ring_theory.mv_polynomial.symmetric
⟷
Mathlib.RingTheory.MvPolynomial.Symmetric
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
decidable_eq
arguments to lemmas (#18848)
This does not change the type of any definitions; the effect of this PR is to make the statement of the lemmas syntactically more general.
To ensure this catches them all, this removes open_locale classical
from the beginning of every file in data/mv_polynomial
and ring_theory/mv_polynomial
.
For definitions which bake in a classical.dec_eq
assumption, this adds a lemma proven by convert rfl
that unfolds them to a version with an arbitrary decidable_eq
instance, following a pattern established elsewhere.
Unlike previous refactors of this style this doesn't seemed to have helped any downstream proofs much.
@@ -215,7 +215,7 @@ begin
classical,
have : (finsupp.to_multiset ∘ λ (t : finset σ), ∑ (i : σ) in t, finsupp.single i 1) = finset.val,
{ funext, simp [finsupp.to_multiset_sum_single] },
- rw [degrees, support_esymm, sup_image, this, ←comp_sup_eq_sup_comp],
+ rw [degrees_def, support_esymm, sup_image, this, ←comp_sup_eq_sup_comp],
{ obtain ⟨k, rfl⟩ := nat.exists_eq_succ_of_ne_zero hpos.ne',
simpa using powerset_len_sup _ _ (nat.lt_of_succ_le hn) },
{ intros,
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
finset.sup_finset_image
(#18893)
in favor of the identical finset.sup_image
(up to argument order) in the same file.
@@ -215,7 +215,7 @@ begin
classical,
have : (finsupp.to_multiset ∘ λ (t : finset σ), ∑ (i : σ) in t, finsupp.single i 1) = finset.val,
{ funext, simp [finsupp.to_multiset_sum_single] },
- rw [degrees, support_esymm, sup_finset_image, this, ←comp_sup_eq_sup_comp],
+ rw [degrees, support_esymm, sup_image, this, ←comp_sup_eq_sup_comp],
{ obtain ⟨k, rfl⟩ := nat.exists_eq_succ_of_ne_zero hpos.ne',
simpa using powerset_len_sup _ _ (nat.lt_of_succ_le hn) },
{ intros,
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,8 +3,8 @@ Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
-/
-import Data.MvPolynomial.Rename
-import Data.MvPolynomial.CommRing
+import Algebra.MvPolynomial.Rename
+import Algebra.MvPolynomial.CommRing
import Algebra.Algebra.Subalgebra.Basic
#align_import ring_theory.mv_polynomial.symmetric from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -271,8 +271,8 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
simp only [Finsupp.support_single_ne_zero _ one_ne_zero, mem_singleton]
rintro a h rfl
have := congr_arg Finsupp.support h
- rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
- · simp only [Finsupp.support_single_ne_zero _ one_ne_zero, bUnion_singleton_eq_self] at this
+ rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
+ · simp only [Finsupp.support_single_ne_zero _ one_ne_zero, bUnion_singleton_eq_self] at this
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -300,7 +300,17 @@ theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
#print MvPolynomial.degrees_esymm /-
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
- (esymm σ R n).degrees = (univ : Finset σ).val := by classical
+ (esymm σ R n).degrees = (univ : Finset σ).val := by
+ classical
+ have : (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val :=
+ by funext; simp [Finsupp.toMultiset_sum_single]
+ rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
+ · obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
+ simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
+ · intros
+ simp only [union_val, sup_eq_union]
+ congr
+ · rfl
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -300,17 +300,7 @@ theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
#print MvPolynomial.degrees_esymm /-
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
- (esymm σ R n).degrees = (univ : Finset σ).val := by
- classical
- have : (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val :=
- by funext; simp [Finsupp.toMultiset_sum_single]
- rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
- · obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
- simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
- · intros
- simp only [union_val, sup_eq_union]
- congr
- · rfl
+ (esymm σ R n).degrees = (univ : Finset σ).val := by classical
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/b1abe23ae96fef89ad30d9f4362c307f72a55010
@@ -58,14 +58,14 @@ variable {R : Type _} [CommSemiring R]
#print Multiset.esymm /-
/-- The `n`th elementary symmetric function evaluated at the elements of `s` -/
def esymm (s : Multiset R) (n : ℕ) : R :=
- ((s.powersetLen n).map Multiset.prod).Sum
+ ((s.powersetCard n).map Multiset.prod).Sum
#align multiset.esymm Multiset.esymm
-/
#print Finset.esymm_map_val /-
theorem Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
- (s.val.map f).esymm n = (s.powersetLen n).Sum fun t => t.Prod f := by
- simpa only [esymm, powerset_len_map, ← Finset.map_val_val_powersetLen, map_map]
+ (s.val.map f).esymm n = (s.powersetCard n).Sum fun t => t.Prod f := by
+ simpa only [esymm, powerset_len_map, ← Finset.map_val_val_powersetCard, map_map]
#align finset.esymm_map_val Finset.esymm_map_val
-/
@@ -191,7 +191,7 @@ variable (σ R) [CommSemiring R] [CommSemiring S] [Fintype σ] [Fintype τ]
#print MvPolynomial.esymm /-
/-- The `n`th elementary symmetric `mv_polynomial σ R`. -/
def esymm (n : ℕ) : MvPolynomial σ R :=
- ∑ t in powersetLen n univ, ∏ i in t, X i
+ ∑ t in powersetCard n univ, ∏ i in t, X i
#align mv_polynomial.esymm MvPolynomial.esymm
-/
@@ -214,14 +214,14 @@ theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
- sum_subtype _ (fun _ => mem_powersetLen_univ) _
+ sum_subtype _ (fun _ => mem_powersetCard_univ) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
-/
#print MvPolynomial.esymm_eq_sum_monomial /-
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
- esymm σ R n = ∑ t in powersetLen n univ, monomial (∑ i in t, Finsupp.single i 1) 1 :=
+ esymm σ R n = ∑ t in powersetCard n univ, monomial (∑ i in t, Finsupp.single i 1) 1 :=
by
simp_rw [monomial_sum_one]
rfl
@@ -244,11 +244,11 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
#print MvPolynomial.rename_esymm /-
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
- rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
+ rename e (esymm σ R n) = ∑ x in powersetCard n univ, ∏ i in x, X (e i) := by
simp_rw [esymm, map_sum, map_prod, rename_X]
- _ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, X i := by
- simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
- _ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
+ _ = ∑ t in powersetCard n (univ.map e.toEmbedding), ∏ i in t, X i := by
+ simp [Finset.powersetCard_map, -Finset.map_univ_equiv]
+ _ = ∑ t in powersetCard n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
-/
@@ -260,7 +260,7 @@ theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro; rw
#print MvPolynomial.support_esymm'' /-
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).biUnion fun t =>
+ (powersetCard n (univ : Finset σ)).biUnion fun t =>
(Finsupp.single (∑ i : σ in t, Finsupp.single i 1) (1 : R)).support :=
by
rw [esymm_eq_sum_monomial]
@@ -281,7 +281,7 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
#print MvPolynomial.support_esymm' /-
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} :=
+ (powersetCard n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} :=
by
rw [support_esymm'']
congr
@@ -293,7 +293,7 @@ theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
#print MvPolynomial.support_esymm /-
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
+ (powersetCard n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
by rw [support_esymm']; exact bUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -214,7 +214,7 @@ theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
- sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
+ sum_subtype _ (fun _ => mem_powersetLen_univ) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
-/
-import Mathbin.Data.MvPolynomial.Rename
-import Mathbin.Data.MvPolynomial.CommRing
-import Mathbin.Algebra.Algebra.Subalgebra.Basic
+import Data.MvPolynomial.Rename
+import Data.MvPolynomial.CommRing
+import Algebra.Algebra.Subalgebra.Basic
#align_import ring_theory.mv_polynomial.symmetric from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -93,7 +93,7 @@ def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
where
carrier := setOf IsSymmetric
algebraMap_mem' r e := rename_C e r
- mul_mem' a b ha hb e := by rw [AlgHom.map_mul, ha, hb]
+ hMul_mem' a b ha hb e := by rw [AlgHom.map_mul, ha, hb]
add_mem' a b ha hb e := by rw [AlgHom.map_add, ha, hb]
#align mv_polynomial.symmetric_subalgebra MvPolynomial.symmetricSubalgebra
-/
@@ -143,7 +143,7 @@ theorem add (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ + ψ
#print MvPolynomial.IsSymmetric.mul /-
theorem mul (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ * ψ) :=
- (symmetricSubalgebra σ R).mul_mem hφ hψ
+ (symmetricSubalgebra σ R).hMul_mem hφ hψ
#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mul
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
-
-! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit 2f5b500a507264de86d666a5f87ddb976e2d8de4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.MvPolynomial.Rename
import Mathbin.Data.MvPolynomial.CommRing
import Mathbin.Algebra.Algebra.Subalgebra.Basic
+#align_import ring_theory.mv_polynomial.symmetric from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
+
/-!
# Symmetric Polynomials and Elementary Symmetric Polynomials
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -103,11 +103,13 @@ def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
variable {σ R}
+#print MvPolynomial.mem_symmetricSubalgebra /-
@[simp]
theorem mem_symmetricSubalgebra [CommSemiring R] (p : MvPolynomial σ R) :
p ∈ symmetricSubalgebra σ R ↔ p.IsSymmetric :=
Iff.rfl
#align mv_polynomial.mem_symmetric_subalgebra MvPolynomial.mem_symmetricSubalgebra
+-/
namespace IsSymmetric
@@ -115,37 +117,51 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
+#print MvPolynomial.IsSymmetric.C /-
@[simp]
theorem C (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.C
+-/
+#print MvPolynomial.IsSymmetric.zero /-
@[simp]
theorem zero : IsSymmetric (0 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).zero_mem
#align mv_polynomial.is_symmetric.zero MvPolynomial.IsSymmetric.zero
+-/
+#print MvPolynomial.IsSymmetric.one /-
@[simp]
theorem one : IsSymmetric (1 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).one_mem
#align mv_polynomial.is_symmetric.one MvPolynomial.IsSymmetric.one
+-/
+#print MvPolynomial.IsSymmetric.add /-
theorem add (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ + ψ) :=
(symmetricSubalgebra σ R).add_mem hφ hψ
#align mv_polynomial.is_symmetric.add MvPolynomial.IsSymmetric.add
+-/
+#print MvPolynomial.IsSymmetric.mul /-
theorem mul (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ * ψ) :=
(symmetricSubalgebra σ R).mul_mem hφ hψ
#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mul
+-/
+#print MvPolynomial.IsSymmetric.smul /-
theorem smul (r : R) (hφ : IsSymmetric φ) : IsSymmetric (r • φ) :=
(symmetricSubalgebra σ R).smul_mem hφ r
#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smul
+-/
+#print MvPolynomial.IsSymmetric.map /-
@[simp]
theorem map (hφ : IsSymmetric φ) (f : R →+* S) : IsSymmetric (map f φ) := fun e => by
rw [← map_rename, hφ]
#align mv_polynomial.is_symmetric.map MvPolynomial.IsSymmetric.map
+-/
end CommSemiring
@@ -153,13 +169,17 @@ section CommRing
variable [CommRing R] {φ ψ : MvPolynomial σ R}
+#print MvPolynomial.IsSymmetric.neg /-
theorem neg (hφ : IsSymmetric φ) : IsSymmetric (-φ) :=
(symmetricSubalgebra σ R).neg_mem hφ
#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.neg
+-/
+#print MvPolynomial.IsSymmetric.sub /-
theorem sub (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ - ψ) :=
(symmetricSubalgebra σ R).sub_mem hφ hψ
#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.sub
+-/
end CommRing
@@ -178,23 +198,30 @@ def esymm (n : ℕ) : MvPolynomial σ R :=
#align mv_polynomial.esymm MvPolynomial.esymm
-/
+#print MvPolynomial.esymm_eq_multiset_esymm /-
/-- The `n`th elementary symmetric `mv_polynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `multiset` of the monomials -/
theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
funext fun n => (Finset.univ.esymm_map_val X n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
+-/
+#print MvPolynomial.aeval_esymm_eq_multiset_esymm /-
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, esymm_map_val]
#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymm
+-/
+#print MvPolynomial.esymm_eq_sum_subtype /-
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
+-/
+#print MvPolynomial.esymm_eq_sum_monomial /-
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
esymm σ R n = ∑ t in powersetLen n univ, monomial (∑ i in t, Finsupp.single i 1) 1 :=
@@ -202,16 +229,22 @@ theorem esymm_eq_sum_monomial (n : ℕ) :
simp_rw [monomial_sum_one]
rfl
#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomial
+-/
+#print MvPolynomial.esymm_zero /-
@[simp]
theorem esymm_zero : esymm σ R 0 = 1 := by
simp only [esymm, powerset_len_zero, sum_singleton, prod_empty]
#align mv_polynomial.esymm_zero MvPolynomial.esymm_zero
+-/
+#print MvPolynomial.map_esymm /-
theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S n := by
simp_rw [esymm, map_sum, map_prod, map_X]
#align mv_polynomial.map_esymm MvPolynomial.map_esymm
+-/
+#print MvPolynomial.rename_esymm /-
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
@@ -220,10 +253,14 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
_ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
+-/
+#print MvPolynomial.esymm_isSymmetric /-
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro; rw [rename_esymm]
#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetric
+-/
+#print MvPolynomial.support_esymm'' /-
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).biUnion fun t =>
@@ -242,7 +279,9 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
+-/
+#print MvPolynomial.support_esymm' /-
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} :=
@@ -252,12 +291,15 @@ theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
funext
exact Finsupp.support_single_ne_zero _ one_ne_zero
#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'
+-/
+#print MvPolynomial.support_esymm /-
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
by rw [support_esymm']; exact bUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
+-/
#print MvPolynomial.degrees_esymm /-
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -219,7 +219,6 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
_ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, X i := by
simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
_ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
-
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro; rw [rename_esymm]
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -264,16 +264,15 @@ theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
(esymm σ R n).degrees = (univ : Finset σ).val := by
classical
- have :
- (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val := by
- funext; simp [Finsupp.toMultiset_sum_single]
- rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
- · obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
- simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
- · intros
- simp only [union_val, sup_eq_union]
- congr
- · rfl
+ have : (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val :=
+ by funext; simp [Finsupp.toMultiset_sum_single]
+ rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
+ · obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
+ simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
+ · intros
+ simp only [union_val, sup_eq_union]
+ congr
+ · rfl
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -222,7 +222,7 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
-theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro ; rw [rename_esymm]
+theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro; rw [rename_esymm]
#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetric
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
@@ -238,8 +238,8 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
simp only [Finsupp.support_single_ne_zero _ one_ne_zero, mem_singleton]
rintro a h rfl
have := congr_arg Finsupp.support h
- rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
- · simp only [Finsupp.support_single_ne_zero _ one_ne_zero, bUnion_singleton_eq_self] at this
+ rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
+ · simp only [Finsupp.support_single_ne_zero _ one_ne_zero, bUnion_singleton_eq_self] at this
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -50,7 +50,7 @@ As in other polynomial files, we typically use the notation:
open Equiv (Perm)
-open BigOperators
+open scoped BigOperators
noncomputable section
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -103,12 +103,6 @@ def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
variable {σ R}
-/- warning: mv_polynomial.mem_symmetric_subalgebra -> MvPolynomial.mem_symmetricSubalgebra is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : MvPolynomial.{u1, u2} σ R _inst_1), Iff (Membership.Mem.{max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (SetLike.hasMem.{max u1 u2, max u1 u2} (Subalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.setLike.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)))) p (MvPolynomial.symmetricSubalgebra.{u1, u2} σ R _inst_1)) (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 p)
-but is expected to have type
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : MvPolynomial.{u1, u2} σ R _inst_1), Iff (Membership.mem.{max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.{u2, max u2 u1} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (SetLike.instMembership.{max u1 u2, max u1 u2} (Subalgebra.{u2, max u2 u1} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.instSetLikeSubalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)))) p (MvPolynomial.symmetricSubalgebra.{u1, u2} σ R _inst_1)) (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 p)
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.mem_symmetric_subalgebra MvPolynomial.mem_symmetricSubalgebraₓ'. -/
@[simp]
theorem mem_symmetricSubalgebra [CommSemiring R] (p : MvPolynomial σ R) :
p ∈ symmetricSubalgebra σ R ↔ p.IsSymmetric :=
@@ -121,75 +115,33 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
-/- warning: mv_polynomial.is_symmetric.C -> MvPolynomial.IsSymmetric.C is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (r : R), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (fun (_x : RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (RingHom.hasCoeToFun.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (MvPolynomial.C.{u2, u1} R σ _inst_1) r)
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (r : R), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))) (RingHom.instRingHomClassRingHom.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) (MvPolynomial.C.{u1, u2} R σ _inst_1) r)
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.Cₓ'. -/
@[simp]
theorem C (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.C
-/- warning: mv_polynomial.is_symmetric.zero -> MvPolynomial.IsSymmetric.zero is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R], MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 0 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 0 (Zero.zero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toMulZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R], MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 0 (Zero.toOfNat0.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommMonoidWithZero.toZero.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toCommMonoidWithZero.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.zero MvPolynomial.IsSymmetric.zeroₓ'. -/
@[simp]
theorem zero : IsSymmetric (0 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).zero_mem
#align mv_polynomial.is_symmetric.zero MvPolynomial.IsSymmetric.zero
-/- warning: mv_polynomial.is_symmetric.one -> MvPolynomial.IsSymmetric.one is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R], MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (One.one.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoidWithOne.toOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoidWithOne.toAddMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toAddCommMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R], MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 1 (One.toOfNat1.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toOne.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.one MvPolynomial.IsSymmetric.oneₓ'. -/
@[simp]
theorem one : IsSymmetric (1 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).one_mem
#align mv_polynomial.is_symmetric.one MvPolynomial.IsSymmetric.one
-/- warning: mv_polynomial.is_symmetric.add -> MvPolynomial.IsSymmetric.add is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} {ψ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (HAdd.hAdd.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (instHAdd.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Distrib.toHasAdd.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))))) φ ψ))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} {ψ : MvPolynomial.{u2, u1} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HAdd.hAdd.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHAdd.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Distrib.toAdd.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) φ ψ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.add MvPolynomial.IsSymmetric.addₓ'. -/
theorem add (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ + ψ) :=
(symmetricSubalgebra σ R).add_mem hφ hψ
#align mv_polynomial.is_symmetric.add MvPolynomial.IsSymmetric.add
-/- warning: mv_polynomial.is_symmetric.mul -> MvPolynomial.IsSymmetric.mul is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} {ψ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (instHMul.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Distrib.toHasMul.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))))) φ ψ))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} {ψ : MvPolynomial.{u2, u1} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))) φ ψ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mulₓ'. -/
theorem mul (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ * ψ) :=
(symmetricSubalgebra σ R).mul_mem hφ hψ
#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mul
-/- warning: mv_polynomial.is_symmetric.smul -> MvPolynomial.IsSymmetric.smul is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (SMul.smul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (SMulZeroClass.toHasSmul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toMulZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))) (MvPolynomial.smulZeroClass.{u2, u2, u1} R R σ _inst_1 (SMulWithZero.toSmulZeroClass.{u2, u2} R R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (MulZeroClass.toSMulWithZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))) r φ))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HSMul.hSMul.{u1, max u2 u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Algebra.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) r φ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smulₓ'. -/
theorem smul (r : R) (hφ : IsSymmetric φ) : IsSymmetric (r • φ) :=
(symmetricSubalgebra σ R).smul_mem hφ r
#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smul
-/- warning: mv_polynomial.is_symmetric.map -> MvPolynomial.IsSymmetric.map is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] {φ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), MvPolynomial.IsSymmetric.{u1, u3} σ S _inst_2 (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) φ))
-but is expected to have type
- forall {σ : Type.{u3}} {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u1} S] {φ : MvPolynomial.{u3, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u3, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))), MvPolynomial.IsSymmetric.{u3, u1} σ S _inst_2 (FunLike.coe.{max (max (succ u2) (succ u1)) (succ u3), max (succ u2) (succ u3), max (succ u1) (succ u3)} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u2} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u3, u2} σ R _inst_1) => MvPolynomial.{u3, u1} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))))) (MvPolynomial.map.{u2, u1, u3} R S σ _inst_1 _inst_2 f) φ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.map MvPolynomial.IsSymmetric.mapₓ'. -/
@[simp]
theorem map (hφ : IsSymmetric φ) (f : R →+* S) : IsSymmetric (map f φ) := fun e => by
rw [← map_rename, hφ]
@@ -201,22 +153,10 @@ section CommRing
variable [CommRing R] {φ ψ : MvPolynomial σ R}
-/- warning: mv_polynomial.is_symmetric.neg -> MvPolynomial.IsSymmetric.neg is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (Neg.neg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasNeg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroupWithOne.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toAddCommGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1))))))) φ))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (Neg.neg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toNeg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1))) φ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.negₓ'. -/
theorem neg (hφ : IsSymmetric φ) : IsSymmetric (-φ) :=
(symmetricSubalgebra σ R).neg_mem hφ
#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.neg
-/- warning: mv_polynomial.is_symmetric.sub -> MvPolynomial.IsSymmetric.sub is a dubious translation:
-lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)} {ψ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (instHSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroupWithOne.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toAddCommGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1)))))))) φ ψ))
-but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)} {ψ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (HSub.hSub.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (instHSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1)))) φ ψ))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.subₓ'. -/
theorem sub (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ - ψ) :=
(symmetricSubalgebra σ R).sub_mem hφ hψ
#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.sub
@@ -238,44 +178,23 @@ def esymm (n : ℕ) : MvPolynomial σ R :=
#align mv_polynomial.esymm MvPolynomial.esymm
-/
-/- warning: mv_polynomial.esymm_eq_multiset_esymm -> MvPolynomial.esymm_eq_multiset_esymm is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ], Eq.{max 1 (succ u1) (succ u2)} (Nat -> (MvPolynomial.{u1, u2} σ R _inst_1)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3) (Multiset.esymm.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1) (Multiset.map.{u1, max u1 u2} σ (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.X.{u2, u1} R σ _inst_1) (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ], Eq.{max (succ u2) (succ u1)} (Nat -> (MvPolynomial.{u2, u1} σ R _inst_1)) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3) (Multiset.esymm.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1) (Multiset.map.{u2, max u2 u1} σ (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.X.{u1, u2} R σ _inst_1) (Finset.val.{u2} σ (Finset.univ.{u2} σ _inst_3))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymmₓ'. -/
/-- The `n`th elementary symmetric `mv_polynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `multiset` of the monomials -/
theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
funext fun n => (Finset.univ.esymm_map_val X n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
-/- warning: mv_polynomial.aeval_esymm_eq_multiset_esymm -> MvPolynomial.aeval_esymm_eq_multiset_esymm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymmₓ'. -/
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, esymm_map_val]
#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymm
-/- warning: mv_polynomial.esymm_eq_sum_subtype -> MvPolynomial.esymm_eq_sum_subtype is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.univ.{u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Subtype.fintype.{u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n) (fun (a : Finset.{u1} σ) => Nat.decidableEq (Finset.card.{u1} σ a) n) (Finset.fintype.{u1} σ _inst_3))) (fun (t : Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) => Finset.prod.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) σ (CommSemiring.toCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (coeSubtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n))))) t) (fun (i : σ) => MvPolynomial.X.{u2, u1} R σ _inst_1 i)))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.univ.{u2} (Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) (Subtype.fintype.{u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n) (fun (a : Finset.{u2} σ) => instDecidableEqNat (Finset.card.{u2} σ a) n) (Finset.fintype.{u2} σ _inst_3))) (fun (t : Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) => Finset.prod.{max u2 u1, u2} (MvPolynomial.{u2, u1} σ R _inst_1) σ (CommSemiring.toCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)) (Subtype.val.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n) t) (fun (i : σ) => MvPolynomial.X.{u1, u2} R σ _inst_1 i)))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtypeₓ'. -/
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
-/- warning: mv_polynomial.esymm_eq_sum_monomial -> MvPolynomial.esymm_eq_sum_monomial is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Finset.{u1} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (fun (_x : LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (LinearMap.hasCoeToFun.{u2, u2, u2, max u1 u2} R R R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MvPolynomial.monomial.{u2, u1} R σ _inst_1 (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))))))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomialₓ'. -/
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
esymm σ R n = ∑ t in powersetLen n univ, monomial (∑ i in t, Finsupp.single i 1) 1 :=
@@ -284,30 +203,15 @@ theorem esymm_eq_sum_monomial (n : ℕ) :
rfl
#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomial
-/- warning: mv_polynomial.esymm_zero -> MvPolynomial.esymm_zero is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ], Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (One.one.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoidWithOne.toOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoidWithOne.toAddMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toAddCommMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ], Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 1 (One.toOfNat1.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toOne.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_zero MvPolynomial.esymm_zeroₓ'. -/
@[simp]
theorem esymm_zero : esymm σ R 0 = 1 := by
simp only [esymm, powerset_len_zero, sum_singleton, prod_empty]
#align mv_polynomial.esymm_zero MvPolynomial.esymm_zero
-/- warning: mv_polynomial.map_esymm -> MvPolynomial.map_esymm is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), Eq.{max (succ u1) (succ u3)} (MvPolynomial.{u1, u3} σ S _inst_2) (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u3} σ S _inst_2 _inst_3 n)
-but is expected to have type
- forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u3, u2} R S (Semiring.toNonAssocSemiring.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))))) (MvPolynomial.map.{u3, u2, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u2} σ S _inst_2 _inst_3 n)
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.map_esymm MvPolynomial.map_esymmₓ'. -/
theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S n := by
simp_rw [esymm, map_sum, map_prod, map_X]
#align mv_polynomial.map_esymm MvPolynomial.map_esymm
-/- warning: mv_polynomial.rename_esymm -> MvPolynomial.rename_esymm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.rename_esymm MvPolynomial.rename_esymmₓ'. -/
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
@@ -318,21 +222,9 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
-/- warning: mv_polynomial.esymm_is_symmetric -> MvPolynomial.esymm_isSymmetric is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetricₓ'. -/
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro ; rw [rename_esymm]
#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetric
-/- warning: mv_polynomial.support_esymm'' -> MvPolynomial.support_esymm'' is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Finsupp.support.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finsupp.single.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))))))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Finsupp.support.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finsupp.single.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''ₓ'. -/
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).biUnion fun t =>
@@ -352,12 +244,6 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
-/- warning: mv_polynomial.support_esymm' -> MvPolynomial.support_esymm' is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Singleton.singleton.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.hasSingleton.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Singleton.singleton.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.instSingletonFinset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'ₓ'. -/
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} :=
@@ -368,12 +254,6 @@ theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
exact Finsupp.support_single_ne_zero _ one_ne_zero
#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'
-/- warning: mv_polynomial.support_esymm -> MvPolynomial.support_esymm is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.image.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (fun (t : Finset.{u1} σ) => Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)))
-but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.image.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (fun (t : Finset.{u2} σ) => Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)))
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm MvPolynomial.support_esymmₓ'. -/
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -324,10 +324,7 @@ lean 3 declaration is
but is expected to have type
forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetricₓ'. -/
-theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) :=
- by
- intro
- rw [rename_esymm]
+theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by intro ; rw [rename_esymm]
#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetric
/- warning: mv_polynomial.support_esymm'' -> MvPolynomial.support_esymm'' is a dubious translation:
@@ -380,9 +377,7 @@ Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
- by
- rw [support_esymm']
- exact bUnion_singleton
+ by rw [support_esymm']; exact bUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
#print MvPolynomial.degrees_esymm /-
@@ -390,10 +385,8 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
(esymm σ R n).degrees = (univ : Finset σ).val := by
classical
have :
- (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val :=
- by
- funext
- simp [Finsupp.toMultiset_sum_single]
+ (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val := by
+ funext; simp [Finsupp.toMultiset_sum_single]
rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
· obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -251,10 +251,7 @@ theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
/- warning: mv_polynomial.aeval_esymm_eq_multiset_esymm -> MvPolynomial.aeval_esymm_eq_multiset_esymm is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u2, u3} R S _inst_1 (CommSemiring.toSemiring.{u3} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u3} S (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (fun (_x : AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) => (MvPolynomial.{u1, u2} σ R _inst_1) -> S) ([anonymous].{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (MvPolynomial.aeval.{u2, u3, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u3} S _inst_2 (Multiset.map.{u1, u3} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
-but is expected to have type
- forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u1, u3} σ R _inst_1) => S) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u1) (succ u2)) (succ u3), max (succ u1) (succ u3), succ u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u1, u3} σ R _inst_1) => S) _x) (SMulHomClass.toFunLike.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (SMulZeroClass.toSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toZero.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1))))))) (SMulZeroClass.toSMul.{u3, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribSMul.toSMulZeroClass.{u3, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribMulAction.toDistribSMul.{u3, u2} R S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u3, max u1 u3, u2, max (max u1 u2) u3} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5 (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (AlgHom.algHomClass.{u3, max u1 u3, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5))))) (MvPolynomial.aeval.{u3, u2, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u2} S _inst_2 (Multiset.map.{u1, u2} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
+<too large>
Case conversion may be inaccurate. Consider using '#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymmₓ'. -/
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
@@ -309,10 +306,7 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
#align mv_polynomial.map_esymm MvPolynomial.map_esymm
/- warning: mv_polynomial.rename_esymm -> MvPolynomial.rename_esymm is a dubious translation:
-lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) {τ : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] [_inst_4 : Fintype.{u3} τ] (n : Nat) (e : Equiv.{succ u1, succ u3} σ τ), Eq.{max (succ u3) (succ u2)} (MvPolynomial.{u3, u2} τ R _inst_1) (coeFn.{max (succ (max u1 u2)) (succ (max u3 u2)), max (succ (max u1 u2)) (succ (max u3 u2))} (AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (fun (_x : AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u3, u2} τ R _inst_1)) ([anonymous].{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.rename.{u1, u3, u2} σ τ R _inst_1 (coeFn.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1), max (succ u1) (succ u3)} (Equiv.{succ u1, succ u3} σ τ) (fun (_x : Equiv.{succ u1, succ u3} σ τ) => σ -> τ) (Equiv.hasCoeToFun.{succ u1, succ u3} σ τ) e)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u3, u2} τ R _inst_1 _inst_4 n)
-but is expected to have type
- forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
+<too large>
Case conversion may be inaccurate. Consider using '#align mv_polynomial.rename_esymm MvPolynomial.rename_esymmₓ'. -/
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -254,7 +254,7 @@ theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u2, u3} R S _inst_1 (CommSemiring.toSemiring.{u3} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u3} S (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (fun (_x : AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) => (MvPolynomial.{u1, u2} σ R _inst_1) -> S) ([anonymous].{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (MvPolynomial.aeval.{u2, u3, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u3} S _inst_2 (Multiset.map.{u1, u3} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
but is expected to have type
- forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u1, u3} σ R _inst_1) => S) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u1) (succ u2)) (succ u3), max (succ u1) (succ u3), succ u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u1, u3} σ R _inst_1) => S) _x) (SMulHomClass.toFunLike.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (SMulZeroClass.toSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toZero.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1))))))) (SMulZeroClass.toSMul.{u3, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribSMul.toSMulZeroClass.{u3, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribMulAction.toDistribSMul.{u3, u2} R S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u3, max u1 u3, u2, max (max u1 u2) u3} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5 (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (AlgHom.algHomClass.{u3, max u1 u3, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5))))) (MvPolynomial.aeval.{u3, u2, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u2} S _inst_2 (Multiset.map.{u1, u2} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
+ forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u1, u3} σ R _inst_1) => S) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u1) (succ u2)) (succ u3), max (succ u1) (succ u3), succ u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u1, u3} σ R _inst_1) => S) _x) (SMulHomClass.toFunLike.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (SMulZeroClass.toSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toZero.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1))))))) (SMulZeroClass.toSMul.{u3, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribSMul.toSMulZeroClass.{u3, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribMulAction.toDistribSMul.{u3, u2} R S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u3, max u1 u3, u2, max (max u1 u2) u3} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5 (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (AlgHom.algHomClass.{u3, max u1 u3, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5))))) (MvPolynomial.aeval.{u3, u2, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u2} S _inst_2 (Multiset.map.{u1, u2} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymmₓ'. -/
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
@@ -277,7 +277,7 @@ theorem esymm_eq_sum_subtype (n : ℕ) :
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Finset.{u1} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (fun (_x : LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (LinearMap.hasCoeToFun.{u2, u2, u2, max u1 u2} R R R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MvPolynomial.monomial.{u2, u1} R σ _inst_1 (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))))))
but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomialₓ'. -/
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
@@ -312,7 +312,7 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) {τ : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] [_inst_4 : Fintype.{u3} τ] (n : Nat) (e : Equiv.{succ u1, succ u3} σ τ), Eq.{max (succ u3) (succ u2)} (MvPolynomial.{u3, u2} τ R _inst_1) (coeFn.{max (succ (max u1 u2)) (succ (max u3 u2)), max (succ (max u1 u2)) (succ (max u3 u2))} (AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (fun (_x : AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u3, u2} τ R _inst_1)) ([anonymous].{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.rename.{u1, u3, u2} σ τ R _inst_1 (coeFn.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1), max (succ u1) (succ u3)} (Equiv.{succ u1, succ u3} σ τ) (fun (_x : Equiv.{succ u1, succ u3} σ τ) => σ -> τ) (Equiv.hasCoeToFun.{succ u1, succ u3} σ τ) e)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u3, u2} τ R _inst_1 _inst_4 n)
but is expected to have type
- forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
+ forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.rename_esymm MvPolynomial.rename_esymmₓ'. -/
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -125,7 +125,7 @@ variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
lean 3 declaration is
forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (r : R), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (fun (_x : RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (RingHom.hasCoeToFun.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (MvPolynomial.C.{u2, u1} R σ _inst_1) r)
but is expected to have type
- forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (r : R), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))) (RingHom.instRingHomClassRingHom.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) (MvPolynomial.C.{u1, u2} R σ _inst_1) r)
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (r : R), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))) (RingHom.instRingHomClassRingHom.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) (MvPolynomial.C.{u1, u2} R σ _inst_1) r)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.Cₓ'. -/
@[simp]
theorem C (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
@@ -188,7 +188,7 @@ theorem smul (r : R) (hφ : IsSymmetric φ) : IsSymmetric (r • φ) :=
lean 3 declaration is
forall {σ : Type.{u1}} {R : Type.{u2}} {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] {φ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), MvPolynomial.IsSymmetric.{u1, u3} σ S _inst_2 (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) φ))
but is expected to have type
- forall {σ : Type.{u3}} {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u1} S] {φ : MvPolynomial.{u3, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u3, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))), MvPolynomial.IsSymmetric.{u3, u1} σ S _inst_2 (FunLike.coe.{max (max (succ u2) (succ u1)) (succ u3), max (succ u2) (succ u3), max (succ u1) (succ u3)} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u2} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u3, u2} σ R _inst_1) => MvPolynomial.{u3, u1} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))))) (MvPolynomial.map.{u2, u1, u3} R S σ _inst_1 _inst_2 f) φ))
+ forall {σ : Type.{u3}} {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u1} S] {φ : MvPolynomial.{u3, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u3, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))), MvPolynomial.IsSymmetric.{u3, u1} σ S _inst_2 (FunLike.coe.{max (max (succ u2) (succ u1)) (succ u3), max (succ u2) (succ u3), max (succ u1) (succ u3)} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u2} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u3, u2} σ R _inst_1) => MvPolynomial.{u3, u1} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))))) (MvPolynomial.map.{u2, u1, u3} R S σ _inst_1 _inst_2 f) φ))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.map MvPolynomial.IsSymmetric.mapₓ'. -/
@[simp]
theorem map (hφ : IsSymmetric φ) (f : R →+* S) : IsSymmetric (map f φ) := fun e => by
@@ -302,7 +302,7 @@ theorem esymm_zero : esymm σ R 0 = 1 := by
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), Eq.{max (succ u1) (succ u3)} (MvPolynomial.{u1, u3} σ S _inst_2) (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u3} σ S _inst_2 _inst_3 n)
but is expected to have type
- forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u3, u2} R S (Semiring.toNonAssocSemiring.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))))) (MvPolynomial.map.{u3, u2, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u2} σ S _inst_2 _inst_3 n)
+ forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u3, u2} R S (Semiring.toNonAssocSemiring.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))))) (MvPolynomial.map.{u3, u2, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u2} σ S _inst_2 _inst_3 n)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.map_esymm MvPolynomial.map_esymmₓ'. -/
theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S n := by
simp_rw [esymm, map_sum, map_prod, map_X]
@@ -312,7 +312,7 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) {τ : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] [_inst_4 : Fintype.{u3} τ] (n : Nat) (e : Equiv.{succ u1, succ u3} σ τ), Eq.{max (succ u3) (succ u2)} (MvPolynomial.{u3, u2} τ R _inst_1) (coeFn.{max (succ (max u1 u2)) (succ (max u3 u2)), max (succ (max u1 u2)) (succ (max u3 u2))} (AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (fun (_x : AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u3, u2} τ R _inst_1)) ([anonymous].{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.rename.{u1, u3, u2} σ τ R _inst_1 (coeFn.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1), max (succ u1) (succ u3)} (Equiv.{succ u1, succ u3} σ τ) (fun (_x : Equiv.{succ u1, succ u3} σ τ) => σ -> τ) (Equiv.hasCoeToFun.{succ u1, succ u3} σ τ) e)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u3, u2} τ R _inst_1 _inst_4 n)
but is expected to have type
- forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
+ forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
Case conversion may be inaccurate. Consider using '#align mv_polynomial.rename_esymm MvPolynomial.rename_esymmₓ'. -/
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
mathlib commit https://github.com/leanprover-community/mathlib/commit/c89fe2d59ae06402c3f55f978016d1ada444f57e
@@ -277,7 +277,7 @@ theorem esymm_eq_sum_subtype (n : ℕ) :
lean 3 declaration is
forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Finset.{u1} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (fun (_x : LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (LinearMap.hasCoeToFun.{u2, u2, u2, max u1 u2} R R R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MvPolynomial.monomial.{u2, u1} R σ _inst_1 (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))))))
but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomialₓ'. -/
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit c813ed7de0f5115f956239124e9b30f3a621966f
+! leanprover-community/mathlib commit 2f5b500a507264de86d666a5f87ddb976e2d8de4
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -400,7 +400,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
by
funext
simp [Finsupp.toMultiset_sum_single]
- rw [degrees, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
+ rw [degrees_def, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
· obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
· intros
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -338,24 +338,24 @@ theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) :=
/- warning: mv_polynomial.support_esymm'' -> MvPolynomial.support_esymm'' is a dubious translation:
lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Finsupp.support.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finsupp.single.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))))))
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Finsupp.support.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finsupp.single.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))))))
but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Finsupp.support.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finsupp.single.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Finsupp.support.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finsupp.single.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''ₓ'. -/
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).bunionᵢ fun t =>
+ (powersetLen n (univ : Finset σ)).biUnion fun t =>
(Finsupp.single (∑ i : σ in t, Finsupp.single i 1) (1 : R)).support :=
by
rw [esymm_eq_sum_monomial]
simp only [← single_eq_monomial]
- convert Finsupp.support_sum_eq_bunionᵢ (powerset_len n (univ : Finset σ)) _
+ convert Finsupp.support_sum_eq_biUnion (powerset_len n (univ : Finset σ)) _
intro s t hst
rw [Finset.disjoint_left]
simp only [Finsupp.support_single_ne_zero _ one_ne_zero, mem_singleton]
rintro a h rfl
have := congr_arg Finsupp.support h
- rw [Finsupp.support_sum_eq_bunionᵢ, Finsupp.support_sum_eq_bunionᵢ] at this
+ rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
· simp only [Finsupp.support_single_ne_zero _ one_ne_zero, bUnion_singleton_eq_self] at this
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
@@ -363,13 +363,13 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
/- warning: mv_polynomial.support_esymm' -> MvPolynomial.support_esymm' is a dubious translation:
lean 3 declaration is
- forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Singleton.singleton.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.hasSingleton.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Singleton.singleton.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.hasSingleton.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))
but is expected to have type
- forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Singleton.singleton.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.instSingletonFinset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.biUnion.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Singleton.singleton.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.instSingletonFinset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'ₓ'. -/
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).bunionᵢ fun t => {∑ i : σ in t, Finsupp.single i 1} :=
+ (powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} :=
by
rw [support_esymm'']
congr
mathlib commit https://github.com/leanprover-community/mathlib/commit/92c69b77c5a7dc0f7eeddb552508633305157caa
@@ -176,7 +176,7 @@ theorem mul (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ * ψ
/- warning: mv_polynomial.is_symmetric.smul -> MvPolynomial.IsSymmetric.smul is a dubious translation:
lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (SMul.smul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (SMulZeroClass.toHasSmul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (SMulWithZero.toSmulZeroClass.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (MulActionWithZero.toSMulWithZero.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (Module.toMulActionWithZero.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))) r φ))
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (SMul.smul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (SMulZeroClass.toHasSmul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toMulZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))) (MvPolynomial.smulZeroClass.{u2, u2, u1} R R σ _inst_1 (SMulWithZero.toSmulZeroClass.{u2, u2} R R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (MulZeroClass.toSMulWithZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))) r φ))
but is expected to have type
forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HSMul.hSMul.{u1, max u2 u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Algebra.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) r φ))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smulₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/a4f99eae998680d3a2c240da4a2b16354c85ee49
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit 290a7ba01fbcab1b64757bdaa270d28f4dcede35
+! leanprover-community/mathlib commit c813ed7de0f5115f956239124e9b30f3a621966f
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -400,7 +400,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
by
funext
simp [Finsupp.toMultiset_sum_single]
- rw [degrees, support_esymm, sup_finset_image, this, ← comp_sup_eq_sup_comp]
+ rw [degrees, support_esymm, sup_image, this, ← comp_sup_eq_sup_comp]
· obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
· intros
mathlib commit https://github.com/leanprover-community/mathlib/commit/2651125b48fc5c170ab1111afd0817c903b1fc6c
@@ -65,11 +65,11 @@ def esymm (s : Multiset R) (n : ℕ) : R :=
#align multiset.esymm Multiset.esymm
-/
-#print Multiset.Finset.esymm_map_val /-
-theorem Multiset.Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
+#print Finset.esymm_map_val /-
+theorem Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
(s.val.map f).esymm n = (s.powersetLen n).Sum fun t => t.Prod f := by
simpa only [esymm, powerset_len_map, ← Finset.map_val_val_powersetLen, map_map]
-#align finset.esymm_map_val Multiset.Finset.esymm_map_val
+#align finset.esymm_map_val Finset.esymm_map_val
-/
end Multiset
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -121,16 +121,16 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
-/- warning: mv_polynomial.is_symmetric.C -> MvPolynomial.IsSymmetric.c is a dubious translation:
+/- warning: mv_polynomial.is_symmetric.C -> MvPolynomial.IsSymmetric.C is a dubious translation:
lean 3 declaration is
forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (r : R), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (fun (_x : RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (RingHom.hasCoeToFun.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (MvPolynomial.C.{u2, u1} R σ _inst_1) r)
but is expected to have type
forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (r : R), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))) (RingHom.instRingHomClassRingHom.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) (MvPolynomial.C.{u1, u2} R σ _inst_1) r)
-Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.cₓ'. -/
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.Cₓ'. -/
@[simp]
-theorem c (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
+theorem C (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
-#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.c
+#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.C
/- warning: mv_polynomial.is_symmetric.zero -> MvPolynomial.IsSymmetric.zero is a dubious translation:
lean 3 declaration is
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -203,7 +203,7 @@ variable [CommRing R] {φ ψ : MvPolynomial σ R}
/- warning: mv_polynomial.is_symmetric.neg -> MvPolynomial.IsSymmetric.neg is a dubious translation:
lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (Neg.neg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasNeg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (NonAssocRing.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toNonAssocRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1))))))) φ))
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (Neg.neg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasNeg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroupWithOne.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toAddCommGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1))))))) φ))
but is expected to have type
forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (Neg.neg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toNeg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1))) φ))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.negₓ'. -/
@@ -213,7 +213,7 @@ theorem neg (hφ : IsSymmetric φ) : IsSymmetric (-φ) :=
/- warning: mv_polynomial.is_symmetric.sub -> MvPolynomial.IsSymmetric.sub is a dubious translation:
lean 3 declaration is
- forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)} {ψ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (instHSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (NonAssocRing.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toNonAssocRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1)))))))) φ ψ))
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)} {ψ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (instHSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroupWithOne.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toAddCommGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1)))))))) φ ψ))
but is expected to have type
forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)} {ψ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (HSub.hSub.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (instHSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1)))) φ ψ))
Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.subₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/290a7ba01fbcab1b64757bdaa270d28f4dcede35
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 290a7ba01fbcab1b64757bdaa270d28f4dcede35
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Algebra.Algebra.Subalgebra.Basic
/-!
# Symmetric Polynomials and Elementary Symmetric Polynomials
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file defines symmetric `mv_polynomial`s and elementary symmetric `mv_polynomial`s.
We also prove some basic facts about them.
mathlib commit https://github.com/leanprover-community/mathlib/commit/1f4705ccdfe1e557fc54a0ce081a05e33d2e6240
@@ -55,15 +55,19 @@ namespace Multiset
variable {R : Type _} [CommSemiring R]
+#print Multiset.esymm /-
/-- The `n`th elementary symmetric function evaluated at the elements of `s` -/
def esymm (s : Multiset R) (n : ℕ) : R :=
((s.powersetLen n).map Multiset.prod).Sum
#align multiset.esymm Multiset.esymm
+-/
-theorem Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
+#print Multiset.Finset.esymm_map_val /-
+theorem Multiset.Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
(s.val.map f).esymm n = (s.powersetLen n).Sum fun t => t.Prod f := by
simpa only [esymm, powerset_len_map, ← Finset.map_val_val_powersetLen, map_map]
-#align finset.esymm_map_val Finset.esymm_map_val
+#align finset.esymm_map_val Multiset.Finset.esymm_map_val
+-/
end Multiset
@@ -73,14 +77,17 @@ variable {σ : Type _} {R : Type _}
variable {τ : Type _} {S : Type _}
+#print MvPolynomial.IsSymmetric /-
/-- A `mv_polynomial φ` is symmetric if it is invariant under
permutations of its variables by the `rename` operation -/
def IsSymmetric [CommSemiring R] (φ : MvPolynomial σ R) : Prop :=
∀ e : Perm σ, rename e φ = φ
#align mv_polynomial.is_symmetric MvPolynomial.IsSymmetric
+-/
variable (σ R)
+#print MvPolynomial.symmetricSubalgebra /-
/-- The subalgebra of symmetric `mv_polynomial`s. -/
def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
where
@@ -89,9 +96,16 @@ def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
mul_mem' a b ha hb e := by rw [AlgHom.map_mul, ha, hb]
add_mem' a b ha hb e := by rw [AlgHom.map_add, ha, hb]
#align mv_polynomial.symmetric_subalgebra MvPolynomial.symmetricSubalgebra
+-/
variable {σ R}
+/- warning: mv_polynomial.mem_symmetric_subalgebra -> MvPolynomial.mem_symmetricSubalgebra is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : MvPolynomial.{u1, u2} σ R _inst_1), Iff (Membership.Mem.{max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (SetLike.hasMem.{max u1 u2, max u1 u2} (Subalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.setLike.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)))) p (MvPolynomial.symmetricSubalgebra.{u1, u2} σ R _inst_1)) (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 p)
+but is expected to have type
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : MvPolynomial.{u1, u2} σ R _inst_1), Iff (Membership.mem.{max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.{u2, max u2 u1} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (SetLike.instMembership.{max u1 u2, max u1 u2} (Subalgebra.{u2, max u2 u1} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.{u1, u2} σ R _inst_1) (Subalgebra.instSetLikeSubalgebra.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)))) p (MvPolynomial.symmetricSubalgebra.{u1, u2} σ R _inst_1)) (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 p)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.mem_symmetric_subalgebra MvPolynomial.mem_symmetricSubalgebraₓ'. -/
@[simp]
theorem mem_symmetricSubalgebra [CommSemiring R] (p : MvPolynomial σ R) :
p ∈ symmetricSubalgebra σ R ↔ p.IsSymmetric :=
@@ -104,33 +118,75 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
+/- warning: mv_polynomial.is_symmetric.C -> MvPolynomial.IsSymmetric.c is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (r : R), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (fun (_x : RingHom.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (RingHom.hasCoeToFun.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))) (MvPolynomial.C.{u2, u1} R σ _inst_1) r)
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (r : R), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, max u2 u1} (RingHom.{u1, max u1 u2} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))) R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))) (RingHom.instRingHomClassRingHom.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) (MvPolynomial.C.{u1, u2} R σ _inst_1) r)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.cₓ'. -/
@[simp]
theorem c (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.c
+/- warning: mv_polynomial.is_symmetric.zero -> MvPolynomial.IsSymmetric.zero is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R], MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 0 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 0 (Zero.zero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toMulZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R], MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 0 (Zero.toOfNat0.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommMonoidWithZero.toZero.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toCommMonoidWithZero.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.zero MvPolynomial.IsSymmetric.zeroₓ'. -/
@[simp]
theorem zero : IsSymmetric (0 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).zero_mem
#align mv_polynomial.is_symmetric.zero MvPolynomial.IsSymmetric.zero
+/- warning: mv_polynomial.is_symmetric.one -> MvPolynomial.IsSymmetric.one is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R], MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (One.one.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoidWithOne.toOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoidWithOne.toAddMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toAddCommMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R], MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 1 (One.toOfNat1.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toOne.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.one MvPolynomial.IsSymmetric.oneₓ'. -/
@[simp]
theorem one : IsSymmetric (1 : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).one_mem
#align mv_polynomial.is_symmetric.one MvPolynomial.IsSymmetric.one
+/- warning: mv_polynomial.is_symmetric.add -> MvPolynomial.IsSymmetric.add is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} {ψ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (HAdd.hAdd.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (instHAdd.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Distrib.toHasAdd.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))))) φ ψ))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} {ψ : MvPolynomial.{u2, u1} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HAdd.hAdd.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHAdd.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Distrib.toAdd.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))))) φ ψ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.add MvPolynomial.IsSymmetric.addₓ'. -/
theorem add (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ + ψ) :=
(symmetricSubalgebra σ R).add_mem hφ hψ
#align mv_polynomial.is_symmetric.add MvPolynomial.IsSymmetric.add
+/- warning: mv_polynomial.is_symmetric.mul -> MvPolynomial.IsSymmetric.mul is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} {ψ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u2} σ R _inst_1) (instHMul.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Distrib.toHasMul.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toDistrib.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))))) φ ψ))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} {ψ : MvPolynomial.{u2, u1} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))) φ ψ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mulₓ'. -/
theorem mul (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ * ψ) :=
(symmetricSubalgebra σ R).mul_mem hφ hψ
#align mv_polynomial.is_symmetric.mul MvPolynomial.IsSymmetric.mul
+/- warning: mv_polynomial.is_symmetric.smul -> MvPolynomial.IsSymmetric.smul is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {φ : MvPolynomial.{u1, u2} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (SMul.smul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (SMulZeroClass.toHasSmul.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (SMulWithZero.toSmulZeroClass.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (MulActionWithZero.toSMulWithZero.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (AddZeroClass.toHasZero.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))) (Module.toMulActionWithZero.{u2, max u1 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))) r φ))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {φ : MvPolynomial.{u2, u1} σ R _inst_1} (r : R), (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (HSMul.hSMul.{u1, max u2 u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.{u2, u1} σ R _inst_1) (instHSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) (Algebra.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) r φ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smulₓ'. -/
theorem smul (r : R) (hφ : IsSymmetric φ) : IsSymmetric (r • φ) :=
(symmetricSubalgebra σ R).smul_mem hφ r
#align mv_polynomial.is_symmetric.smul MvPolynomial.IsSymmetric.smul
+/- warning: mv_polynomial.is_symmetric.map -> MvPolynomial.IsSymmetric.map is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] {φ : MvPolynomial.{u1, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), MvPolynomial.IsSymmetric.{u1, u3} σ S _inst_2 (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) φ))
+but is expected to have type
+ forall {σ : Type.{u3}} {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u1} S] {φ : MvPolynomial.{u3, u2} σ R _inst_1}, (MvPolynomial.IsSymmetric.{u3, u2} σ R _inst_1 φ) -> (forall (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))), MvPolynomial.IsSymmetric.{u3, u1} σ S _inst_2 (FunLike.coe.{max (max (succ u2) (succ u1)) (succ u3), max (succ u2) (succ u3), max (succ u1) (succ u3)} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u2} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u3, u2} σ R _inst_1) => MvPolynomial.{u3, u1} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u2 u1) u3, max u2 u3, max u1 u3} (RingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2)))) (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u2 u3, max u1 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.{u3, u1} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u3} (MvPolynomial.{u3, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u3, u1} σ S _inst_2) (MvPolynomial.commSemiring.{u1, u3} S σ _inst_2))))))) (MvPolynomial.map.{u2, u1, u3} R S σ _inst_1 _inst_2 f) φ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.map MvPolynomial.IsSymmetric.mapₓ'. -/
@[simp]
theorem map (hφ : IsSymmetric φ) (f : R →+* S) : IsSymmetric (map f φ) := fun e => by
rw [← map_rename, hφ]
@@ -142,10 +198,22 @@ section CommRing
variable [CommRing R] {φ ψ : MvPolynomial σ R}
+/- warning: mv_polynomial.is_symmetric.neg -> MvPolynomial.IsSymmetric.neg is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (Neg.neg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasNeg.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (NonAssocRing.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toNonAssocRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1))))))) φ))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (Neg.neg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toNeg.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1))) φ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.negₓ'. -/
theorem neg (hφ : IsSymmetric φ) : IsSymmetric (-φ) :=
(symmetricSubalgebra σ R).neg_mem hφ
#align mv_polynomial.is_symmetric.neg MvPolynomial.IsSymmetric.neg
+/- warning: mv_polynomial.is_symmetric.sub -> MvPolynomial.IsSymmetric.sub is a dubious translation:
+lean 3 declaration is
+ forall {σ : Type.{u1}} {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] {φ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)} {ψ : MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)}, (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (instHSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (SubNegMonoid.toHasSub.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroup.toSubNegMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddGroupWithOne.toAddGroup.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (NonAssocRing.toAddGroupWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (Ring.toNonAssocRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommRing.toRing.{max u1 u2} (MvPolynomial.{u1, u2} σ R (CommRing.toCommSemiring.{u2} R _inst_1)) (MvPolynomial.commRing.{u2, u1} R σ _inst_1)))))))) φ ψ))
+but is expected to have type
+ forall {σ : Type.{u2}} {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {φ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)} {ψ : MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)}, (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) φ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) ψ) -> (MvPolynomial.IsSymmetric.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1) (HSub.hSub.{max u2 u1, max u2 u1, max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (instHSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (Ring.toSub.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommRing.toRing.{max u2 u1} (MvPolynomial.{u2, u1} σ R (CommRing.toCommSemiring.{u1} R _inst_1)) (MvPolynomial.instCommRingMvPolynomialToCommSemiring.{u1, u2} R σ _inst_1)))) φ ψ))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.subₓ'. -/
theorem sub (hφ : IsSymmetric φ) (hψ : IsSymmetric ψ) : IsSymmetric (φ - ψ) :=
(symmetricSubalgebra σ R).sub_mem hφ hψ
#align mv_polynomial.is_symmetric.sub MvPolynomial.IsSymmetric.sub
@@ -160,28 +228,54 @@ open Finset
variable (σ R) [CommSemiring R] [CommSemiring S] [Fintype σ] [Fintype τ]
+#print MvPolynomial.esymm /-
/-- The `n`th elementary symmetric `mv_polynomial σ R`. -/
def esymm (n : ℕ) : MvPolynomial σ R :=
∑ t in powersetLen n univ, ∏ i in t, X i
#align mv_polynomial.esymm MvPolynomial.esymm
+-/
+/- warning: mv_polynomial.esymm_eq_multiset_esymm -> MvPolynomial.esymm_eq_multiset_esymm is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ], Eq.{max 1 (succ u1) (succ u2)} (Nat -> (MvPolynomial.{u1, u2} σ R _inst_1)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3) (Multiset.esymm.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1) (Multiset.map.{u1, max u1 u2} σ (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.X.{u2, u1} R σ _inst_1) (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ], Eq.{max (succ u2) (succ u1)} (Nat -> (MvPolynomial.{u2, u1} σ R _inst_1)) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3) (Multiset.esymm.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1) (Multiset.map.{u2, max u2 u1} σ (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.X.{u1, u2} R σ _inst_1) (Finset.val.{u2} σ (Finset.univ.{u2} σ _inst_3))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymmₓ'. -/
/-- The `n`th elementary symmetric `mv_polynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `multiset` of the monomials -/
theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
funext fun n => (Finset.univ.esymm_map_val X n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
+/- warning: mv_polynomial.aeval_esymm_eq_multiset_esymm -> MvPolynomial.aeval_esymm_eq_multiset_esymm is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u2, u3} R S _inst_1 (CommSemiring.toSemiring.{u3} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u3} S (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (fun (_x : AlgHom.{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) => (MvPolynomial.{u1, u2} σ R _inst_1) -> S) ([anonymous].{u2, max u1 u2, u3} R (MvPolynomial.{u1, u2} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u3} S _inst_2) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) _inst_5) (MvPolynomial.aeval.{u2, u3, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u3} S _inst_2 (Multiset.map.{u1, u3} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
+but is expected to have type
+ forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] [_inst_5 : Algebra.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2)] (f : σ -> S) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u1, u3} σ R _inst_1) => S) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u1) (succ u2)) (succ u3), max (succ u1) (succ u3), succ u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u1, u3} σ R _inst_1) => S) _x) (SMulHomClass.toFunLike.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (SMulZeroClass.toSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toZero.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1))))))) (SMulZeroClass.toSMul.{u3, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribSMul.toSMulZeroClass.{u3, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (DistribMulAction.toDistribSMul.{u3, u2} R S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u1 u2) u3, u3, max u1 u3, u2} (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) R (MvPolynomial.{u1, u3} σ R _inst_1) S (MonoidWithZero.toMonoid.{u3} R (Semiring.toMonoidWithZero.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (Module.toDistribMulAction.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (Algebra.toModule.{u3, max u1 u3} R (MvPolynomial.{u1, u3} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)))) (Module.toDistribMulAction.{u3, u2} R S (CommSemiring.toSemiring.{u3} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (Algebra.toModule.{u3, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) _inst_5)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u3, max u1 u3, u2, max (max u1 u2) u3} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5 (AlgHom.{u3, max u3 u1, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5) (AlgHom.algHomClass.{u3, max u1 u3, u2} R (MvPolynomial.{u1, u3} σ R _inst_1) S _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)) (CommSemiring.toSemiring.{u2} S _inst_2) (MvPolynomial.algebra.{u3, u3, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u3} R _inst_1)) _inst_5))))) (MvPolynomial.aeval.{u3, u2, u1} R S σ _inst_1 _inst_2 _inst_5 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (Multiset.esymm.{u2} S _inst_2 (Multiset.map.{u1, u2} σ S f (Finset.val.{u1} σ (Finset.univ.{u1} σ _inst_3))) n)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymmₓ'. -/
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, esymm_map_val]
#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymm
+/- warning: mv_polynomial.esymm_eq_sum_subtype -> MvPolynomial.esymm_eq_sum_subtype is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.univ.{u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Subtype.fintype.{u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n) (fun (a : Finset.{u1} σ) => Nat.decidableEq (Finset.card.{u1} σ a) n) (Finset.fintype.{u1} σ _inst_3))) (fun (t : Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) => Finset.prod.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) σ (CommSemiring.toCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n)) (Finset.{u1} σ) (coeSubtype.{succ u1} (Finset.{u1} σ) (fun (s : Finset.{u1} σ) => Eq.{1} Nat (Finset.card.{u1} σ s) n))))) t) (fun (i : σ) => MvPolynomial.X.{u2, u1} R σ _inst_1 i)))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.univ.{u2} (Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) (Subtype.fintype.{u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n) (fun (a : Finset.{u2} σ) => instDecidableEqNat (Finset.card.{u2} σ a) n) (Finset.fintype.{u2} σ _inst_3))) (fun (t : Subtype.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n)) => Finset.prod.{max u2 u1, u2} (MvPolynomial.{u2, u1} σ R _inst_1) σ (CommSemiring.toCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)) (Subtype.val.{succ u2} (Finset.{u2} σ) (fun (s : Finset.{u2} σ) => Eq.{1} Nat (Finset.card.{u2} σ s) n) t) (fun (i : σ) => MvPolynomial.X.{u1, u2} R σ _inst_1 i)))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtypeₓ'. -/
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
+/- warning: mv_polynomial.esymm_eq_sum_monomial -> MvPolynomial.esymm_eq_sum_monomial is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n) (Finset.sum.{max u1 u2, u1} (MvPolynomial.{u1, u2} σ R _inst_1) (Finset.{u1} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (fun (_x : LinearMap.{u2, u2, u2, max u1 u2} R R (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) R (MvPolynomial.{u1, u2} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) => R -> (MvPolynomial.{u1, u2} σ R _inst_1)) (LinearMap.hasCoeToFun.{u2, u2, u2, max u1 u2} R R R (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (CommSemiring.toSemiring.{u2} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))))) (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (MvPolynomial.module.{u2, u2, u1} R R σ (CommSemiring.toSemiring.{u2} R _inst_1) _inst_1 (Semiring.toModule.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (RingHom.id.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MvPolynomial.monomial.{u2, u1} R σ _inst_1 (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))))))))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n) (Finset.sum.{max u2 u1, u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.{u2} σ) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toNonAssocSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{max u2 u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (LinearMap.{u1, u1, u1, max u1 u2} R R (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (MvPolynomial.{u2, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => MvPolynomial.{u2, u1} σ R _inst_1) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, max u2 u1} R R R (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MvPolynomial.module.{u1, u1, u2} R R σ (CommSemiring.toSemiring.{u1} R _inst_1) _inst_1 (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MvPolynomial.monomial.{u1, u2} R σ _inst_1 (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomialₓ'. -/
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
esymm σ R n = ∑ t in powersetLen n univ, monomial (∑ i in t, Finsupp.single i 1) 1 :=
@@ -190,15 +284,33 @@ theorem esymm_eq_sum_monomial (n : ℕ) :
rfl
#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomial
+/- warning: mv_polynomial.esymm_zero -> MvPolynomial.esymm_zero is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ], Eq.{max (succ u1) (succ u2)} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (OfNat.mk.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) 1 (One.one.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddMonoidWithOne.toOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (AddCommMonoidWithOne.toAddMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (NonAssocSemiring.toAddCommMonoidWithOne.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)))))))))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ], Eq.{max (succ u2) (succ u1)} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) 1 (One.toOfNat1.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (Semiring.toOne.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R σ _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_zero MvPolynomial.esymm_zeroₓ'. -/
@[simp]
theorem esymm_zero : esymm σ R 0 = 1 := by
simp only [esymm, powerset_len_zero, sum_singleton, prod_empty]
#align mv_polynomial.esymm_zero MvPolynomial.esymm_zero
+/- warning: mv_polynomial.map_esymm -> MvPolynomial.map_esymm is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) {S : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_2 : CommSemiring.{u3} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u2, u3} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u3} S (CommSemiring.toSemiring.{u3} S _inst_2))), Eq.{max (succ u1) (succ u3)} (MvPolynomial.{u1, u3} σ S _inst_2) (coeFn.{max (succ (max u1 u2)) (succ (max u1 u3)), max (succ (max u1 u2)) (succ (max u1 u3))} (RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (fun (_x : RingHom.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u1, u3} σ S _inst_2)) (RingHom.hasCoeToFun.{max u1 u2, max u1 u3} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u1, u3} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (CommSemiring.toSemiring.{max u1 u3} (MvPolynomial.{u1, u3} σ S _inst_2) (MvPolynomial.commSemiring.{u3, u1} S σ _inst_2)))) (MvPolynomial.map.{u2, u3, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u3} σ S _inst_2 _inst_3 n)
+but is expected to have type
+ forall (σ : Type.{u1}) (R : Type.{u3}) {S : Type.{u2}} [_inst_1 : CommSemiring.{u3} R] [_inst_2 : CommSemiring.{u2} S] [_inst_3 : Fintype.{u1} σ] (n : Nat) (f : RingHom.{u3, u2} R S (Semiring.toNonAssocSemiring.{u3} R (CommSemiring.toSemiring.{u3} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (fun (_x : MvPolynomial.{u1, u3} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : MvPolynomial.{u1, u3} σ R _inst_1) => MvPolynomial.{u1, u2} σ S _inst_2) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonUnitalNonAssocSemiring.toMul.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max (max u3 u2) u1, max u3 u1, max u2 u1} (RingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2)))) (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))) (RingHom.instRingHomClassRingHom.{max u3 u1, max u2 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.{u1, u2} σ S _inst_2) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u1, u3} σ R _inst_1) (MvPolynomial.commSemiring.{u3, u1} R σ _inst_1))) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u1, u2} σ S _inst_2) (MvPolynomial.commSemiring.{u2, u1} S σ _inst_2))))))) (MvPolynomial.map.{u3, u2, u1} R S σ _inst_1 _inst_2 f) (MvPolynomial.esymm.{u1, u3} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u1, u2} σ S _inst_2 _inst_3 n)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.map_esymm MvPolynomial.map_esymmₓ'. -/
theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S n := by
simp_rw [esymm, map_sum, map_prod, map_X]
#align mv_polynomial.map_esymm MvPolynomial.map_esymm
+/- warning: mv_polynomial.rename_esymm -> MvPolynomial.rename_esymm is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) {τ : Type.{u3}} [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] [_inst_4 : Fintype.{u3} τ] (n : Nat) (e : Equiv.{succ u1, succ u3} σ τ), Eq.{max (succ u3) (succ u2)} (MvPolynomial.{u3, u2} τ R _inst_1) (coeFn.{max (succ (max u1 u2)) (succ (max u3 u2)), max (succ (max u1 u2)) (succ (max u3 u2))} (AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (fun (_x : AlgHom.{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) => (MvPolynomial.{u1, u2} σ R _inst_1) -> (MvPolynomial.{u3, u2} τ R _inst_1)) ([anonymous].{u2, max u1 u2, max u3 u2} R (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.{u3, u2} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u1 u2} (MvPolynomial.{u1, u2} σ R _inst_1) (MvPolynomial.commSemiring.{u2, u1} R σ _inst_1)) (CommSemiring.toSemiring.{max u3 u2} (MvPolynomial.{u3, u2} τ R _inst_1) (MvPolynomial.commSemiring.{u2, u3} R τ _inst_1)) (MvPolynomial.algebra.{u2, u2, u1} R R σ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1)) (MvPolynomial.algebra.{u2, u2, u3} R R τ _inst_1 _inst_1 (Algebra.id.{u2} R _inst_1))) (MvPolynomial.rename.{u1, u3, u2} σ τ R _inst_1 (coeFn.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1), max (succ u1) (succ u3)} (Equiv.{succ u1, succ u3} σ τ) (fun (_x : Equiv.{succ u1, succ u3} σ τ) => σ -> τ) (Equiv.hasCoeToFun.{succ u1, succ u3} σ τ) e)) (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u3, u2} τ R _inst_1 _inst_4 n)
+but is expected to have type
+ forall (σ : Type.{u3}) (R : Type.{u1}) {τ : Type.{u2}} [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u3} σ] [_inst_4 : Fintype.{u2} τ] (n : Nat) (e : Equiv.{succ u3, succ u2} σ τ), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u1), max (succ u2) (succ u1)} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (MvPolynomial.{u3, u1} σ R _inst_1) (fun (_x : MvPolynomial.{u3, u1} σ R _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : MvPolynomial.{u3, u1} σ R _inst_1) => MvPolynomial.{u2, u1} τ R _inst_1) _x) (SMulHomClass.toFunLike.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (SMulZeroClass.toSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toZero.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (AddMonoid.toAddZeroClass.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (SMulZeroClass.toSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toZero.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribSMul.toSMulZeroClass.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (AddMonoid.toAddZeroClass.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))))) (DistribMulAction.toDistribSMul.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (DistribMulActionHomClass.toSMulHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max (max u3 u2) u1, u1, max u3 u1, max u2 u1} (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)))) (Module.toDistribMulAction.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (Semiring.toNonAssocSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1))))) (Algebra.toModule.{u1, max u3 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (Module.toDistribMulAction.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (Semiring.toNonAssocSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1))))) (Algebra.toModule.{u1, max u2 u1} R (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)))) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, max u3 u1, max u2 u1, max (max u3 u2) u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (AlgHom.{u1, max u1 u3, max u1 u2} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))) (AlgHom.algHomClass.{u1, max u3 u1, max u2 u1} R (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.{u2, u1} τ R _inst_1) _inst_1 (CommSemiring.toSemiring.{max u3 u1} (MvPolynomial.{u3, u1} σ R _inst_1) (MvPolynomial.commSemiring.{u1, u3} R σ _inst_1)) (CommSemiring.toSemiring.{max u2 u1} (MvPolynomial.{u2, u1} τ R _inst_1) (MvPolynomial.commSemiring.{u1, u2} R τ _inst_1)) (MvPolynomial.algebra.{u1, u1, u3} R R σ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1)) (MvPolynomial.algebra.{u1, u1, u2} R R τ _inst_1 _inst_1 (Algebra.id.{u1} R _inst_1))))))) (MvPolynomial.rename.{u3, u2, u1} σ τ R _inst_1 (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} σ τ) σ (fun (_x : σ) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : σ) => τ) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} σ τ) e)) (MvPolynomial.esymm.{u3, u1} σ R _inst_1 _inst_3 n)) (MvPolynomial.esymm.{u2, u1} τ R _inst_1 _inst_4 n)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.rename_esymm MvPolynomial.rename_esymmₓ'. -/
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
@@ -209,12 +321,24 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
+/- warning: mv_polynomial.esymm_is_symmetric -> MvPolynomial.esymm_isSymmetric is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat), MvPolynomial.IsSymmetric.{u1, u2} σ R _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat), MvPolynomial.IsSymmetric.{u2, u1} σ R _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetricₓ'. -/
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) :=
by
intro
rw [rename_esymm]
#align mv_polynomial.esymm_is_symmetric MvPolynomial.esymm_isSymmetric
+/- warning: mv_polynomial.support_esymm'' -> MvPolynomial.support_esymm'' is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Finsupp.support.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finsupp.single.{u1, u2} (Finsupp.{u1, 0} σ Nat Nat.hasZero) R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (OfNat.ofNat.{u2} R 1 (OfNat.mk.{u2} R 1 (One.one.{u2} R (AddMonoidWithOne.toOne.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))))))))))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Finsupp.support.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finsupp.single.{u2, u1} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''ₓ'. -/
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).bunionᵢ fun t =>
@@ -234,6 +358,12 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
+/- warning: mv_polynomial.support_esymm' -> MvPolynomial.support_esymm' is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)) (fun (t : Finset.{u1} σ) => Singleton.singleton.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.hasSingleton.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.bunionᵢ.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)) (fun (t : Finset.{u2} σ) => Singleton.singleton.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.instSingletonFinset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'ₓ'. -/
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).bunionᵢ fun t => {∑ i : σ in t, Finsupp.single i 1} :=
@@ -244,6 +374,12 @@ theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
exact Finsupp.support_single_ne_zero _ one_ne_zero
#align mv_polynomial.support_esymm' MvPolynomial.support_esymm'
+/- warning: mv_polynomial.support_esymm -> MvPolynomial.support_esymm is a dubious translation:
+lean 3 declaration is
+ forall (σ : Type.{u1}) (R : Type.{u2}) [_inst_1 : CommSemiring.{u2} R] [_inst_3 : Fintype.{u1} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u1} σ] [_inst_6 : Nontrivial.{u2} R], Eq.{succ u1} (Finset.{u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero)) (MvPolynomial.support.{u2, u1} R σ _inst_1 (MvPolynomial.esymm.{u1, u2} σ R _inst_1 _inst_3 n)) (Finset.image.{u1, u1} (Finset.{u1} σ) (Finsupp.{u1, 0} σ Nat Nat.hasZero) (fun (a : Finsupp.{u1, 0} σ Nat Nat.hasZero) (b : Finsupp.{u1, 0} σ Nat Nat.hasZero) => Finsupp.decidableEq.{u1, 0} σ Nat Nat.hasZero (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) a b) (fun (t : Finset.{u1} σ) => Finset.sum.{u1, u1} (Finsupp.{u1, 0} σ Nat Nat.hasZero) σ (Finsupp.addCommMonoid.{u1, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u1, 0} σ Nat Nat.hasZero i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Finset.powersetLen.{u1} σ n (Finset.univ.{u1} σ _inst_3)))
+but is expected to have type
+ forall (σ : Type.{u2}) (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] [_inst_3 : Fintype.{u2} σ] (n : Nat) [_inst_5 : DecidableEq.{succ u2} σ] [_inst_6 : Nontrivial.{u1} R], Eq.{succ u2} (Finset.{u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))) (MvPolynomial.support.{u1, u2} R σ _inst_1 (MvPolynomial.esymm.{u2, u1} σ R _inst_1 _inst_3 n)) (Finset.image.{u2, u2} (Finset.{u2} σ) (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (fun (a : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (b : Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) => Finsupp.decidableEq.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) (fun (a : σ) (b : σ) => _inst_5 a b) (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) a b) (fun (t : Finset.{u2} σ) => Finset.sum.{u2, u2} (Finsupp.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) σ (Finsupp.addCommMonoid.{u2, 0} σ Nat Nat.addCommMonoid) t (fun (i : σ) => Finsupp.single.{u2, 0} σ Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.powersetLen.{u2} σ n (Finset.univ.{u2} σ _inst_3)))
+Case conversion may be inaccurate. Consider using '#align mv_polynomial.support_esymm MvPolynomial.support_esymmₓ'. -/
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 :=
@@ -252,6 +388,7 @@ theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
exact bUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
+#print MvPolynomial.degrees_esymm /-
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
(esymm σ R n).degrees = (univ : Finset σ).val := by
classical
@@ -268,6 +405,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
congr
· rfl
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
+-/
end ElementarySymmetric
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a313d8bba1bad05faba71a4a4e9742ab5bd9efd
@@ -85,7 +85,7 @@ variable (σ R)
def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
where
carrier := setOf IsSymmetric
- algebraMap_mem' r e := rename_c e r
+ algebraMap_mem' r e := rename_C e r
mul_mem' a b ha hb e := by rw [AlgHom.map_mul, ha, hb]
add_mem' a b ha hb e := by rw [AlgHom.map_add, ha, hb]
#align mv_polynomial.symmetric_subalgebra MvPolynomial.symmetricSubalgebra
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a313d8bba1bad05faba71a4a4e9742ab5bd9efd
@@ -105,7 +105,7 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
@[simp]
-theorem c (r : R) : IsSymmetric (c r : MvPolynomial σ R) :=
+theorem c (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.c
@@ -162,13 +162,13 @@ variable (σ R) [CommSemiring R] [CommSemiring S] [Fintype σ] [Fintype τ]
/-- The `n`th elementary symmetric `mv_polynomial σ R`. -/
def esymm (n : ℕ) : MvPolynomial σ R :=
- ∑ t in powersetLen n univ, ∏ i in t, x i
+ ∑ t in powersetLen n univ, ∏ i in t, X i
#align mv_polynomial.esymm MvPolynomial.esymm
/-- The `n`th elementary symmetric `mv_polynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `multiset` of the monomials -/
-theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map x).esymm :=
- funext fun n => (Finset.univ.esymm_map_val x n).symm
+theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm :=
+ funext fun n => (Finset.univ.esymm_map_val X n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
@@ -178,7 +178,7 @@ theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
- esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), x i :=
+ esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
@@ -201,11 +201,11 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
- rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, x (e i) := by
+ rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
simp_rw [esymm, map_sum, map_prod, rename_X]
- _ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, x i := by
+ _ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, X i := by
simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
- _ = ∑ t in powersetLen n univ, ∏ i in t, x i := by rw [Finset.map_univ_equiv]
+ _ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -251,14 +251,14 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
rintro a h rfl
have := congr_arg Finsupp.support h
rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
- have hsingle : ∀ s : Finset σ, ∀ x : σ, x ∈ s → (Finsupp.single x 1).support = {x} := by
- intros _ x _
- rw [Finsupp.support_single_ne_zero x one_ne_zero]
- have hs := biUnion_congr (of_eq_true (eq_self s)) (hsingle s)
- have ht := biUnion_congr (of_eq_true (eq_self t)) (hsingle t)
- rw [hs, ht] at this
- · simp only [biUnion_singleton_eq_self] at this
- exact absurd this hst.symm
+ · have hsingle : ∀ s : Finset σ, ∀ x : σ, x ∈ s → (Finsupp.single x 1).support = {x} := by
+ intros _ x _
+ rw [Finsupp.support_single_ne_zero x one_ne_zero]
+ have hs := biUnion_congr (of_eq_true (eq_self s)) (hsingle s)
+ have ht := biUnion_congr (of_eq_true (eq_self t)) (hsingle t)
+ rw [hs, ht] at this
+ · simp only [biUnion_singleton_eq_self] at this
+ exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
Data
(#11751)
Polynomial
and MvPolynomial
are algebraic objects, hence should be under Algebra
(or at least not under Data
)
@@ -3,9 +3,9 @@ Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
-/
-import Mathlib.Data.MvPolynomial.Rename
-import Mathlib.Data.MvPolynomial.CommRing
import Mathlib.Algebra.Algebra.Subalgebra.Basic
+import Mathlib.Algebra.MvPolynomial.Rename
+import Mathlib.Algebra.MvPolynomial.CommRing
#align_import ring_theory.mv_polynomial.symmetric from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
@@ -189,13 +189,13 @@ def esymm (n : ℕ) : MvPolynomial σ R :=
/-- The `n`th elementary symmetric `MvPolynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `Multiset` of the monomials -/
-theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm := by
- exact funext fun n => (Finset.esymm_map_val X _ n).symm
+theorem esymm_eq_multiset_esymm : esymm σ R = (univ.val.map X).esymm := by
+ exact funext fun n => (esymm_map_val X _ n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
- aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
- simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, Finset.esymm_map_val]
+ aeval f (esymm σ R n) = (univ.val.map f).esymm n := by
+ simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, esymm_map_val]
#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymm
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
@@ -225,11 +225,11 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
rename e (esymm σ R n) = ∑ x in powersetCard n univ, ∏ i in x, X (e i) := by
simp_rw [esymm, map_sum, map_prod, rename_X]
_ = ∑ t in powersetCard n (univ.map e.toEmbedding), ∏ i in t, X i := by
- simp [Finset.powersetCard_map, -Finset.map_univ_equiv]
+ simp [powersetCard_map, -map_univ_equiv]
-- Porting note: Why did `mapEmbedding_apply` not work?
dsimp [mapEmbedding, OrderEmbedding.ofMapLEIff]
simp
- _ = ∑ t in powersetCard n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
+ _ = ∑ t in powersetCard n univ, ∏ i in t, X i := by rw [map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by
@@ -245,7 +245,7 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
simp only [← single_eq_monomial]
refine' Finsupp.support_sum_eq_biUnion (powersetCard n (univ : Finset σ)) _
intro s t hst
- rw [Finset.disjoint_left, Finsupp.support_single_ne_zero _ one_ne_zero]
+ rw [disjoint_left, Finsupp.support_single_ne_zero _ one_ne_zero]
rw [Finsupp.support_single_ne_zero _ one_ne_zero]
simp only [one_ne_zero, mem_singleton, Finsupp.mem_support_iff]
rintro a h rfl
@@ -282,7 +282,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
(esymm σ R n).degrees = (univ : Finset σ).val := by
classical
have :
- (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val := by
+ (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = val := by
funext
simp [Finsupp.toMultiset_sum_single]
rw [degrees_def, support_esymm, sup_image, this]
@@ -138,6 +138,16 @@ theorem map (hφ : IsSymmetric φ) (f : R →+* S) : IsSymmetric (map f φ) := f
rw [← map_rename, hφ]
#align mv_polynomial.is_symmetric.map MvPolynomial.IsSymmetric.map
+protected theorem rename (hφ : φ.IsSymmetric) (e : σ ≃ τ) : (rename e φ).IsSymmetric := fun _ => by
+ apply rename_injective _ e.symm.injective
+ simp_rw [rename_rename, ← Equiv.coe_trans, Equiv.self_trans_symm, Equiv.coe_refl, rename_id]
+ rw [hφ]
+
+@[simp]
+theorem _root_.MvPolynomial.isSymmetric_rename {e : σ ≃ τ} :
+ (MvPolynomial.rename e φ).IsSymmetric ↔ φ.IsSymmetric :=
+ ⟨fun h => by simpa using (IsSymmetric.rename (R := R) h e.symm), (IsSymmetric.rename · e)⟩
+
end CommSemiring
section CommRing
@@ -156,6 +166,16 @@ end CommRing
end IsSymmetric
+/-- `MvPolynomial.rename` induces an isomorphism between the symmetric subalgebras. -/
+@[simps!]
+def renameSymmetricSubalgebra [CommSemiring R] (e : σ ≃ τ) :
+ symmetricSubalgebra σ R ≃ₐ[R] symmetricSubalgebra τ R :=
+ AlgEquiv.ofAlgHom
+ (((rename e).comp (symmetricSubalgebra σ R).val).codRestrict _ <| fun x => x.2.rename e)
+ (((rename e.symm).comp <| Subalgebra.val _).codRestrict _ <| fun x => x.2.rename e.symm)
+ (AlgHom.ext <| fun p => Subtype.ext <| by simp)
+ (AlgHom.ext <| fun p => Subtype.ext <| by simp)
+
section ElementarySymmetric
open Finset
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -73,7 +73,6 @@ end Multiset
namespace MvPolynomial
variable {σ : Type*} {R : Type*}
-
variable {τ : Type*} {S : Type*}
/-- A `MvPolynomial φ` is symmetric if it is invariant under
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -207,7 +207,7 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
simp_rw [esymm, map_sum, map_prod, rename_X]
_ = ∑ t in powersetCard n (univ.map e.toEmbedding), ∏ i in t, X i := by
simp [Finset.powersetCard_map, -Finset.map_univ_equiv]
- --Porting note: Why did `mapEmbedding_apply` not work?
+ -- Porting note: Why did `mapEmbedding_apply` not work?
dsimp [mapEmbedding, OrderEmbedding.ofMapLEIff]
simp
_ = ∑ t in powersetCard n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
refine
s (#10762)
I replaced a few "terminal" refine/refine'
s with exact
.
The strategy was very simple-minded: essentially any refine
whose following line had smaller indentation got replaced by exact
and then I cleaned up the mess.
This PR certainly leaves some further terminal refine
s, but maybe the current change is beneficial.
@@ -171,7 +171,7 @@ def esymm (n : ℕ) : MvPolynomial σ R :=
/-- The `n`th elementary symmetric `MvPolynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `Multiset` of the monomials -/
theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm := by
- refine' funext fun n => (Finset.esymm_map_val X _ n).symm
+ exact funext fun n => (Finset.esymm_map_val X _ n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
@@ -59,12 +59,12 @@ variable {R : Type*} [CommSemiring R]
/-- The `n`th elementary symmetric function evaluated at the elements of `s` -/
def esymm (s : Multiset R) (n : ℕ) : R :=
- ((s.powersetLen n).map Multiset.prod).sum
+ ((s.powersetCard n).map Multiset.prod).sum
#align multiset.esymm Multiset.esymm
theorem _root_.Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
- (s.val.map f).esymm n = (s.powersetLen n).sum fun t => t.prod f := by
- simp only [esymm, powersetLen_map, ← Finset.map_val_val_powersetLen, map_map]
+ (s.val.map f).esymm n = (s.powersetCard n).sum fun t => t.prod f := by
+ simp only [esymm, powersetCard_map, ← Finset.map_val_val_powersetCard, map_map]
rfl
#align finset.esymm_map_val Finset.esymm_map_val
@@ -165,7 +165,7 @@ variable (σ R) [CommSemiring R] [CommSemiring S] [Fintype σ] [Fintype τ]
/-- The `n`th elementary symmetric `MvPolynomial σ R`. -/
def esymm (n : ℕ) : MvPolynomial σ R :=
- ∑ t in powersetLen n univ, ∏ i in t, X i
+ ∑ t in powersetCard n univ, ∏ i in t, X i
#align mv_polynomial.esymm MvPolynomial.esymm
/-- The `n`th elementary symmetric `MvPolynomial σ R` is obtained by evaluating the
@@ -182,19 +182,19 @@ theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
- sum_subtype _ (fun _ => mem_powersetLen_univ) _
+ sum_subtype _ (fun _ => mem_powersetCard_univ) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
theorem esymm_eq_sum_monomial (n : ℕ) :
- esymm σ R n = ∑ t in powersetLen n univ, monomial (∑ i in t, Finsupp.single i 1) 1 := by
+ esymm σ R n = ∑ t in powersetCard n univ, monomial (∑ i in t, Finsupp.single i 1) 1 := by
simp_rw [monomial_sum_one]
rfl
#align mv_polynomial.esymm_eq_sum_monomial MvPolynomial.esymm_eq_sum_monomial
@[simp]
theorem esymm_zero : esymm σ R 0 = 1 := by
- simp only [esymm, powersetLen_zero, sum_singleton, prod_empty]
+ simp only [esymm, powersetCard_zero, sum_singleton, prod_empty]
#align mv_polynomial.esymm_zero MvPolynomial.esymm_zero
theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S n := by
@@ -203,14 +203,14 @@ theorem map_esymm (n : ℕ) (f : R →+* S) : map f (esymm σ R n) = esymm σ S
theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm τ R n :=
calc
- rename e (esymm σ R n) = ∑ x in powersetLen n univ, ∏ i in x, X (e i) := by
+ rename e (esymm σ R n) = ∑ x in powersetCard n univ, ∏ i in x, X (e i) := by
simp_rw [esymm, map_sum, map_prod, rename_X]
- _ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, X i := by
- simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
+ _ = ∑ t in powersetCard n (univ.map e.toEmbedding), ∏ i in t, X i := by
+ simp [Finset.powersetCard_map, -Finset.map_univ_equiv]
--Porting note: Why did `mapEmbedding_apply` not work?
dsimp [mapEmbedding, OrderEmbedding.ofMapLEIff]
simp
- _ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
+ _ = ∑ t in powersetCard n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by
@@ -220,11 +220,11 @@ theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).biUnion fun t =>
+ (powersetCard n (univ : Finset σ)).biUnion fun t =>
(Finsupp.single (∑ i : σ in t, Finsupp.single i 1) (1 : R)).support := by
rw [esymm_eq_sum_monomial]
simp only [← single_eq_monomial]
- refine' Finsupp.support_sum_eq_biUnion (powersetLen n (univ : Finset σ)) _
+ refine' Finsupp.support_sum_eq_biUnion (powersetCard n (univ : Finset σ)) _
intro s t hst
rw [Finset.disjoint_left, Finsupp.support_single_ne_zero _ one_ne_zero]
rw [Finsupp.support_single_ne_zero _ one_ne_zero]
@@ -245,7 +245,7 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} := by
+ (powersetCard n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} := by
rw [support_esymm'']
congr
funext
@@ -254,7 +254,7 @@ theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 := by
+ (powersetCard n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 := by
rw [support_esymm']
exact biUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
@@ -267,8 +267,8 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
funext
simp [Finsupp.toMultiset_sum_single]
rw [degrees_def, support_esymm, sup_image, this]
- have : ((powersetLen n univ).sup (fun (x : Finset σ) => x)).val
- = sup (powersetLen n univ) val := by
+ have : ((powersetCard n univ).sup (fun (x : Finset σ) => x)).val
+ = sup (powersetCard n univ) val := by
refine' comp_sup_eq_sup_comp _ _ _
· intros
simp only [union_val, sup_eq_union]
@@ -276,7 +276,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
· rfl
rw [← this]
obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
- simpa using powersetLen_sup _ _ (Nat.lt_of_succ_le hn)
+ simpa using powersetCard_sup _ _ (Nat.lt_of_succ_le hn)
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
end ElementarySymmetric
Finset α
and Set α
(#7375)
over a fintype.
Also fix the name of Finset.mem_powerset_len_univ_iff
(it should be powersetLen
, not powerset_len
).
@@ -182,7 +182,7 @@ theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
theorem esymm_eq_sum_subtype (n : ℕ) :
esymm σ R n = ∑ t : { s : Finset σ // s.card = n }, ∏ i in (t : Finset σ), X i :=
- sum_subtype _ (fun _ => mem_powerset_len_univ_iff) _
+ sum_subtype _ (fun _ => mem_powersetLen_univ) _
#align mv_polynomial.esymm_eq_sum_subtype MvPolynomial.esymm_eq_sum_subtype
/-- We can define `esymm σ R n` as a sum over explicit monomials -/
@@ -238,7 +238,6 @@ theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
have hs := biUnion_congr (of_eq_true (eq_self s)) (hsingle s)
have ht := biUnion_congr (of_eq_true (eq_self t)) (hsingle t)
rw [hs, ht] at this
- simp only [Finsupp.support_single_ne_zero _ one_ne_zero] at this
· simp only [biUnion_singleton_eq_self] at this
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
Co-authored-by: michaellee94 <michael.a.rodrigues.lee@gmail.com> Co-authored-by: Oliver Nash <github@olivernash.org>
@@ -23,9 +23,14 @@ We also prove some basic facts about them.
* `MvPolynomial.esymm`
+* `MvPolynomial.psum`
+
## Notation
-+ `esymm σ R n`, is the `n`th elementary symmetric polynomial in `MvPolynomial σ R`.
++ `esymm σ R n` is the `n`th elementary symmetric polynomial in `MvPolynomial σ R`.
+
++ `psum σ R n` is the degree-`n` power sum in `MvPolynomial σ R`, i.e. the sum of monomials
+ `(X i)^n` over `i ∈ σ`.
As in other polynomial files, we typically use the notation:
@@ -277,4 +282,32 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
end ElementarySymmetric
+section PowerSum
+
+open Finset
+
+variable (σ R) [CommSemiring R] [Fintype σ] [Fintype τ]
+
+/-- The degree-`n` power sum -/
+def psum (n : ℕ) : MvPolynomial σ R := ∑ i, X i ^ n
+
+lemma psum_def (n : ℕ) : psum σ R n = ∑ i, X i ^ n := rfl
+
+@[simp]
+theorem psum_zero : psum σ R 0 = Fintype.card σ := by
+ simp only [psum, _root_.pow_zero, ← cast_card]
+ exact rfl
+
+@[simp]
+theorem psum_one : psum σ R 1 = ∑ i, X i := by
+ simp only [psum, _root_.pow_one]
+
+@[simp]
+theorem rename_psum (n : ℕ) (e : σ ≃ τ) : rename e (psum σ R n) = psum τ R n := by
+ simp_rw [psum, map_sum, map_pow, rename_X, e.sum_comp (X · ^ n)]
+
+theorem psum_isSymmetric (n : ℕ) : IsSymmetric (psum σ R n) := rename_psum _ _ n
+
+end PowerSum
+
end MvPolynomial
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -29,9 +29,9 @@ We also prove some basic facts about them.
As in other polynomial files, we typically use the notation:
-+ `σ τ : Type _` (indexing the variables)
++ `σ τ : Type*` (indexing the variables)
-+ `R S : Type _` `[CommSemiring R]` `[CommSemiring S]` (the coefficients)
++ `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients)
+ `r : R` elements of the coefficient ring
@@ -50,7 +50,7 @@ noncomputable section
namespace Multiset
-variable {R : Type _} [CommSemiring R]
+variable {R : Type*} [CommSemiring R]
/-- The `n`th elementary symmetric function evaluated at the elements of `s` -/
def esymm (s : Multiset R) (n : ℕ) : R :=
@@ -67,9 +67,9 @@ end Multiset
namespace MvPolynomial
-variable {σ : Type _} {R : Type _}
+variable {σ : Type*} {R : Type*}
-variable {τ : Type _} {S : Type _}
+variable {τ : Type*} {S : Type*}
/-- A `MvPolynomial φ` is symmetric if it is invariant under
permutations of its variables by the `rename` operation -/
@@ -272,7 +272,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
· rfl
rw [← this]
obtain ⟨k, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hpos.ne'
- simpa using powerset_len_sup _ _ (Nat.lt_of_succ_le hn)
+ simpa using powersetLen_sup _ _ (Nat.lt_of_succ_le hn)
#align mv_polynomial.degrees_esymm MvPolynomial.degrees_esymm
end ElementarySymmetric
@@ -2,16 +2,13 @@
Copyright (c) 2020 Hanting Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
-
-! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit 2f5b500a507264de86d666a5f87ddb976e2d8de4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.MvPolynomial.Rename
import Mathlib.Data.MvPolynomial.CommRing
import Mathlib.Algebra.Algebra.Subalgebra.Basic
+#align_import ring_theory.mv_polynomial.symmetric from "leanprover-community/mathlib"@"2f5b500a507264de86d666a5f87ddb976e2d8de4"
+
/-!
# Symmetric Polynomials and Elementary Symmetric Polynomials
@@ -75,7 +75,7 @@ variable {σ : Type _} {R : Type _}
variable {τ : Type _} {S : Type _}
/-- A `MvPolynomial φ` is symmetric if it is invariant under
-permutations of its variables by the `rename` operation -/
+permutations of its variables by the `rename` operation -/
def IsSymmetric [CommSemiring R] (φ : MvPolynomial σ R) : Prop :=
∀ e : Perm σ, rename e φ = φ
#align mv_polynomial.is_symmetric MvPolynomial.IsSymmetric
I've been someone sloppy about forward-porting the exact mathport here; a lot of the classical
additions result in the whole proof being indented, which IMO just adds noise to the diff.
What's important is that:
open Classical
is removed from all the same files[DecidableEq _]
is added in the same position to all the same lemmas. In theory mathport will detect if we mess this up, so it's not essential to catch this in review. The linter will tell us if it is added unnecessarily, and the build will fail if is not added someewhere it is needed; so only the argument order is at risk of being wrong.foo_def
lemmas are all added in variables.lean
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit c813ed7de0f5115f956239124e9b30f3a621966f
+! leanprover-community/mathlib commit 2f5b500a507264de86d666a5f87ddb976e2d8de4
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -265,7 +265,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
(Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val := by
funext
simp [Finsupp.toMultiset_sum_single]
- rw [degrees, support_esymm, sup_image, this]
+ rw [degrees_def, support_esymm, sup_image, this]
have : ((powersetLen n univ).sup (fun (x : Finset σ) => x)).val
= sup (powersetLen n univ) val := by
refine' comp_sup_eq_sup_comp _ _ _
sSup
/iSup
(#3938)
As discussed on Zulip
supₛ
→ sSup
infₛ
→ sInf
supᵢ
→ iSup
infᵢ
→ iInf
bsupₛ
→ bsSup
binfₛ
→ bsInf
bsupᵢ
→ biSup
binfᵢ
→ biInf
csupₛ
→ csSup
cinfₛ
→ csInf
csupᵢ
→ ciSup
cinfᵢ
→ ciInf
unionₛ
→ sUnion
interₛ
→ sInter
unionᵢ
→ iUnion
interᵢ
→ iInter
bunionₛ
→ bsUnion
binterₛ
→ bsInter
bunionᵢ
→ biUnion
binterᵢ
→ biInter
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -218,33 +218,33 @@ theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by
theorem support_esymm'' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).bunionᵢ fun t =>
+ (powersetLen n (univ : Finset σ)).biUnion fun t =>
(Finsupp.single (∑ i : σ in t, Finsupp.single i 1) (1 : R)).support := by
rw [esymm_eq_sum_monomial]
simp only [← single_eq_monomial]
- refine' Finsupp.support_sum_eq_bunionᵢ (powersetLen n (univ : Finset σ)) _
+ refine' Finsupp.support_sum_eq_biUnion (powersetLen n (univ : Finset σ)) _
intro s t hst
rw [Finset.disjoint_left, Finsupp.support_single_ne_zero _ one_ne_zero]
rw [Finsupp.support_single_ne_zero _ one_ne_zero]
simp only [one_ne_zero, mem_singleton, Finsupp.mem_support_iff]
rintro a h rfl
have := congr_arg Finsupp.support h
- rw [Finsupp.support_sum_eq_bunionᵢ, Finsupp.support_sum_eq_bunionᵢ] at this
+ rw [Finsupp.support_sum_eq_biUnion, Finsupp.support_sum_eq_biUnion] at this
have hsingle : ∀ s : Finset σ, ∀ x : σ, x ∈ s → (Finsupp.single x 1).support = {x} := by
intros _ x _
rw [Finsupp.support_single_ne_zero x one_ne_zero]
- have hs := bunionᵢ_congr (of_eq_true (eq_self s)) (hsingle s)
- have ht := bunionᵢ_congr (of_eq_true (eq_self t)) (hsingle t)
+ have hs := biUnion_congr (of_eq_true (eq_self s)) (hsingle s)
+ have ht := biUnion_congr (of_eq_true (eq_self t)) (hsingle t)
rw [hs, ht] at this
simp only [Finsupp.support_single_ne_zero _ one_ne_zero] at this
- · simp only [bunionᵢ_singleton_eq_self] at this
+ · simp only [biUnion_singleton_eq_self] at this
exact absurd this hst.symm
all_goals intro x y; simp [Finsupp.support_single_disjoint]
#align mv_polynomial.support_esymm'' MvPolynomial.support_esymm''
theorem support_esymm' (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
- (powersetLen n (univ : Finset σ)).bunionᵢ fun t => {∑ i : σ in t, Finsupp.single i 1} := by
+ (powersetLen n (univ : Finset σ)).biUnion fun t => {∑ i : σ in t, Finsupp.single i 1} := by
rw [support_esymm'']
congr
funext
@@ -255,7 +255,7 @@ theorem support_esymm (n : ℕ) [DecidableEq σ] [Nontrivial R] :
(esymm σ R n).support =
(powersetLen n (univ : Finset σ)).image fun t => ∑ i : σ in t, Finsupp.single i 1 := by
rw [support_esymm']
- exact bunionᵢ_singleton
+ exact biUnion_singleton
#align mv_polynomial.support_esymm MvPolynomial.support_esymm
theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintype.card σ) :
by
s! (#3825)
This PR puts, with one exception, every single remaining by
that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh
. The exception is when the by
begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.
Essentially this is s/\n *by$/ by/g
, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated by
s".
@@ -262,8 +262,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
(esymm σ R n).degrees = (univ : Finset σ).val := by
classical
have :
- (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val :=
- by
+ (Finsupp.toMultiset ∘ fun t : Finset σ => ∑ i : σ in t, Finsupp.single i 1) = Finset.val := by
funext
simp [Finsupp.toMultiset_sum_single]
rw [degrees, support_esymm, sup_image, this]
finset.sup_finset_image
(#3713)
Match https://github.com/leanprover-community/mathlib/pull/18893
Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Hanting Zhang, Johan Commelin
! This file was ported from Lean 3 source module ring_theory.mv_polynomial.symmetric
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit c813ed7de0f5115f956239124e9b30f3a621966f
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -266,7 +266,7 @@ theorem degrees_esymm [Nontrivial R] (n : ℕ) (hpos : 0 < n) (hn : n ≤ Fintyp
by
funext
simp [Finsupp.toMultiset_sum_single]
- rw [degrees, support_esymm, sup_finset_image, this]
+ rw [degrees, support_esymm, sup_image, this]
have : ((powersetLen n univ).sup (fun (x : Finset σ) => x)).val
= sup (powersetLen n univ) val := by
refine' comp_sup_eq_sup_comp _ _ _
_root_
(#3630)
Mathport doesn't understand this, and apparently nor do many of the humans fixing the errors it creates.
If your #align
statement complains the def doesn't exist, don't change the #align; work out why it doesn't exist instead.
Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -60,11 +60,11 @@ def esymm (s : Multiset R) (n : ℕ) : R :=
((s.powersetLen n).map Multiset.prod).sum
#align multiset.esymm Multiset.esymm
-theorem Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
+theorem _root_.Finset.esymm_map_val {σ} (f : σ → R) (s : Finset σ) (n : ℕ) :
(s.val.map f).esymm n = (s.powersetLen n).sum fun t => t.prod f := by
simp only [esymm, powersetLen_map, ← Finset.map_val_val_powersetLen, map_map]
rfl
-#align finset.esymm_map_val Multiset.Finset.esymm_map_val
+#align finset.esymm_map_val Finset.esymm_map_val
end Multiset
@@ -169,12 +169,12 @@ def esymm (n : ℕ) : MvPolynomial σ R :=
/-- The `n`th elementary symmetric `MvPolynomial σ R` is obtained by evaluating the
`n`th elementary symmetric at the `Multiset` of the monomials -/
theorem esymm_eq_multiset_esymm : esymm σ R = (Finset.univ.val.map X).esymm := by
- refine' funext fun n => (Multiset.Finset.esymm_map_val X _ n).symm
+ refine' funext fun n => (Finset.esymm_map_val X _ n).symm
#align mv_polynomial.esymm_eq_multiset_esymm MvPolynomial.esymm_eq_multiset_esymm
theorem aeval_esymm_eq_multiset_esymm [Algebra R S] (f : σ → S) (n : ℕ) :
aeval f (esymm σ R n) = (Finset.univ.val.map f).esymm n := by
- simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, Multiset.Finset.esymm_map_val]
+ simp_rw [esymm, aeval_sum, aeval_prod, aeval_X, Finset.esymm_map_val]
#align mv_polynomial.aeval_esymm_eq_multiset_esymm MvPolynomial.aeval_esymm_eq_multiset_esymm
/-- We can define `esymm σ R n` by summing over a subtype instead of over `powerset_len`. -/
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -209,7 +209,6 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
dsimp [mapEmbedding, OrderEmbedding.ofMapLEIff]
simp
_ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
-
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
theorem esymm_isSymmetric (n : ℕ) : IsSymmetric (esymm σ R n) := by
The changes I made were.
Use FunLike.coe
instead of the previous definition for the coercion from RelEmbedding
To functions and OrderIso
to functions. The previous definition was
instance : CoeFun (r ↪r s) fun _ => α → β :=
-- ⟨fun o => o.toEmbedding⟩
This does not display nicely.
I also restored the simp
attributes on a few lemmas that had their simp
attributes removed during the port. Eventually
we might want a RelEmbeddingLike
class, but this PR does not implement that.
I also added a few lemmas that proved that coercions to function commute with RelEmbedding.toRelHom
or similar.
The other changes are just fixing the build. One strange issue is that the lemma Finset.mapEmbedding_apply
seems to be harder to use, it has to be used with rw
instead of simp
Co-authored-by: Chris Hughes <33847686+ChrisHughes24@users.noreply.github.com>
@@ -205,6 +205,9 @@ theorem rename_esymm (n : ℕ) (e : σ ≃ τ) : rename e (esymm σ R n) = esymm
simp_rw [esymm, map_sum, map_prod, rename_X]
_ = ∑ t in powersetLen n (univ.map e.toEmbedding), ∏ i in t, X i := by
simp [Finset.powersetLen_map, -Finset.map_univ_equiv]
+ --Porting note: Why did `mapEmbedding_apply` not work?
+ dsimp [mapEmbedding, OrderEmbedding.ofMapLEIff]
+ simp
_ = ∑ t in powersetLen n univ, ∏ i in t, X i := by rw [Finset.map_univ_equiv]
#align mv_polynomial.rename_esymm MvPolynomial.rename_esymm
@@ -32,9 +32,9 @@ We also prove some basic facts about them.
As in other polynomial files, we typically use the notation:
-+ `σ τ : Type*` (indexing the variables)
++ `σ τ : Type _` (indexing the variables)
-+ `R S : Type*` `[CommSemiring R]` `[CommSemiring S]` (the coefficients)
++ `R S : Type _` `[CommSemiring R]` `[CommSemiring S]` (the coefficients)
+ `r : R` elements of the coefficient ring
@@ -83,12 +83,11 @@ def IsSymmetric [CommSemiring R] (φ : MvPolynomial σ R) : Prop :=
variable (σ R)
/-- The subalgebra of symmetric `MvPolynomial`s. -/
-def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R)
- where
+def symmetricSubalgebra [CommSemiring R] : Subalgebra R (MvPolynomial σ R) where
carrier := setOf IsSymmetric
algebraMap_mem' r e := rename_C e r
- mul_mem' := @fun a b ha hb e => by rw [AlgHom.map_mul, ha, hb]
- add_mem' := @fun a b ha hb e => by rw [AlgHom.map_add, ha, hb]
+ mul_mem' ha hb e := by rw [AlgHom.map_mul, ha, hb]
+ add_mem' ha hb e := by rw [AlgHom.map_add, ha, hb]
#align mv_polynomial.symmetric_subalgebra MvPolynomial.symmetricSubalgebra
variable {σ R}
@@ -106,10 +105,10 @@ section CommSemiring
variable [CommSemiring R] [CommSemiring S] {φ ψ : MvPolynomial σ R}
@[simp]
-theorem c (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
+theorem C (r : R) : IsSymmetric (C r : MvPolynomial σ R) :=
(symmetricSubalgebra σ R).algebraMap_mem r
set_option linter.uppercaseLean3 false in
-#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.c
+#align mv_polynomial.is_symmetric.C MvPolynomial.IsSymmetric.C
@[simp]
theorem zero : IsSymmetric (0 : MvPolynomial σ R) :=
The unported dependencies are