable [IsDomain Sₚ] [IsDedekindDomain Sₚ]
+variable [IsDedekindDomain Sₚ]
/-- If `p` is a prime in the Dedekind domain `R`, `S` an extension of `R` and `Sₚ` the localization
of `S` at `p`, then all primes in `Sₚ` are factors of the image of `p` in `Sₚ`. -/
-theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime {P : Ideal Sₚ} (hP : IsPrime P)
- (hP0 : P ≠ ⊥) : P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p) := by
+theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [IsDomain S]
+ {P : Ideal Sₚ} (hP : IsPrime P) (hP0 : P ≠ ⊥) :
+ P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p) := by
have non_zero_div : Algebra.algebraMapSubmonoid S p.primeCompl ≤ S⁰ :=
map_le_nonZeroDivisors_of_injective _ (NoZeroSMulDivisors.algebraMap_injective _ _)
p.primeCompl_le_nonZeroDivisors
@@ -246,7 +247,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime {P : Ideal S
/-- Let `p` be a prime in the Dedekind domain `R` and `S` be an integral extension of `R`,
then the localization `Sₚ` of `S` at `p` is a PID. -/
-theorem IsDedekindDomain.isPrincipalIdealRing_localization_over_prime :
+theorem IsDedekindDomain.isPrincipalIdealRing_localization_over_prime [IsDomain S] :
IsPrincipalIdealRing Sₚ := by
letI := Classical.decEq (Ideal Sₚ)
letI := Classical.decPred fun P : Ideal Sₚ => P.IsPrime
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -192,17 +192,11 @@ theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
#align is_principal_ideal_ring.of_finite_primes IsPrincipalIdealRing.of_finite_primes
variable [IsDomain R] [IsDedekindDomain R]
-
variable (S : Type*) [CommRing S] [IsDomain S]
-
variable [Algebra R S] [Module.Free R S] [Module.Finite R S]
-
variable (p : Ideal R) (hp0 : p ≠ ⊥) [IsPrime p]
-
variable {Sₚ : Type*} [CommRing Sₚ] [Algebra S Sₚ]
-
variable [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ]
-
variable [Algebra R Sₚ] [IsScalarTower R S Sₚ]
/- The first hypothesis below follows from properties of the localization but is needed for the
factors
(#11158)
It doesn't make a lot of sense for factors
to require a DecidableEq
assumption since it's not used in the statement, and the definition is already noncomputable. This PR removes that assumption and updates some lemmas later in the file accordingly.
@@ -211,9 +211,8 @@ variable [IsDomain Sₚ] [IsDedekindDomain Sₚ]
/-- If `p` is a prime in the Dedekind domain `R`, `S` an extension of `R` and `Sₚ` the localization
of `S` at `p`, then all primes in `Sₚ` are factors of the image of `p` in `Sₚ`. -/
-theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (Ideal Sₚ)]
- {P : Ideal Sₚ} (hP : IsPrime P) (hP0 : P ≠ ⊥) :
- P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p) := by
+theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime {P : Ideal Sₚ} (hP : IsPrime P)
+ (hP0 : P ≠ ⊥) : P ∈ normalizedFactors (Ideal.map (algebraMap R Sₚ) p) := by
have non_zero_div : Algebra.algebraMapSubmonoid S p.primeCompl ≤ S⁰ :=
map_le_nonZeroDivisors_of_injective _ (NoZeroSMulDivisors.algebraMap_injective _ _)
p.primeCompl_le_nonZeroDivisors
@@ -64,8 +64,7 @@ theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Id
simp only [Ideal.span_singleton_le_iff_mem, pow_one] <;>
assumption
by_cases hQp : IsPrime Q
- · skip
- refine' (Ideal.count_normalizedFactors_eq _ _).le <;>
+ · refine' (Ideal.count_normalizedFactors_eq _ _).le <;>
-- Porting note: included `zero_add` in the simp arguments
simp only [Ideal.span_singleton_le_iff_mem, zero_add, pow_one, pow_zero, one_eq_top,
Submodule.mem_top]
@@ -149,7 +149,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommR
refine' IsLocalization.coeSubmodule_mono _ hJM ⟨c, _, hc⟩
have := Submodule.mul_mem_mul (ha M hM) (Submodule.mem_span_singleton_self v)
rwa [← hc] at this
- simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
+ simp_rw [v, Finset.mul_sum, mul_smul_comm] at hmem
rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
· refine' hm M hM _
obtain ⟨c, hc : algebraMap R A c = a M * b M⟩ := this _ (ha M hM) _ (hb M hM)
The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun
instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike
is EquivLike
, since that has a custom coe_injective'
field that is easier to implement. All other classes should take FunLike
or EquivLike
as a parameter.
Previously, morphism classes would be Type
-valued and extend FunLike
:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
After this PR, they should be Prop
-valued and take FunLike
as a parameter:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
[FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
(Note that A B
stay marked as outParam
even though they are not purely required to be so due to the FunLike
parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam
is slightly faster.)
Similarly, MyEquivClass
should take EquivLike
as a parameter.
As a result, every mention of [MyHomClass F A B]
should become [FunLike F A B] [MyHomClass F A B]
.
While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul
is more expensive. This is due to suboptimal processing of arguments. For example:
variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)
theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y
example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _
Before this PR, applying map_mul f
gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Since M
and N
are out_param
s, [MulHomClass F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found.
After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Now [FunLike F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found, before trying MulHomClass F M N
which fails. Since the Mul
hierarchy is very big, this can be slow to fail, especially when there is no such Mul
instance.
A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul
to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N]
because MulHomClass
fails or succeeds much faster than the others.
As a consequence, the simpNF
linter is much slower since by design it tries and fails to apply many map_
lemmas. The same issue occurs a few times in existing calls to simp [map_mul]
, where map_mul
is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.
simp
not firing sometimesThis affects map_smulₛₗ
and related definitions. For simp
lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw
can find every argument to map_smulₛₗ
successfully but simp
can't: leanprover/lean4#3701.
Especially in the category theory library, we might sometimes have a type A
which is also accessible as a synonym (Bundled A hA).1
. Instance synthesis doesn't always work if we have f : A →* B
but x * y : (Bundled A hA).1
or vice versa. This seems to be mostly fixed by keeping A B
as outParam
s in MulHomClass F A B
. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1
instead of using the syntax in the discrimination tree.)
The timeouts can be worked around for now by specifying which map_mul
we mean, either as map_mul f
for some explicit f
, or as e.g. MonoidHomClass.map_mul
.
map_smulₛₗ
not firing as simp
lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ
a simp
lemma instead of the generic map_smulₛₗ
. Writing simp [map_smulₛₗ _]
also works.
Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -157,8 +157,8 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommR
rw [Algebra.smul_def, ← _root_.map_mul] at hmem
obtain ⟨d, hdM, he⟩ := hmem
rw [IsLocalization.injective _ hS he] at hdM
- exact
- Submodule.mem_map_of_mem
+ -- Note: #8386 had to specify the value of `f`
+ exact Submodule.mem_map_of_mem (f := Algebra.linearMap _ _)
(((hf.mem_toFinset.1 hM).isPrime.mem_or_mem hdM).resolve_left <| hum M hM)
· refine' Submodule.sum_mem _ fun M' hM' => _
rw [Finset.mem_erase] at hM'
@@ -166,7 +166,9 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommR
rw [← hc, Algebra.smul_def, ← _root_.map_mul]
specialize hu M' hM'.2
simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
- exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
+ -- Note: #8386 had to specify the value of `f`
+ exact Submodule.mem_map_of_mem (f := Algebra.linearMap _ _)
+ (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
/-- An invertible ideal in a commutative ring with finitely many maximal ideals is principal.
Make isNoetherian_of_isNoetherianRing_of_finite an instance
: this was impossible in Lean 3 because of a loop.
@@ -239,8 +239,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (
IsScalarTower.algebraMap_eq R (Localization.AtPrime p) Sₚ, ← Ideal.map_map,
Localization.AtPrime.map_eq_maximalIdeal, Ideal.map_le_iff_le_comap,
hpu (LocalRing.maximalIdeal _) ⟨this, _⟩, hpu (comap _ _) ⟨_, _⟩]
- · have hRS : Algebra.IsIntegral R S :=
- isIntegral_of_noetherian (isNoetherian_of_isNoetherianRing_of_finite R S)
+ · have hRS : Algebra.IsIntegral R S := isIntegral_of_noetherian inferInstance
exact mt (Ideal.eq_bot_of_comap_eq_bot (isIntegral_localization hRS)) hP0
· exact Ideal.comap_isPrime (algebraMap (Localization.AtPrime p) Sₚ) P
· exact (LocalRing.maximalIdeal.isMaximal _).isPrime
@@ -125,7 +125,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommR
left_lt_sup.1
((hf.mem_toFinset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_iInf_eq_top <| coprime M hM).symm)
have : ∀ M ∈ s, ∃ a ∈ I, ∃ b ∈ I', a * b ∉ IsLocalization.coeSubmodule A M := by
- intro M hM; by_contra' h
+ intro M hM; by_contra! h
obtain ⟨x, hx, hxM⟩ :=
SetLike.exists_of_lt
((IsLocalization.coeSubmodule_strictMono hS (hf.mem_toFinset.1 hM).ne_top.lt_top).trans_eq
@@ -240,7 +240,7 @@ theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime [DecidableEq (
Localization.AtPrime.map_eq_maximalIdeal, Ideal.map_le_iff_le_comap,
hpu (LocalRing.maximalIdeal _) ⟨this, _⟩, hpu (comap _ _) ⟨_, _⟩]
· have hRS : Algebra.IsIntegral R S :=
- isIntegral_of_noetherian (isNoetherian_of_fg_of_noetherian' Module.Finite.out)
+ isIntegral_of_noetherian (isNoetherian_of_isNoetherianRing_of_finite R S)
exact mt (Ideal.eq_bot_of_comap_eq_bot (isIntegral_localization hRS)) hP0
· exact Ideal.comap_isPrime (algebraMap (Localization.AtPrime p) Sₚ) P
· exact (LocalRing.maximalIdeal.isMaximal _).isPrime
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -23,7 +23,7 @@ principal.
-/
-variable {R : Type _} [CommRing R]
+variable {R : Type*} [CommRing R]
open Ideal
@@ -78,7 +78,7 @@ theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Id
#align ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne
-- Porting note: replaced three implicit coercions of `I` with explicit `(I : Submodule R A)`
-theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R A : Type _}
+theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R A : Type*}
[CommRing R] [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A]
(I : (FractionalIdeal S A)ˣ) {v : A} (hv : v ∈ (↑I⁻¹ : FractionalIdeal S A))
(h : Submodule.comap (Algebra.linearMap R A) ((I : Submodule R A) * Submodule.span R {v}) = ⊤) :
@@ -109,7 +109,7 @@ theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {
An invertible fractional ideal of a commutative ring with finitely many maximal ideals is principal.
https://math.stackexchange.com/a/95857 -/
-theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [CommRing A]
+theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommRing A]
[Algebra R A] {S : Submonoid R} [IsLocalization S A] (hS : S ≤ R⁰)
(hf : {I : Ideal R | I.IsMaximal}.Finite) (I I' : FractionalIdeal S A) (hinv : I * I' = 1) :
Submodule.IsPrincipal (I : Submodule R A) := by
@@ -192,13 +192,13 @@ theorem IsPrincipalIdealRing.of_finite_primes [IsDomain R] [IsDedekindDomain R]
variable [IsDomain R] [IsDedekindDomain R]
-variable (S : Type _) [CommRing S] [IsDomain S]
+variable (S : Type*) [CommRing S] [IsDomain S]
variable [Algebra R S] [Module.Free R S] [Module.Finite R S]
variable (p : Ideal R) (hp0 : p ≠ ⊥) [IsPrime p]
-variable {Sₚ : Type _} [CommRing Sₚ] [Algebra S Sₚ]
+variable {Sₚ : Type*} [CommRing Sₚ] [Algebra S Sₚ]
variable [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ]
@@ -2,15 +2,12 @@
Copyright (c) 2023 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-
-! This file was ported from Lean 3 source module ring_theory.dedekind_domain.pid
-! leanprover-community/mathlib commit 6010cf523816335f7bae7f8584cb2edaace73940
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.RingTheory.DedekindDomain.Dvr
import Mathlib.RingTheory.DedekindDomain.Ideal
+#align_import ring_theory.dedekind_domain.pid from "leanprover-community/mathlib"@"6010cf523816335f7bae7f8584cb2edaace73940"
+
/-!
# Proving a Dedekind domain is a PID
@@ -124,7 +124,7 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
simp_rw [Finset.mem_erase, hf.mem_toFinset]
rintro M hM M' ⟨hne, hM'⟩
exact Ideal.IsMaximal.coprime_of_ne hM hM' hne.symm
- have nle : ∀ M ∈ s, ¬(⨅ M' ∈ s.erase M, M') ≤ M := fun M hM =>
+ have nle : ∀ M ∈ s, ¬⨅ M' ∈ s.erase M, M' ≤ M := fun M hM =>
left_lt_sup.1
((hf.mem_toFinset.1 hM).ne_top.lt_top.trans_eq (Ideal.sup_iInf_eq_top <| coprime M hM).symm)
have : ∀ M ∈ s, ∃ a ∈ I, ∃ b ∈ I', a * b ∉ IsLocalization.coeSubmodule A M := by
@@ -80,7 +80,7 @@ theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Id
(irreducible_iff_prime.mp (irreducible_of_normalized_factor _ hQi)))).le
#align ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne
--- Porting note: replaced a lot of implicit coercions of `I` with explicit `(I : Submodule R A)`
+-- Porting note: replaced three implicit coercions of `I` with explicit `(I : Submodule R A)`
theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R A : Type _}
[CommRing R] [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A]
(I : (FractionalIdeal S A)ˣ) {v : A} (hv : v ∈ (↑I⁻¹ : FractionalIdeal S A))
@@ -89,9 +89,9 @@ theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {
have hinv := I.mul_inv
set J := Submodule.comap (Algebra.linearMap R A) ((I : Submodule R A) * Submodule.span R {v})
have hJ : IsLocalization.coeSubmodule A J = ↑I * Submodule.span R {v} := by
- -- Porting note: had to replace the `rw` with an `rw` followed by `simp`
- rw [Subtype.ext_iff] at hinv
- simp only [coe_mul, val_eq_coe, coe_one] at hinv
+ -- Porting note: had to insert `val_eq_coe` into this rewrite.
+ -- Arguably this is because `Subtype.ext_iff` is breaking the `FractionalIdeal` API.
+ rw [Subtype.ext_iff, val_eq_coe, coe_mul, val_eq_coe, coe_one] at hinv
apply Submodule.map_comap_eq_self
rw [← Submodule.one_eq_range, ← hinv]
exact Submodule.mul_le_mul_right ((Submodule.span_singleton_le_iff_mem _ _).2 hv)
@@ -151,24 +151,24 @@ theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type _} [Comm
obtain ⟨c, hc⟩ := this _ (ha M hM) v hv
refine' IsLocalization.coeSubmodule_mono _ hJM ⟨c, _, hc⟩
have := Submodule.mul_mem_mul (ha M hM) (Submodule.mem_span_singleton_self v)
- rwa [← hc] at this
- simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
- rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
+ rwa [← hc] at this
+ simp_rw [Finset.mul_sum, mul_smul_comm] at hmem
+ rw [← s.add_sum_erase _ hM, Submodule.add_mem_iff_left] at hmem
· refine' hm M hM _
obtain ⟨c, hc : algebraMap R A c = a M * b M⟩ := this _ (ha M hM) _ (hb M hM)
rw [← hc] at hmem ⊢
- rw [Algebra.smul_def, ← _root_.map_mul] at hmem
+ rw [Algebra.smul_def, ← _root_.map_mul] at hmem
obtain ⟨d, hdM, he⟩ := hmem
- rw [IsLocalization.injective _ hS he] at hdM
+ rw [IsLocalization.injective _ hS he] at hdM
exact
Submodule.mem_map_of_mem
(((hf.mem_toFinset.1 hM).isPrime.mem_or_mem hdM).resolve_left <| hum M hM)
· refine' Submodule.sum_mem _ fun M' hM' => _
- rw [Finset.mem_erase] at hM'
+ rw [Finset.mem_erase] at hM'
obtain ⟨c, hc⟩ := this _ (ha M hM) _ (hb M' hM'.2)
rw [← hc, Algebra.smul_def, ← _root_.map_mul]
specialize hu M' hM'.2
- simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
+ simp_rw [Ideal.mem_iInf, Finset.mem_erase] at hu
exact Submodule.mem_map_of_mem (M.mul_mem_right _ <| hu M ⟨hM'.1.symm, hM⟩)
#align fractional_ideal.is_principal.of_finite_maximals_of_inv FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
The unported dependencies are