ring_theory.polynomial.content
⟷
Mathlib.RingTheory.Polynomial.Content
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -4,9 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Algebra.GCDMonoid.Finset
-import Data.Polynomial.FieldDivision
-import Data.Polynomial.EraseLead
-import Data.Polynomial.CancelLeads
+import Algebra.Polynomial.FieldDivision
+import Algebra.Polynomial.EraseLead
+import Algebra.Polynomial.CancelLeads
#align_import ring_theory.polynomial.content from "leanprover-community/mathlib"@"cb3ceec8485239a61ed51d944cb9a95b68c6bafc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
-import Algebra.GcdMonoid.Finset
+import Algebra.GCDMonoid.Finset
import Data.Polynomial.FieldDivision
import Data.Polynomial.EraseLead
import Data.Polynomial.CancelLeads
@@ -167,7 +167,7 @@ theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
by
induction' k with k hi
· simp
- rw [pow_succ, content_X_mul, hi]
+ rw [pow_succ', content_X_mul, hi]
#align polynomial.content_X_pow Polynomial.content_X_pow
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -103,7 +103,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
by
by_cases h : n ∈ p.support
· apply Finset.gcd_dvd h
- rw [mem_support_iff, Classical.not_not] at h
+ rw [mem_support_iff, Classical.not_not] at h
rw [h]
apply dvd_zero
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
@@ -201,8 +201,8 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
· ext n
by_cases h0 : n ∈ p.support
· rw [h n h0, coeff_zero]
- · rw [mem_support_iff] at h0
- push_neg at h0
+ · rw [mem_support_iff] at h0
+ push_neg at h0
simp [h0]
· intro x h0
simp [h]
@@ -246,11 +246,11 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
by
by_cases h : p = 0
· simp [h]
- rw [← leading_coeff_eq_zero, leading_coeff, ← Ne.def, ← mem_support_iff] at h
+ rw [← leading_coeff_eq_zero, leading_coeff, ← Ne.def, ← mem_support_iff] at h
rw [content, ← Finset.insert_erase h, Finset.gcd_insert, leading_coeff, content,
erase_lead_support]
refine' congr rfl (Finset.gcd_congr rfl fun i hi => _)
- rw [Finset.mem_erase] at hi
+ rw [Finset.mem_erase] at hi
rw [erase_lead_coeff, if_neg hi.1]
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
-/
@@ -323,7 +323,7 @@ theorem primPart_zero : primPart (0 : R[X]) = 1 :=
theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
by
by_cases h : p = 0; · simp [h]
- rw [← content_eq_zero_iff] at h
+ rw [← content_eq_zero_iff] at h
rw [is_primitive_iff_content_eq_one]
apply mul_left_cancel₀ h
conv_rhs => rw [p.eq_C_content_mul_prim_part, mul_one, content_C_mul, normalize_content]
@@ -346,7 +346,7 @@ theorem primPart_ne_zero (p : R[X]) : p.primPart ≠ 0 :=
theorem natDegree_primPart (p : R[X]) : p.primPart.natDegree = p.natDegree :=
by
by_cases h : C p.content = 0
- · rw [C_eq_zero, content_eq_zero_iff] at h ; simp [h]
+ · rw [C_eq_zero, content_eq_zero_iff] at h; simp [h]
conv_rhs =>
rw [p.eq_C_content_mul_prim_part, nat_degree_mul h p.prim_part_ne_zero, nat_degree_C, zero_add]
#align polynomial.nat_degree_prim_part Polynomial.natDegree_primPart
@@ -369,7 +369,7 @@ theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
⟨⟨C ↑(norm_unit r)⁻¹, C ↑(norm_unit r), by rw [← RingHom.map_mul, Units.inv_mul, C_1], by
rw [← RingHom.map_mul, Units.mul_inv, C_1]⟩,
_⟩
- rw [← normalize_eq_zero, ← C_eq_zero] at h0
+ rw [← normalize_eq_zero, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_rhs => rw [← content_C, ← (C r).eq_C_content_mul_primPart]
simp only [Units.val_mk, normalize_apply, RingHom.map_mul]
@@ -388,10 +388,10 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 :=
by
- rw [eq_C_content_mul_prim_part p, map_mul, aeval_C] at hp
+ rw [eq_C_content_mul_prim_part p, map_mul, aeval_C] at hp
have hcont : p.content ≠ 0 := fun h => hpzero (content_eq_zero_iff.1 h)
replace hcont := Function.Injective.ne (NoZeroSMulDivisors.algebraMap_injective R S) hcont
- rw [map_zero] at hcont
+ rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
-/
@@ -401,10 +401,10 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 :=
by
- rw [eq_C_content_mul_prim_part p, eval₂_mul, eval₂_C] at hp
+ rw [eq_C_content_mul_prim_part p, eval₂_mul, eval₂_C] at hp
have hcont : p.content ≠ 0 := fun h => hpzero (content_eq_zero_iff.1 h)
replace hcont := Function.Injective.ne hinj hcont
- rw [map_zero] at hcont
+ rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zero
-/
@@ -450,7 +450,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
intro n
induction' n with n ih
· intro p q hpq
- rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
+ rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
rcases hpq with (rfl | rfl) <;> simp
intro p q hpq
by_cases p0 : p = 0
@@ -458,11 +458,11 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
by_cases q0 : q = 0
· simp [q0]
rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
- WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
+ WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
rcases hpq with (hlt | heq)
· apply ih _ _ hlt
rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
- degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
+ degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
suffices h : (q.prim_part * p.prim_part).content = 1
·
@@ -497,7 +497,7 @@ theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
@[simp]
theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) : (p * q).primPart = p.primPart * q.primPart :=
by
- rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
+ rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_lhs =>
rw [← (p * q).eq_C_content_mul_primPart, p.eq_C_content_mul_prim_part,
@@ -536,24 +536,24 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
Nat.find_min' h
⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
(hq.dvd_prim_part_iff_dvd s0).2 qs⟩
- rw [← rdeg] at hs
+ rw [← rdeg] at hs
by_cases sC : s.nat_degree ≤ 0
· rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
- normalize_eq_one] at rprim
- rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
+ normalize_eq_one] at rprim
+ rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
apply rs rprim.dvd
have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
- rw [sdeg] at hcancel
+ rw [sdeg] at hcancel
apply Nat.find_min Con hcancel
refine'
⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
fun rcs => rs _⟩
rw [← rprim.dvd_prim_part_iff_dvd s0]
- rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
+ rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
have h := dvd_add rcs (Dvd.intro_left _ rfl)
have hC0 := rprim.ne_zero
- rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
- rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
+ rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
+ rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
apply h.trans (Associated.symm ⟨u, _⟩).Dvd
rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
@@ -584,7 +584,7 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
by_cases hs : s = 0
· simp [hs]
by_cases hpq : C (lcm p.content q.content) = 0
- · rw [C_eq_zero, lcm_eq_zero_iff, content_eq_zero_iff, content_eq_zero_iff] at hpq
+ · rw [C_eq_zero, lcm_eq_zero_iff, content_eq_zero_iff, content_eq_zero_iff] at hpq
rcases hpq with (hpq | hpq) <;> simp [hpq, hs]
iterate 3 rw [dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part hs]
rw [content_mul, rprim.content_eq_one, mul_one, content_C, normalize_lcm, lcm_dvd_iff,
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -442,7 +442,47 @@ theorem content_mul_aux {p q : R[X]} :
#print Polynomial.content_mul /-
@[simp]
-theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by classical
+theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
+ classical
+ suffices h : ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content
+ · apply h
+ apply lt_of_le_of_lt degree_le_nat_degree (WithBot.coe_lt_coe.2 (Nat.lt_succ_self _))
+ intro n
+ induction' n with n ih
+ · intro p q hpq
+ rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
+ rcases hpq with (rfl | rfl) <;> simp
+ intro p q hpq
+ by_cases p0 : p = 0
+ · simp [p0]
+ by_cases q0 : q = 0
+ · simp [q0]
+ rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
+ WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
+ rcases hpq with (hlt | heq)
+ · apply ih _ _ hlt
+ rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
+ degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
+ rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
+ suffices h : (q.prim_part * p.prim_part).content = 1
+ ·
+ rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.prim_part, mul_assoc, content_C_mul,
+ content_C_mul, h, mul_one, content_prim_part, content_prim_part, mul_one, mul_one]
+ rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
+ content_eq_gcd_leading_coeff_content_erase_lead, leading_coeff_mul, gcd_comm]
+ apply (gcd_mul_dvd_mul_gcd _ _ _).trans
+ rw [content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
+ content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part, one_mul,
+ mul_comm q.prim_part, content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
+ content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part]
+ · rw [← HEq, degree_mul, WithBot.add_lt_add_iff_right]
+ · apply degree_erase_lt p.prim_part_ne_zero
+ · rw [Ne.def, degree_eq_bot]
+ apply q.prim_part_ne_zero
+ · rw [mul_comm, ← HEq, degree_mul, WithBot.add_lt_add_iff_left]
+ · apply degree_erase_lt q.prim_part_ne_zero
+ · rw [Ne.def, degree_eq_bot]
+ apply p.prim_part_ne_zero
#align polynomial.content_mul Polynomial.content_mul
-/
@@ -480,7 +520,43 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
#print Polynomial.exists_primitive_lcm_of_isPrimitive /-
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
- ∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by classical
+ ∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
+ classical
+ have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
+ ⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
+ rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
+ refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
+ suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
+ · apply hs s.nat_degree s rfl
+ clear s
+ by_contra! con
+ rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
+ have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
+ have hs :=
+ Nat.find_min' h
+ ⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
+ (hq.dvd_prim_part_iff_dvd s0).2 qs⟩
+ rw [← rdeg] at hs
+ by_cases sC : s.nat_degree ≤ 0
+ · rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
+ normalize_eq_one] at rprim
+ rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
+ apply rs rprim.dvd
+ have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
+ rw [sdeg] at hcancel
+ apply Nat.find_min Con hcancel
+ refine'
+ ⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
+ fun rcs => rs _⟩
+ rw [← rprim.dvd_prim_part_iff_dvd s0]
+ rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
+ have h := dvd_add rcs (Dvd.intro_left _ rfl)
+ have hC0 := rprim.ne_zero
+ rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
+ rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
+ rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
+ apply h.trans (Associated.symm ⟨u, _⟩).Dvd
+ rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
#align polynomial.exists_primitive_lcm_of_is_primitive Polynomial.exists_primitive_lcm_of_isPrimitive
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -442,47 +442,7 @@ theorem content_mul_aux {p q : R[X]} :
#print Polynomial.content_mul /-
@[simp]
-theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
- classical
- suffices h : ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content
- · apply h
- apply lt_of_le_of_lt degree_le_nat_degree (WithBot.coe_lt_coe.2 (Nat.lt_succ_self _))
- intro n
- induction' n with n ih
- · intro p q hpq
- rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
- rcases hpq with (rfl | rfl) <;> simp
- intro p q hpq
- by_cases p0 : p = 0
- · simp [p0]
- by_cases q0 : q = 0
- · simp [q0]
- rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
- WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
- rcases hpq with (hlt | heq)
- · apply ih _ _ hlt
- rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
- degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
- rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
- suffices h : (q.prim_part * p.prim_part).content = 1
- ·
- rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.prim_part, mul_assoc, content_C_mul,
- content_C_mul, h, mul_one, content_prim_part, content_prim_part, mul_one, mul_one]
- rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
- content_eq_gcd_leading_coeff_content_erase_lead, leading_coeff_mul, gcd_comm]
- apply (gcd_mul_dvd_mul_gcd _ _ _).trans
- rw [content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
- content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part, one_mul,
- mul_comm q.prim_part, content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
- content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part]
- · rw [← HEq, degree_mul, WithBot.add_lt_add_iff_right]
- · apply degree_erase_lt p.prim_part_ne_zero
- · rw [Ne.def, degree_eq_bot]
- apply q.prim_part_ne_zero
- · rw [mul_comm, ← HEq, degree_mul, WithBot.add_lt_add_iff_left]
- · apply degree_erase_lt q.prim_part_ne_zero
- · rw [Ne.def, degree_eq_bot]
- apply p.prim_part_ne_zero
+theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by classical
#align polynomial.content_mul Polynomial.content_mul
-/
@@ -520,43 +480,7 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
#print Polynomial.exists_primitive_lcm_of_isPrimitive /-
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
- ∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
- classical
- have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
- ⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
- rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
- refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
- suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
- · apply hs s.nat_degree s rfl
- clear s
- by_contra! con
- rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
- have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
- have hs :=
- Nat.find_min' h
- ⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
- (hq.dvd_prim_part_iff_dvd s0).2 qs⟩
- rw [← rdeg] at hs
- by_cases sC : s.nat_degree ≤ 0
- · rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
- normalize_eq_one] at rprim
- rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
- apply rs rprim.dvd
- have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
- rw [sdeg] at hcancel
- apply Nat.find_min Con hcancel
- refine'
- ⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
- fun rcs => rs _⟩
- rw [← rprim.dvd_prim_part_iff_dvd s0]
- rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
- have h := dvd_add rcs (Dvd.intro_left _ rfl)
- have hC0 := rprim.ne_zero
- rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
- rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
- rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
- apply h.trans (Associated.symm ⟨u, _⟩).Dvd
- rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
+ ∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by classical
#align polynomial.exists_primitive_lcm_of_is_primitive Polynomial.exists_primitive_lcm_of_isPrimitive
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -529,7 +529,7 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
· apply hs s.nat_degree s rfl
clear s
- by_contra' con
+ by_contra! con
rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
have hs :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
-import Mathbin.Algebra.GcdMonoid.Finset
-import Mathbin.Data.Polynomial.FieldDivision
-import Mathbin.Data.Polynomial.EraseLead
-import Mathbin.Data.Polynomial.CancelLeads
+import Algebra.GcdMonoid.Finset
+import Data.Polynomial.FieldDivision
+import Data.Polynomial.EraseLead
+import Data.Polynomial.CancelLeads
#align_import ring_theory.polynomial.content from "leanprover-community/mathlib"@"cb3ceec8485239a61ed51d944cb9a95b68c6bafc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-
-! This file was ported from Lean 3 source module ring_theory.polynomial.content
-! leanprover-community/mathlib commit cb3ceec8485239a61ed51d944cb9a95b68c6bafc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.GcdMonoid.Finset
import Mathbin.Data.Polynomial.FieldDivision
import Mathbin.Data.Polynomial.EraseLead
import Mathbin.Data.Polynomial.CancelLeads
+#align_import ring_theory.polynomial.content from "leanprover-community/mathlib"@"cb3ceec8485239a61ed51d944cb9a95b68c6bafc"
+
/-!
# GCD structures on polynomials
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -51,9 +51,11 @@ def IsPrimitive (p : R[X]) : Prop :=
#align polynomial.is_primitive Polynomial.IsPrimitive
-/
+#print Polynomial.isPrimitive_iff_isUnit_of_C_dvd /-
theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvd
+-/
#print Polynomial.isPrimitive_one /-
@[simp]
@@ -110,6 +112,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
-/
+#print Polynomial.content_C /-
@[simp]
theorem content_C {r : R} : (C r).content = normalize r :=
by
@@ -119,14 +122,19 @@ theorem content_C {r : R} : (C r).content = normalize r :=
have h : (C r).support = {0} := support_monomial _ h0
simp [h]
#align polynomial.content_C Polynomial.content_C
+-/
+#print Polynomial.content_zero /-
@[simp]
theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, normalize_zero]
#align polynomial.content_zero Polynomial.content_zero
+-/
+#print Polynomial.content_one /-
@[simp]
theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, normalize_one]
#align polynomial.content_one Polynomial.content_one
+-/
#print Polynomial.content_X_mul /-
theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
@@ -156,6 +164,7 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
#align polynomial.content_X_mul Polynomial.content_X_mul
-/
+#print Polynomial.content_X_pow /-
@[simp]
theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
by
@@ -163,23 +172,31 @@ theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
· simp
rw [pow_succ, content_X_mul, hi]
#align polynomial.content_X_pow Polynomial.content_X_pow
+-/
+#print Polynomial.content_X /-
@[simp]
theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
#align polynomial.content_X Polynomial.content_X
+-/
+#print Polynomial.content_C_mul /-
theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
by_cases h0 : r = 0; · simp [h0]
rw [content]; rw [content]; rw [← Finset.gcd_mul_left]
refine' congr (congr rfl _) _ <;> ext <;> simp [h0, mem_support_iff]
#align polynomial.content_C_mul Polynomial.content_C_mul
+-/
+#print Polynomial.content_monomial /-
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
rw [← C_mul_X_pow_eq_monomial, content_C_mul, content_X_pow, mul_one]
#align polynomial.content_monomial Polynomial.content_monomial
+-/
+#print Polynomial.content_eq_zero_iff /-
theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
by
rw [content, Finset.gcd_eq_zero_iff]
@@ -193,11 +210,14 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
· intro x h0
simp [h]
#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iff
+-/
+#print Polynomial.normalize_content /-
@[simp]
theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
Finset.normalize_gcd
#align polynomial.normalize_content Polynomial.normalize_content
+-/
#print Polynomial.content_eq_gcd_range_of_lt /-
theorem content_eq_gcd_range_of_lt (p : R[X]) (n : ℕ) (h : p.natDegree < n) :
@@ -238,6 +258,7 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
-/
+#print Polynomial.dvd_content_iff_C_dvd /-
theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
rw [C_dvd_iff_dvd_coeff]
@@ -249,21 +270,28 @@ theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p
intro i hi
apply h i
#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvd
+-/
+#print Polynomial.C_content_dvd /-
theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
dvd_content_iff_C_dvd.1 dvd_rfl
#align polynomial.C_content_dvd Polynomial.C_content_dvd
+-/
+#print Polynomial.isPrimitive_iff_content_eq_one /-
theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content = 1 :=
by
rw [← normalize_content, normalize_eq_one, is_primitive]
simp_rw [← dvd_content_iff_C_dvd]
exact ⟨fun h => h p.content (dvd_refl p.content), fun h r hdvd => isUnit_of_dvd_unit hdvd h⟩
#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_one
+-/
+#print Polynomial.IsPrimitive.content_eq_one /-
theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content = 1 :=
isPrimitive_iff_content_eq_one.mp hp
#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_one
+-/
open scoped Classical
@@ -279,11 +307,13 @@ def primPart (p : R[X]) : R[X] :=
#align polynomial.prim_part Polynomial.primPart
-/
+#print Polynomial.eq_C_content_mul_primPart /-
theorem eq_C_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
by_cases h : p = 0; · simp [h]
rw [prim_part, if_neg h, ← Classical.choose_spec (C_content_dvd p)]
#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPart
+-/
#print Polynomial.primPart_zero /-
@[simp]
@@ -303,9 +333,11 @@ theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
#align polynomial.is_primitive_prim_part Polynomial.isPrimitive_primPart
-/
+#print Polynomial.content_primPart /-
theorem content_primPart (p : R[X]) : p.primPart.content = 1 :=
p.isPrimitive_primPart.content_eq_one
#align polynomial.content_prim_part Polynomial.content_primPart
+-/
#print Polynomial.primPart_ne_zero /-
theorem primPart_ne_zero (p : R[X]) : p.primPart ≠ 0 :=
@@ -330,6 +362,7 @@ theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p
#align polynomial.is_primitive.prim_part_eq Polynomial.IsPrimitive.primPart_eq
-/
+#print Polynomial.isUnit_primPart_C /-
theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
by
by_cases h0 : r = 0
@@ -345,6 +378,7 @@ theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
simp only [Units.val_mk, normalize_apply, RingHom.map_mul]
rw [mul_assoc, ← RingHom.map_mul, Units.mul_inv, C_1, mul_one]
#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_C
+-/
#print Polynomial.primPart_dvd /-
theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
@@ -352,6 +386,7 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
#align polynomial.prim_part_dvd Polynomial.primPart_dvd
-/
+#print Polynomial.aeval_primPart_eq_zero /-
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 :=
@@ -362,7 +397,9 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
+-/
+#print Polynomial.eval₂_primPart_eq_zero /-
theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 :=
@@ -373,9 +410,11 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zero
+-/
end PrimPart
+#print Polynomial.gcd_content_eq_of_dvd_sub /-
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
by
@@ -389,6 +428,7 @@ theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
use w.coeff x
rw [← coeff_sub, hw, coeff_C_mul]
#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_sub
+-/
#print Polynomial.content_mul_aux /-
theorem content_mul_aux {p q : R[X]} :
@@ -403,6 +443,7 @@ theorem content_mul_aux {p q : R[X]} :
#align polynomial.content_mul_aux Polynomial.content_mul_aux
-/
+#print Polynomial.content_mul /-
@[simp]
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
classical
@@ -446,6 +487,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
· rw [Ne.def, degree_eq_bot]
apply p.prim_part_ne_zero
#align polynomial.content_mul Polynomial.content_mul
+-/
#print Polynomial.IsPrimitive.mul /-
theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -188,7 +188,7 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
by_cases h0 : n ∈ p.support
· rw [h n h0, coeff_zero]
· rw [mem_support_iff] at h0
- push_neg at h0
+ push_neg at h0
simp [h0]
· intro x h0
simp [h]
@@ -406,46 +406,45 @@ theorem content_mul_aux {p q : R[X]} :
@[simp]
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
classical
- suffices h :
- ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content
- · apply h
- apply lt_of_le_of_lt degree_le_nat_degree (WithBot.coe_lt_coe.2 (Nat.lt_succ_self _))
- intro n
- induction' n with n ih
- · intro p q hpq
- rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
- rcases hpq with (rfl | rfl) <;> simp
- intro p q hpq
- by_cases p0 : p = 0
- · simp [p0]
- by_cases q0 : q = 0
- · simp [q0]
- rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
- WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
- rcases hpq with (hlt | heq)
- · apply ih _ _ hlt
- rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
- degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
- rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
- suffices h : (q.prim_part * p.prim_part).content = 1
- ·
- rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.prim_part, mul_assoc, content_C_mul,
- content_C_mul, h, mul_one, content_prim_part, content_prim_part, mul_one, mul_one]
- rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
- content_eq_gcd_leading_coeff_content_erase_lead, leading_coeff_mul, gcd_comm]
- apply (gcd_mul_dvd_mul_gcd _ _ _).trans
- rw [content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
- content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part, one_mul,
- mul_comm q.prim_part, content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
- content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part]
- · rw [← HEq, degree_mul, WithBot.add_lt_add_iff_right]
- · apply degree_erase_lt p.prim_part_ne_zero
- · rw [Ne.def, degree_eq_bot]
- apply q.prim_part_ne_zero
- · rw [mul_comm, ← HEq, degree_mul, WithBot.add_lt_add_iff_left]
- · apply degree_erase_lt q.prim_part_ne_zero
- · rw [Ne.def, degree_eq_bot]
- apply p.prim_part_ne_zero
+ suffices h : ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content
+ · apply h
+ apply lt_of_le_of_lt degree_le_nat_degree (WithBot.coe_lt_coe.2 (Nat.lt_succ_self _))
+ intro n
+ induction' n with n ih
+ · intro p q hpq
+ rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
+ rcases hpq with (rfl | rfl) <;> simp
+ intro p q hpq
+ by_cases p0 : p = 0
+ · simp [p0]
+ by_cases q0 : q = 0
+ · simp [q0]
+ rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
+ WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
+ rcases hpq with (hlt | heq)
+ · apply ih _ _ hlt
+ rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
+ degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
+ rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
+ suffices h : (q.prim_part * p.prim_part).content = 1
+ ·
+ rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.prim_part, mul_assoc, content_C_mul,
+ content_C_mul, h, mul_one, content_prim_part, content_prim_part, mul_one, mul_one]
+ rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
+ content_eq_gcd_leading_coeff_content_erase_lead, leading_coeff_mul, gcd_comm]
+ apply (gcd_mul_dvd_mul_gcd _ _ _).trans
+ rw [content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
+ content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part, one_mul,
+ mul_comm q.prim_part, content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ←
+ content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part]
+ · rw [← HEq, degree_mul, WithBot.add_lt_add_iff_right]
+ · apply degree_erase_lt p.prim_part_ne_zero
+ · rw [Ne.def, degree_eq_bot]
+ apply q.prim_part_ne_zero
+ · rw [mul_comm, ← HEq, degree_mul, WithBot.add_lt_add_iff_left]
+ · apply degree_erase_lt q.prim_part_ne_zero
+ · rw [Ne.def, degree_eq_bot]
+ apply p.prim_part_ne_zero
#align polynomial.content_mul Polynomial.content_mul
#print Polynomial.IsPrimitive.mul /-
@@ -484,41 +483,41 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
classical
- have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
- ⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
- rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
- refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
- suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
- · apply hs s.nat_degree s rfl
- clear s
- by_contra' con
- rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
- have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
- have hs :=
- Nat.find_min' h
- ⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
- (hq.dvd_prim_part_iff_dvd s0).2 qs⟩
- rw [← rdeg] at hs
- by_cases sC : s.nat_degree ≤ 0
- · rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
- normalize_eq_one] at rprim
- rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
- apply rs rprim.dvd
- have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
- rw [sdeg] at hcancel
- apply Nat.find_min Con hcancel
- refine'
- ⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
- fun rcs => rs _⟩
- rw [← rprim.dvd_prim_part_iff_dvd s0]
- rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
- have h := dvd_add rcs (Dvd.intro_left _ rfl)
- have hC0 := rprim.ne_zero
- rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
- rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
- rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
- apply h.trans (Associated.symm ⟨u, _⟩).Dvd
- rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
+ have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
+ ⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
+ rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
+ refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
+ suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
+ · apply hs s.nat_degree s rfl
+ clear s
+ by_contra' con
+ rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
+ have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
+ have hs :=
+ Nat.find_min' h
+ ⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
+ (hq.dvd_prim_part_iff_dvd s0).2 qs⟩
+ rw [← rdeg] at hs
+ by_cases sC : s.nat_degree ≤ 0
+ · rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
+ normalize_eq_one] at rprim
+ rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
+ apply rs rprim.dvd
+ have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
+ rw [sdeg] at hcancel
+ apply Nat.find_min Con hcancel
+ refine'
+ ⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
+ fun rcs => rs _⟩
+ rw [← rprim.dvd_prim_part_iff_dvd s0]
+ rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
+ have h := dvd_add rcs (Dvd.intro_left _ rfl)
+ have hC0 := rprim.ne_zero
+ rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
+ rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
+ rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
+ apply h.trans (Associated.symm ⟨u, _⟩).Dvd
+ rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
#align polynomial.exists_primitive_lcm_of_is_primitive Polynomial.exists_primitive_lcm_of_isPrimitive
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -104,7 +104,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
by
by_cases h : n ∈ p.support
· apply Finset.gcd_dvd h
- rw [mem_support_iff, Classical.not_not] at h
+ rw [mem_support_iff, Classical.not_not] at h
rw [h]
apply dvd_zero
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
@@ -187,8 +187,8 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
· ext n
by_cases h0 : n ∈ p.support
· rw [h n h0, coeff_zero]
- · rw [mem_support_iff] at h0
- push_neg at h0
+ · rw [mem_support_iff] at h0
+ push_neg at h0
simp [h0]
· intro x h0
simp [h]
@@ -229,11 +229,11 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
by
by_cases h : p = 0
· simp [h]
- rw [← leading_coeff_eq_zero, leading_coeff, ← Ne.def, ← mem_support_iff] at h
+ rw [← leading_coeff_eq_zero, leading_coeff, ← Ne.def, ← mem_support_iff] at h
rw [content, ← Finset.insert_erase h, Finset.gcd_insert, leading_coeff, content,
erase_lead_support]
refine' congr rfl (Finset.gcd_congr rfl fun i hi => _)
- rw [Finset.mem_erase] at hi
+ rw [Finset.mem_erase] at hi
rw [erase_lead_coeff, if_neg hi.1]
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
-/
@@ -296,7 +296,7 @@ theorem primPart_zero : primPart (0 : R[X]) = 1 :=
theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
by
by_cases h : p = 0; · simp [h]
- rw [← content_eq_zero_iff] at h
+ rw [← content_eq_zero_iff] at h
rw [is_primitive_iff_content_eq_one]
apply mul_left_cancel₀ h
conv_rhs => rw [p.eq_C_content_mul_prim_part, mul_one, content_C_mul, normalize_content]
@@ -317,7 +317,7 @@ theorem primPart_ne_zero (p : R[X]) : p.primPart ≠ 0 :=
theorem natDegree_primPart (p : R[X]) : p.primPart.natDegree = p.natDegree :=
by
by_cases h : C p.content = 0
- · rw [C_eq_zero, content_eq_zero_iff] at h; simp [h]
+ · rw [C_eq_zero, content_eq_zero_iff] at h ; simp [h]
conv_rhs =>
rw [p.eq_C_content_mul_prim_part, nat_degree_mul h p.prim_part_ne_zero, nat_degree_C, zero_add]
#align polynomial.nat_degree_prim_part Polynomial.natDegree_primPart
@@ -339,7 +339,7 @@ theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
⟨⟨C ↑(norm_unit r)⁻¹, C ↑(norm_unit r), by rw [← RingHom.map_mul, Units.inv_mul, C_1], by
rw [← RingHom.map_mul, Units.mul_inv, C_1]⟩,
_⟩
- rw [← normalize_eq_zero, ← C_eq_zero] at h0
+ rw [← normalize_eq_zero, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_rhs => rw [← content_C, ← (C r).eq_C_content_mul_primPart]
simp only [Units.val_mk, normalize_apply, RingHom.map_mul]
@@ -356,10 +356,10 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 :=
by
- rw [eq_C_content_mul_prim_part p, map_mul, aeval_C] at hp
+ rw [eq_C_content_mul_prim_part p, map_mul, aeval_C] at hp
have hcont : p.content ≠ 0 := fun h => hpzero (content_eq_zero_iff.1 h)
replace hcont := Function.Injective.ne (NoZeroSMulDivisors.algebraMap_injective R S) hcont
- rw [map_zero] at hcont
+ rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
@@ -367,10 +367,10 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 :=
by
- rw [eq_C_content_mul_prim_part p, eval₂_mul, eval₂_C] at hp
+ rw [eq_C_content_mul_prim_part p, eval₂_mul, eval₂_C] at hp
have hcont : p.content ≠ 0 := fun h => hpzero (content_eq_zero_iff.1 h)
replace hcont := Function.Injective.ne hinj hcont
- rw [map_zero] at hcont
+ rw [map_zero] at hcont
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zero
@@ -413,7 +413,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
intro n
induction' n with n ih
· intro p q hpq
- rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
+ rw [WithBot.coe_zero, Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
rcases hpq with (rfl | rfl) <;> simp
intro p q hpq
by_cases p0 : p = 0
@@ -421,11 +421,11 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
by_cases q0 : q = 0
· simp [q0]
rw [degree_eq_nat_degree (mul_ne_zero p0 q0), WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
- WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
+ WithBot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq
rcases hpq with (hlt | heq)
· apply ih _ _ hlt
rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← WithBot.coe_eq_coe, WithBot.coe_add, ←
- degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
+ degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq
rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
suffices h : (q.prim_part * p.prim_part).content = 1
·
@@ -459,7 +459,7 @@ theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
@[simp]
theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) : (p * q).primPart = p.primPart * q.primPart :=
by
- rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
+ rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_lhs =>
rw [← (p * q).eq_C_content_mul_primPart, p.eq_C_content_mul_prim_part,
@@ -484,7 +484,7 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
classical
- have h : ∃ (n : ℕ)(r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
+ have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
@@ -498,24 +498,24 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
Nat.find_min' h
⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
(hq.dvd_prim_part_iff_dvd s0).2 qs⟩
- rw [← rdeg] at hs
+ rw [← rdeg] at hs
by_cases sC : s.nat_degree ≤ 0
· rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C,
- normalize_eq_one] at rprim
- rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
+ normalize_eq_one] at rprim
+ rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
apply rs rprim.dvd
have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC)
- rw [sdeg] at hcancel
+ rw [sdeg] at hcancel
apply Nat.find_min Con hcancel
refine'
⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩,
fun rcs => rs _⟩
rw [← rprim.dvd_prim_part_iff_dvd s0]
- rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
+ rw [cancel_leads, tsub_eq_zero_iff_le.mpr hs, pow_zero, mul_one] at rcs
have h := dvd_add rcs (Dvd.intro_left _ rfl)
have hC0 := rprim.ne_zero
- rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
- rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
+ rw [Ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0
+ rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h
rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩
apply h.trans (Associated.symm ⟨u, _⟩).Dvd
rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
@@ -546,7 +546,7 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
by_cases hs : s = 0
· simp [hs]
by_cases hpq : C (lcm p.content q.content) = 0
- · rw [C_eq_zero, lcm_eq_zero_iff, content_eq_zero_iff, content_eq_zero_iff] at hpq
+ · rw [C_eq_zero, lcm_eq_zero_iff, content_eq_zero_iff, content_eq_zero_iff] at hpq
rcases hpq with (hpq | hpq) <;> simp [hpq, hs]
iterate 3 rw [dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part hs]
rw [content_mul, rprim.content_eq_one, mul_one, content_C, normalize_lcm, lcm_dvd_iff,
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -38,7 +38,7 @@ Let `p : R[X]`.
namespace Polynomial
-open Polynomial
+open scoped Polynomial
section Primitive
@@ -265,7 +265,7 @@ theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content =
isPrimitive_iff_content_eq_one.mp hp
#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_one
-open Classical
+open scoped Classical
noncomputable section
@@ -556,15 +556,19 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
#align polynomial.normalized_gcd_monoid Polynomial.normalizedGcdMonoid
-/
+#print Polynomial.degree_gcd_le_left /-
theorem degree_gcd_le_left {p : R[X]} (hp : p ≠ 0) (q) : (gcd p q).degree ≤ p.degree :=
by
have := nat_degree_le_iff_degree_le.mp (nat_degree_le_of_dvd (gcd_dvd_left p q) hp)
rwa [degree_eq_nat_degree hp]
#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_left
+-/
+#print Polynomial.degree_gcd_le_right /-
theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree := by
rw [gcd_comm]; exact degree_gcd_le_left hq p
#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_right
+-/
end NormalizedGCDMonoid
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -51,12 +51,6 @@ def IsPrimitive (p : R[X]) : Prop :=
#align polynomial.is_primitive Polynomial.IsPrimitive
-/
-/- warning: polynomial.is_primitive_iff_is_unit_of_C_dvd -> Polynomial.isPrimitive_iff_isUnit_of_C_dvd is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (CommSemiring.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (Polynomial.commSemiring.{u1} R _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvdₓ'. -/
theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvd
@@ -116,9 +110,6 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
-/
-/- warning: polynomial.content_C -> Polynomial.content_C is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.content_C Polynomial.content_Cₓ'. -/
@[simp]
theorem content_C {r : R} : (C r).content = normalize r :=
by
@@ -129,22 +120,10 @@ theorem content_C {r : R} : (C r).content = normalize r :=
simp [h]
#align polynomial.content_C Polynomial.content_C
-/- warning: polynomial.content_zero -> Polynomial.content_zero is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_zero Polynomial.content_zeroₓ'. -/
@[simp]
theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, normalize_zero]
#align polynomial.content_zero Polynomial.content_zero
-/- warning: polynomial.content_one -> Polynomial.content_one is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 1 (One.toOfNat1.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.one.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_one Polynomial.content_oneₓ'. -/
@[simp]
theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, normalize_one]
#align polynomial.content_one Polynomial.content_one
@@ -177,12 +156,6 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
#align polynomial.content_X_mul Polynomial.content_X_mul
-/
-/- warning: polynomial.content_X_pow -> Polynomial.content_X_pow is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_X_pow Polynomial.content_X_powₓ'. -/
@[simp]
theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
by
@@ -191,19 +164,10 @@ theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
rw [pow_succ, content_X_mul, hi]
#align polynomial.content_X_pow Polynomial.content_X_pow
-/- warning: polynomial.content_X -> Polynomial.content_X is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_X Polynomial.content_Xₓ'. -/
@[simp]
theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
#align polynomial.content_X Polynomial.content_X
-/- warning: polynomial.content_C_mul -> Polynomial.content_C_mul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.content_C_mul Polynomial.content_C_mulₓ'. -/
theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
by_cases h0 : r = 0; · simp [h0]
@@ -211,20 +175,11 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
refine' congr (congr rfl _) _ <;> ext <;> simp [h0, mem_support_iff]
#align polynomial.content_C_mul Polynomial.content_C_mul
-/- warning: polynomial.content_monomial -> Polynomial.content_monomial is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
rw [← C_mul_X_pow_eq_monomial, content_C_mul, content_X_pow, mul_one]
#align polynomial.content_monomial Polynomial.content_monomial
-/- warning: polynomial.content_eq_zero_iff -> Polynomial.content_eq_zero_iff is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iffₓ'. -/
theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
by
rw [content, Finset.gcd_eq_zero_iff]
@@ -239,12 +194,6 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
simp [h]
#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iff
-/- warning: polynomial.normalize_content -> Polynomial.normalize_content is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
-Case conversion may be inaccurate. Consider using '#align polynomial.normalize_content Polynomial.normalize_contentₓ'. -/
@[simp]
theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
Finset.normalize_gcd
@@ -289,12 +238,6 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
-/
-/- warning: polynomial.dvd_content_iff_C_dvd -> Polynomial.dvd_content_iff_C_dvd is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)
-Case conversion may be inaccurate. Consider using '#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvdₓ'. -/
theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
rw [C_dvd_iff_dvd_coeff]
@@ -307,22 +250,10 @@ theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p
apply h i
#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvd
-/- warning: polynomial.C_content_dvd -> Polynomial.C_content_dvd is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
-Case conversion may be inaccurate. Consider using '#align polynomial.C_content_dvd Polynomial.C_content_dvdₓ'. -/
theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
dvd_content_iff_C_dvd.1 dvd_rfl
#align polynomial.C_content_dvd Polynomial.C_content_dvd
-/- warning: polynomial.is_primitive_iff_content_eq_one -> Polynomial.isPrimitive_iff_content_eq_one is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_oneₓ'. -/
theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content = 1 :=
by
rw [← normalize_content, normalize_eq_one, is_primitive]
@@ -330,12 +261,6 @@ theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content
exact ⟨fun h => h p.content (dvd_refl p.content), fun h r hdvd => isUnit_of_dvd_unit hdvd h⟩
#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_one
-/- warning: polynomial.is_primitive.content_eq_one -> Polynomial.IsPrimitive.content_eq_one is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_oneₓ'. -/
theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content = 1 :=
isPrimitive_iff_content_eq_one.mp hp
#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_one
@@ -354,12 +279,6 @@ def primPart (p : R[X]) : R[X] :=
#align polynomial.prim_part Polynomial.primPart
-/
-/- warning: polynomial.eq_C_content_mul_prim_part -> Polynomial.eq_C_content_mul_primPart is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
-Case conversion may be inaccurate. Consider using '#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPartₓ'. -/
theorem eq_C_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
by_cases h : p = 0; · simp [h]
@@ -384,12 +303,6 @@ theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
#align polynomial.is_primitive_prim_part Polynomial.isPrimitive_primPart
-/
-/- warning: polynomial.content_prim_part -> Polynomial.content_primPart is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_prim_part Polynomial.content_primPartₓ'. -/
theorem content_primPart (p : R[X]) : p.primPart.content = 1 :=
p.isPrimitive_primPart.content_eq_one
#align polynomial.content_prim_part Polynomial.content_primPart
@@ -417,12 +330,6 @@ theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p
#align polynomial.is_primitive.prim_part_eq Polynomial.IsPrimitive.primPart_eq
-/
-/- warning: polynomial.is_unit_prim_part_C -> Polynomial.isUnit_primPart_C is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_Cₓ'. -/
theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
by
by_cases h0 : r = 0
@@ -445,9 +352,6 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
#align polynomial.prim_part_dvd Polynomial.primPart_dvd
-/
-/- warning: polynomial.aeval_prim_part_eq_zero -> Polynomial.aeval_primPart_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zeroₓ'. -/
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 :=
@@ -459,12 +363,6 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
-/- warning: polynomial.eval₂_prim_part_eq_zero -> Polynomial.eval₂_primPart_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zeroₓ'. -/
theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 :=
@@ -478,9 +376,6 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
end PrimPart
-/- warning: polynomial.gcd_content_eq_of_dvd_sub -> Polynomial.gcd_content_eq_of_dvd_sub is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_subₓ'. -/
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
by
@@ -508,12 +403,6 @@ theorem content_mul_aux {p q : R[X]} :
#align polynomial.content_mul_aux Polynomial.content_mul_aux
-/
-/- warning: polynomial.content_mul -> Polynomial.content_mul is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
-Case conversion may be inaccurate. Consider using '#align polynomial.content_mul Polynomial.content_mulₓ'. -/
@[simp]
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
classical
@@ -667,24 +556,12 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
#align polynomial.normalized_gcd_monoid Polynomial.normalizedGcdMonoid
-/
-/- warning: polynomial.degree_gcd_le_left -> Polynomial.degree_gcd_le_left is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (forall (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGcdMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (forall (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGCDMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_leftₓ'. -/
theorem degree_gcd_le_left {p : R[X]} (hp : p ≠ 0) (q) : (gcd p q).degree ≤ p.degree :=
by
have := nat_degree_le_iff_degree_le.mp (nat_degree_le_of_dvd (gcd_dvd_left p q) hp)
rwa [degree_eq_nat_degree hp]
#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_left
-/- warning: polynomial.degree_gcd_le_right -> Polynomial.degree_gcd_le_right is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGcdMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGCDMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_rightₓ'. -/
theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree := by
rw [gcd_comm]; exact degree_gcd_le_left hq p
#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -404,8 +404,7 @@ theorem primPart_ne_zero (p : R[X]) : p.primPart ≠ 0 :=
theorem natDegree_primPart (p : R[X]) : p.primPart.natDegree = p.natDegree :=
by
by_cases h : C p.content = 0
- · rw [C_eq_zero, content_eq_zero_iff] at h
- simp [h]
+ · rw [C_eq_zero, content_eq_zero_iff] at h; simp [h]
conv_rhs =>
rw [p.eq_C_content_mul_prim_part, nat_degree_mul h p.prim_part_ne_zero, nat_degree_C, zero_add]
#align polynomial.nat_degree_prim_part Polynomial.natDegree_primPart
@@ -605,9 +604,7 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
clear s
by_contra' con
rcases Nat.find_spec Con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
- have s0 : s ≠ 0 := by
- contrapose! rs
- simp [rs]
+ have s0 : s ≠ 0 := by contrapose! rs; simp [rs]
have hs :=
Nat.find_min' h
⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps,
@@ -688,10 +685,8 @@ lean 3 declaration is
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGCDMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q))
Case conversion may be inaccurate. Consider using '#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_rightₓ'. -/
-theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree :=
- by
- rw [gcd_comm]
- exact degree_gcd_le_left hq p
+theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree := by
+ rw [gcd_comm]; exact degree_gcd_le_left hq p
#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_right
end NormalizedGCDMonoid
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -117,10 +117,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
-/
/- warning: polynomial.content_C -> Polynomial.content_C is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.content_C Polynomial.content_Cₓ'. -/
@[simp]
theorem content_C {r : R} : (C r).content = normalize r :=
@@ -205,10 +202,7 @@ theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mu
#align polynomial.content_X Polynomial.content_X
/- warning: polynomial.content_C_mul -> Polynomial.content_C_mul is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.content_C_mul Polynomial.content_C_mulₓ'. -/
theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
@@ -218,10 +212,7 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
#align polynomial.content_C_mul Polynomial.content_C_mul
/- warning: polynomial.content_monomial -> Polynomial.content_monomial is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
@@ -456,10 +447,7 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
-/
/- warning: polynomial.aeval_prim_part_eq_zero -> Polynomial.aeval_primPart_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))) (SMulZeroClass.toHasSmul.{u1, u2} R S (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} R S (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (Module.toMulActionWithZero.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)))))] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4)))))))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zeroₓ'. -/
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
@@ -492,10 +480,7 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
end PrimPart
/- warning: polynomial.gcd_content_eq_of_dvd_sub -> Polynomial.gcd_content_eq_of_dvd_sub is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_subₓ'. -/
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -221,7 +221,7 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
@@ -459,7 +459,7 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))) (SMulZeroClass.toHasSmul.{u1, u2} R S (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} R S (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (Module.toMulActionWithZero.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)))))] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4)))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
Case conversion may be inaccurate. Consider using '#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zeroₓ'. -/
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -55,7 +55,7 @@ def IsPrimitive (p : R[X]) : Prop :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (CommSemiring.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (Polynomial.commSemiring.{u1} R _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (CommSemiring.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (Polynomial.commSemiring.{u1} R _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvdₓ'. -/
theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
@@ -120,7 +120,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_C Polynomial.content_Cₓ'. -/
@[simp]
theorem content_C {r : R} : (C r).content = normalize r :=
@@ -208,7 +208,7 @@ theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mu
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
Case conversion may be inaccurate. Consider using '#align polynomial.content_C_mul Polynomial.content_C_mulₓ'. -/
theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
@@ -221,7 +221,7 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
@@ -252,7 +252,7 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
Case conversion may be inaccurate. Consider using '#align polynomial.normalize_content Polynomial.normalize_contentₓ'. -/
@[simp]
theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
@@ -302,7 +302,7 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)
Case conversion may be inaccurate. Consider using '#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvdₓ'. -/
theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
@@ -320,7 +320,7 @@ theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
Case conversion may be inaccurate. Consider using '#align polynomial.C_content_dvd Polynomial.C_content_dvdₓ'. -/
theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
dvd_content_iff_C_dvd.1 dvd_rfl
@@ -367,7 +367,7 @@ def primPart (p : R[X]) : R[X] :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
Case conversion may be inaccurate. Consider using '#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPartₓ'. -/
theorem eq_C_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
@@ -431,7 +431,7 @@ theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r))
Case conversion may be inaccurate. Consider using '#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_Cₓ'. -/
theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
by
@@ -476,7 +476,7 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zeroₓ'. -/
theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
@@ -495,7 +495,7 @@ end PrimPart
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
Case conversion may be inaccurate. Consider using '#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_subₓ'. -/
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/c89fe2d59ae06402c3f55f978016d1ada444f57e
@@ -221,7 +221,7 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -685,21 +685,29 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
#align polynomial.normalized_gcd_monoid Polynomial.normalizedGcdMonoid
-/
-#print Polynomial.degree_gcd_le_left /-
+/- warning: polynomial.degree_gcd_le_left -> Polynomial.degree_gcd_le_left is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (forall (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGcdMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (forall (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGCDMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_leftₓ'. -/
theorem degree_gcd_le_left {p : R[X]} (hp : p ≠ 0) (q) : (gcd p q).degree ≤ p.degree :=
by
have := nat_degree_le_iff_degree_le.mp (nat_degree_le_of_dvd (gcd_dvd_left p q) hp)
rwa [degree_eq_nat_degree hp]
#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_left
--/
-#print Polynomial.degree_gcd_le_right /-
+/- warning: polynomial.degree_gcd_le_right -> Polynomial.degree_gcd_le_right is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGcdMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.isDomain.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (GCDMonoid.gcd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (NormalizedGCDMonoid.toGCDMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IsDomain.toCancelCommMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.instIsDomainPolynomialToSemiringSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1) _inst_2)) (Polynomial.normalizedGcdMonoid.{u1} R _inst_1 _inst_2 _inst_3)) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_rightₓ'. -/
theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree :=
by
rw [gcd_comm]
exact degree_gcd_le_left hq p
#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_right
--/
end NormalizedGCDMonoid
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -120,7 +120,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_C Polynomial.content_Cₓ'. -/
@[simp]
theorem content_C {r : R} : (C r).content = normalize r :=
@@ -136,7 +136,7 @@ theorem content_C {r : R} : (C r).content = normalize r :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_zero Polynomial.content_zeroₓ'. -/
@[simp]
theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, normalize_zero]
@@ -146,7 +146,7 @@ theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, norm
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.toOfNat1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.one.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 1 (One.toOfNat1.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.one.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_one Polynomial.content_oneₓ'. -/
@[simp]
theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, normalize_one]
@@ -184,7 +184,7 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_X_pow Polynomial.content_X_powₓ'. -/
@[simp]
theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
@@ -198,7 +198,7 @@ theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_X Polynomial.content_Xₓ'. -/
@[simp]
theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
@@ -208,7 +208,7 @@ theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mu
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
Case conversion may be inaccurate. Consider using '#align polynomial.content_C_mul Polynomial.content_C_mulₓ'. -/
theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
@@ -221,7 +221,7 @@ theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.c
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
@@ -232,7 +232,7 @@ theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iffₓ'. -/
theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
by
@@ -252,7 +252,7 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
Case conversion may be inaccurate. Consider using '#align polynomial.normalize_content Polynomial.normalize_contentₓ'. -/
@[simp]
theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
@@ -302,7 +302,7 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r) p)
Case conversion may be inaccurate. Consider using '#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvdₓ'. -/
theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
@@ -320,7 +320,7 @@ theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
Case conversion may be inaccurate. Consider using '#align polynomial.C_content_dvd Polynomial.C_content_dvdₓ'. -/
theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
dvd_content_iff_C_dvd.1 dvd_rfl
@@ -330,7 +330,7 @@ theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_oneₓ'. -/
theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content = 1 :=
by
@@ -343,7 +343,7 @@ theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_oneₓ'. -/
theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content = 1 :=
isPrimitive_iff_content_eq_one.mp hp
@@ -367,7 +367,7 @@ def primPart (p : R[X]) : R[X] :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
Case conversion may be inaccurate. Consider using '#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPartₓ'. -/
theorem eq_C_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
@@ -397,7 +397,7 @@ theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_prim_part Polynomial.content_primPartₓ'. -/
theorem content_primPart (p : R[X]) : p.primPart.content = 1 :=
p.isPrimitive_primPart.content_eq_one
@@ -431,7 +431,7 @@ theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r))
Case conversion may be inaccurate. Consider using '#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_Cₓ'. -/
theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
by
@@ -459,7 +459,7 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))) (SMulZeroClass.toHasSmul.{u1, u2} R S (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} R S (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (Module.toMulActionWithZero.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)))))] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4)))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
Case conversion may be inaccurate. Consider using '#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zeroₓ'. -/
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
@@ -476,7 +476,7 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zeroₓ'. -/
theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
@@ -495,7 +495,7 @@ end PrimPart
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
Case conversion may be inaccurate. Consider using '#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_subₓ'. -/
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
@@ -528,7 +528,7 @@ theorem content_mul_aux {p q : R[X]} :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
Case conversion may be inaccurate. Consider using '#align polynomial.content_mul Polynomial.content_mulₓ'. -/
@[simp]
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a4df69ca1a9a0e5e26bfe12e2b92814216016d0
@@ -51,15 +51,15 @@ def IsPrimitive (p : R[X]) : Prop :=
#align polynomial.is_primitive Polynomial.IsPrimitive
-/
-/- warning: polynomial.is_primitive_iff_is_unit_of_C_dvd -> Polynomial.isPrimitive_iff_isUnit_of_c_dvd is a dubious translation:
+/- warning: polynomial.is_primitive_iff_is_unit_of_C_dvd -> Polynomial.isPrimitive_iff_isUnit_of_C_dvd is a dubious translation:
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (CommSemiring.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (Polynomial.commSemiring.{u1} R _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvdₓ'. -/
-theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
+Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvdₓ'. -/
+theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
-#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvd
+#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvd
#print Polynomial.isPrimitive_one /-
@[simp]
@@ -86,7 +86,7 @@ theorem IsPrimitive.ne_zero [Nontrivial R] {p : R[X]} (hp : p.IsPrimitive) : p
#print Polynomial.isPrimitive_of_dvd /-
theorem isPrimitive_of_dvd {p q : R[X]} (hp : IsPrimitive p) (hq : q ∣ p) : IsPrimitive q :=
- fun a ha => isPrimitive_iff_isUnit_of_c_dvd.mp hp a (dvd_trans ha hq)
+ fun a ha => isPrimitive_iff_isUnit_of_C_dvd.mp hp a (dvd_trans ha hq)
#align polynomial.is_primitive_of_dvd Polynomial.isPrimitive_of_dvd
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -144,7 +144,7 @@ theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, norm
/- warning: polynomial.content_one -> Polynomial.content_one is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.toOfNat1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.one.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_one Polynomial.content_oneₓ'. -/
@@ -182,7 +182,7 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
/- warning: polynomial.content_X_pow -> Polynomial.content_X_pow is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_X_pow Polynomial.content_X_powₓ'. -/
@@ -196,7 +196,7 @@ theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
/- warning: polynomial.content_X -> Polynomial.content_X is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_X Polynomial.content_Xₓ'. -/
@@ -328,7 +328,7 @@ theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
/- warning: polynomial.is_primitive_iff_content_eq_one -> Polynomial.isPrimitive_iff_content_eq_one is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_oneₓ'. -/
@@ -341,7 +341,7 @@ theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content
/- warning: polynomial.is_primitive.content_eq_one -> Polynomial.IsPrimitive.content_eq_one is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_oneₓ'. -/
@@ -395,7 +395,7 @@ theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
/- warning: polynomial.content_prim_part -> Polynomial.content_primPart is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
Case conversion may be inaccurate. Consider using '#align polynomial.content_prim_part Polynomial.content_primPartₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/55d771df074d0dd020139ee1cd4b95521422df9f
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
! This file was ported from Lean 3 source module ring_theory.polynomial.content
-! leanprover-community/mathlib commit 7a030ab8eb5d99f05a891dccc49c5b5b90c947d3
+! leanprover-community/mathlib commit cb3ceec8485239a61ed51d944cb9a95b68c6bafc
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,6 +16,9 @@ import Mathbin.Data.Polynomial.CancelLeads
/-!
# GCD structures on polynomials
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Definitions and basic results about polynomials over GCD domains, particularly their contents
and primitive polynomials.
mathlib commit https://github.com/leanprover-community/mathlib/commit/b19481deb571022990f1baa9cbf9172e6757a479
@@ -41,35 +41,51 @@ section Primitive
variable {R : Type _} [CommSemiring R]
+#print Polynomial.IsPrimitive /-
/-- A polynomial is primitive when the only constant polynomials dividing it are units -/
def IsPrimitive (p : R[X]) : Prop :=
∀ r : R, C r ∣ p → IsUnit r
#align polynomial.is_primitive Polynomial.IsPrimitive
+-/
+/- warning: polynomial.is_primitive_iff_is_unit_of_C_dvd -> Polynomial.isPrimitive_iff_isUnit_of_c_dvd is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Polynomial.IsPrimitive.{u1} R _inst_1 p) (forall (r : R), (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (CommSemiring.toNonUnitalCommSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) (Polynomial.commSemiring.{u1} R _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) r) p) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) r))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvdₓ'. -/
theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvd
+#print Polynomial.isPrimitive_one /-
@[simp]
theorem isPrimitive_one : IsPrimitive (1 : R[X]) := fun r h =>
isUnit_C.mp (isUnit_of_dvd_one (C r) h)
#align polynomial.is_primitive_one Polynomial.isPrimitive_one
+-/
+#print Polynomial.Monic.isPrimitive /-
theorem Monic.isPrimitive {p : R[X]} (hp : p.Monic) : p.IsPrimitive :=
by
rintro r ⟨q, h⟩
exact isUnit_of_mul_eq_one r (q.coeff p.nat_degree) (by rwa [← coeff_C_mul, ← h])
#align polynomial.monic.is_primitive Polynomial.Monic.isPrimitive
+-/
+#print Polynomial.IsPrimitive.ne_zero /-
theorem IsPrimitive.ne_zero [Nontrivial R] {p : R[X]} (hp : p.IsPrimitive) : p ≠ 0 :=
by
rintro rfl
exact (hp 0 (dvd_zero (C 0))).NeZero rfl
#align polynomial.is_primitive.ne_zero Polynomial.IsPrimitive.ne_zero
+-/
+#print Polynomial.isPrimitive_of_dvd /-
theorem isPrimitive_of_dvd {p q : R[X]} (hp : IsPrimitive p) (hq : q ∣ p) : IsPrimitive q :=
fun a ha => isPrimitive_iff_isUnit_of_c_dvd.mp hp a (dvd_trans ha hq)
#align polynomial.is_primitive_of_dvd Polynomial.isPrimitive_of_dvd
+-/
end Primitive
@@ -79,11 +95,14 @@ section NormalizedGCDMonoid
variable [NormalizedGCDMonoid R]
+#print Polynomial.content /-
/-- `p.content` is the `gcd` of the coefficients of `p`. -/
def content (p : R[X]) : R :=
p.support.gcd p.coeff
#align polynomial.content Polynomial.content
+-/
+#print Polynomial.content_dvd_coeff /-
theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
by
by_cases h : n ∈ p.support
@@ -92,26 +111,46 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
rw [h]
apply dvd_zero
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
+-/
+/- warning: polynomial.content_C -> Polynomial.content_C is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+Case conversion may be inaccurate. Consider using '#align polynomial.content_C Polynomial.content_Cₓ'. -/
@[simp]
-theorem content_c {r : R} : (C r).content = normalize r :=
+theorem content_C {r : R} : (C r).content = normalize r :=
by
rw [content]
by_cases h0 : r = 0
· simp [h0]
have h : (C r).support = {0} := support_monomial _ h0
simp [h]
-#align polynomial.content_C Polynomial.content_c
-
+#align polynomial.content_C Polynomial.content_C
+
+/- warning: polynomial.content_zero -> Polynomial.content_zero is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_zero Polynomial.content_zeroₓ'. -/
@[simp]
theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, normalize_zero]
#align polynomial.content_zero Polynomial.content_zero
+/- warning: polynomial.content_one -> Polynomial.content_one is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 1 (One.toOfNat1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.one.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_one Polynomial.content_oneₓ'. -/
@[simp]
theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, normalize_one]
#align polynomial.content_one Polynomial.content_one
-theorem content_x_mul {p : R[X]} : content (X * p) = content p :=
+#print Polynomial.content_X_mul /-
+theorem content_X_mul {p : R[X]} : content (X * p) = content p :=
by
rw [content, content, Finset.gcd_def, Finset.gcd_def]
refine' congr rfl _
@@ -135,32 +174,63 @@ theorem content_x_mul {p : R[X]} : content (X * p) = content p :=
ext a
rw [mul_comm]
simp [coeff_mul_X]
-#align polynomial.content_X_mul Polynomial.content_x_mul
+#align polynomial.content_X_mul Polynomial.content_X_mul
+-/
+/- warning: polynomial.content_X_pow -> Polynomial.content_X_pow is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) k)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_X_pow Polynomial.content_X_powₓ'. -/
@[simp]
-theorem content_x_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
+theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
by
induction' k with k hi
· simp
rw [pow_succ, content_X_mul, hi]
-#align polynomial.content_X_pow Polynomial.content_x_pow
-
+#align polynomial.content_X_pow Polynomial.content_X_pow
+
+/- warning: polynomial.content_X -> Polynomial.content_X is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)], Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_X Polynomial.content_Xₓ'. -/
@[simp]
-theorem content_x : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
-#align polynomial.content_X Polynomial.content_x
-
-theorem content_c_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
+theorem content_X : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
+#align polynomial.content_X Polynomial.content_X
+
+/- warning: polynomial.content_C_mul -> Polynomial.content_C_mul is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) R ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonUnitalNonAssocRing.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (NonAssocRing.toNonUnitalNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) r) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_C_mul Polynomial.content_C_mulₓ'. -/
+theorem content_C_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
by_cases h0 : r = 0; · simp [h0]
rw [content]; rw [content]; rw [← Finset.gcd_mul_left]
refine' congr (congr rfl _) _ <;> ext <;> simp [h0, mem_support_iff]
-#align polynomial.content_C_mul Polynomial.content_c_mul
-
+#align polynomial.content_C_mul Polynomial.content_C_mul
+
+/- warning: polynomial.content_monomial -> Polynomial.content_monomial is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {r : R} {k : Nat}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) k) r)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) r)
+Case conversion may be inaccurate. Consider using '#align polynomial.content_monomial Polynomial.content_monomialₓ'. -/
@[simp]
theorem content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by
rw [← C_mul_X_pow_eq_monomial, content_C_mul, content_X_pow, mul_one]
#align polynomial.content_monomial Polynomial.content_monomial
+/- warning: polynomial.content_eq_zero_iff -> Polynomial.content_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iffₓ'. -/
theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
by
rw [content, Finset.gcd_eq_zero_iff]
@@ -175,11 +245,18 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 :=
simp [h]
#align polynomial.content_eq_zero_iff Polynomial.content_eq_zero_iff
+/- warning: polynomial.normalize_content -> Polynomial.normalize_content is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)))))))) (normalize.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toNormalizationMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)
+Case conversion may be inaccurate. Consider using '#align polynomial.normalize_content Polynomial.normalize_contentₓ'. -/
@[simp]
theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
Finset.normalize_gcd
#align polynomial.normalize_content Polynomial.normalize_content
+#print Polynomial.content_eq_gcd_range_of_lt /-
theorem content_eq_gcd_range_of_lt (p : R[X]) (n : ℕ) (h : p.natDegree < n) :
p.content = (Finset.range n).gcd p.coeff :=
by
@@ -194,12 +271,16 @@ theorem content_eq_gcd_range_of_lt (p : R[X]) (n : ℕ) (h : p.natDegree < n) :
intro h1
apply coeff_eq_zero_of_nat_degree_lt (lt_of_lt_of_le h h1)
#align polynomial.content_eq_gcd_range_of_lt Polynomial.content_eq_gcd_range_of_lt
+-/
+#print Polynomial.content_eq_gcd_range_succ /-
theorem content_eq_gcd_range_succ (p : R[X]) :
p.content = (Finset.range p.natDegree.succ).gcd p.coeff :=
content_eq_gcd_range_of_lt _ _ (Nat.lt_succ_self _)
#align polynomial.content_eq_gcd_range_succ Polynomial.content_eq_gcd_range_succ
+-/
+#print Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead /-
theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
p.content = GCDMonoid.gcd p.leadingCoeff (eraseLead p).content :=
by
@@ -212,8 +293,15 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
rw [Finset.mem_erase] at hi
rw [erase_lead_coeff, if_neg hi.1]
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
+-/
-theorem dvd_content_iff_c_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
+/- warning: polynomial.dvd_content_iff_C_dvd -> Polynomial.dvd_content_iff_C_dvd is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {r : R}, Iff (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) r (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r) p)
+Case conversion may be inaccurate. Consider using '#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvdₓ'. -/
+theorem dvd_content_iff_C_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
rw [C_dvd_iff_dvd_coeff]
constructor
@@ -223,12 +311,24 @@ theorem dvd_content_iff_c_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p
rw [content, Finset.dvd_gcd_iff]
intro i hi
apply h i
-#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_c_dvd
-
-theorem c_content_dvd (p : R[X]) : C p.content ∣ p :=
- dvd_content_iff_c_dvd.1 dvd_rfl
-#align polynomial.C_content_dvd Polynomial.c_content_dvd
-
+#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_C_dvd
+
+/- warning: polynomial.C_content_dvd -> Polynomial.C_content_dvd is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) p
+Case conversion may be inaccurate. Consider using '#align polynomial.C_content_dvd Polynomial.C_content_dvdₓ'. -/
+theorem C_content_dvd (p : R[X]) : C p.content ∣ p :=
+ dvd_content_iff_C_dvd.1 dvd_rfl
+#align polynomial.C_content_dvd Polynomial.C_content_dvd
+
+/- warning: polynomial.is_primitive_iff_content_eq_one -> Polynomial.isPrimitive_iff_content_eq_one is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_oneₓ'. -/
theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content = 1 :=
by
rw [← normalize_content, normalize_eq_one, is_primitive]
@@ -236,6 +336,12 @@ theorem isPrimitive_iff_content_eq_one {p : R[X]} : p.IsPrimitive ↔ p.content
exact ⟨fun h => h p.content (dvd_refl p.content), fun h r hdvd => isUnit_of_dvd_unit hdvd h⟩
#align polynomial.is_primitive_iff_content_eq_one Polynomial.isPrimitive_iff_content_eq_one
+/- warning: polynomial.is_primitive.content_eq_one -> Polynomial.IsPrimitive.content_eq_one is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.IsPrimitive.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p) -> (Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_oneₓ'. -/
theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content = 1 :=
isPrimitive_iff_content_eq_one.mp hp
#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_one
@@ -246,23 +352,34 @@ noncomputable section
section PrimPart
+#print Polynomial.primPart /-
/-- The primitive part of a polynomial `p` is the primitive polynomial gained by dividing `p` by
`p.content`. If `p = 0`, then `p.prim_part = 1`. -/
def primPart (p : R[X]) : R[X] :=
- if p = 0 then 1 else Classical.choose (c_content_dvd p)
+ if p = 0 then 1 else Classical.choose (C_content_dvd p)
#align polynomial.prim_part Polynomial.primPart
+-/
-theorem eq_c_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
+/- warning: polynomial.eq_C_content_mul_prim_part -> Polynomial.eq_C_content_mul_primPart is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p))
+Case conversion may be inaccurate. Consider using '#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPartₓ'. -/
+theorem eq_C_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
by_cases h : p = 0; · simp [h]
rw [prim_part, if_neg h, ← Classical.choose_spec (C_content_dvd p)]
-#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_c_content_mul_primPart
+#align polynomial.eq_C_content_mul_prim_part Polynomial.eq_C_content_mul_primPart
+#print Polynomial.primPart_zero /-
@[simp]
theorem primPart_zero : primPart (0 : R[X]) = 1 :=
if_pos rfl
#align polynomial.prim_part_zero Polynomial.primPart_zero
+-/
+#print Polynomial.isPrimitive_primPart /-
theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
by
by_cases h : p = 0; · simp [h]
@@ -271,15 +388,25 @@ theorem isPrimitive_primPart (p : R[X]) : p.primPart.IsPrimitive :=
apply mul_left_cancel₀ h
conv_rhs => rw [p.eq_C_content_mul_prim_part, mul_one, content_C_mul, normalize_content]
#align polynomial.is_primitive_prim_part Polynomial.isPrimitive_primPart
+-/
+/- warning: polynomial.content_prim_part -> Polynomial.content_primPart is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_prim_part Polynomial.content_primPartₓ'. -/
theorem content_primPart (p : R[X]) : p.primPart.content = 1 :=
p.isPrimitive_primPart.content_eq_one
#align polynomial.content_prim_part Polynomial.content_primPart
+#print Polynomial.primPart_ne_zero /-
theorem primPart_ne_zero (p : R[X]) : p.primPart ≠ 0 :=
p.isPrimitive_primPart.NeZero
#align polynomial.prim_part_ne_zero Polynomial.primPart_ne_zero
+-/
+#print Polynomial.natDegree_primPart /-
theorem natDegree_primPart (p : R[X]) : p.primPart.natDegree = p.natDegree :=
by
by_cases h : C p.content = 0
@@ -288,13 +415,22 @@ theorem natDegree_primPart (p : R[X]) : p.primPart.natDegree = p.natDegree :=
conv_rhs =>
rw [p.eq_C_content_mul_prim_part, nat_degree_mul h p.prim_part_ne_zero, nat_degree_C, zero_add]
#align polynomial.nat_degree_prim_part Polynomial.natDegree_primPart
+-/
+#print Polynomial.IsPrimitive.primPart_eq /-
@[simp]
theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p := by
rw [← one_mul p.prim_part, ← C_1, ← hp.content_eq_one, ← p.eq_C_content_mul_prim_part]
#align polynomial.is_primitive.prim_part_eq Polynomial.IsPrimitive.primPart_eq
+-/
-theorem isUnit_primPart_c (r : R) : IsUnit (C r).primPart :=
+/- warning: polynomial.is_unit_prim_part_C -> Polynomial.isUnit_primPart_C is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] (r : R), IsUnit.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_Cₓ'. -/
+theorem isUnit_primPart_C (r : R) : IsUnit (C r).primPart :=
by
by_cases h0 : r = 0
· simp [h0]
@@ -305,15 +441,23 @@ theorem isUnit_primPart_c (r : R) : IsUnit (C r).primPart :=
_⟩
rw [← normalize_eq_zero, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
- conv_rhs => rw [← content_C, ← (C r).eq_c_content_mul_primPart]
+ conv_rhs => rw [← content_C, ← (C r).eq_C_content_mul_primPart]
simp only [Units.val_mk, normalize_apply, RingHom.map_mul]
rw [mul_assoc, ← RingHom.map_mul, Units.mul_inv, C_1, mul_one]
-#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_c
+#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_C
+#print Polynomial.primPart_dvd /-
theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
- Dvd.intro_left (C p.content) p.eq_c_content_mul_primPart.symm
+ Dvd.intro_left (C p.content) p.eq_C_content_mul_primPart.symm
#align polynomial.prim_part_dvd Polynomial.primPart_dvd
+-/
+/- warning: polynomial.aeval_prim_part_eq_zero -> Polynomial.aeval_primPart_eq_zero is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))) (SMulZeroClass.toHasSmul.{u1, u2} R S (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} R S (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} R S (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddZeroClass.toHasZero.{u2} S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))))) (Module.toMulActionWithZero.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)))))] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4))))))))) -> (Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (fun (_x : AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) => (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) -> S) ([anonymous].{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S _inst_4)))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : Ring.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S _inst_4)] [_inst_6 : Algebra.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4)] [_inst_7 : NoZeroSMulDivisors.{u1, u2} R S (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2))) (MonoidWithZero.toZero.{u2} S (Semiring.toMonoidWithZero.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Algebra.toSMul.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) p) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) p) _inst_4)))))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (_x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) _x) (SMulHomClass.toFunLike.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (SMulZeroClass.toSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribSMul.toSMulZeroClass.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (DistribMulAction.toDistribSMul.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (SMulZeroClass.toSMul.{u1, u2} R S (AddMonoid.toZero.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribSMul.toSMulZeroClass.{u1, u2} R S (AddMonoid.toAddZeroClass.{u2} S (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))))) (DistribMulAction.toDistribSMul.{u1, u2} R S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6))))) (DistribMulActionHomClass.toSMulHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (AddCommMonoid.toAddMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (AddCommMonoid.toAddMonoid.{u2} S (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (NonUnitalAlgHomClass.toDistribMulActionHomClass.{max u2 u1, u1, u1, u2} (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4))) (Module.toDistribMulAction.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Algebra.toModule.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Module.toDistribMulAction.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_4)))) (Algebra.toModule.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6)) (AlgHom.instNonUnitalAlgHomClassToMonoidToMonoidWithZeroToSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToNonUnitalNonAssocSemiringToNonAssocSemiringToDistribMulActionToAddCommMonoidToModuleToDistribMulActionToAddCommMonoidToModule.{u1, u1, u2, max u2 u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6 (AlgHom.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6) (AlgHom.algHomClass.{u1, u1, u2} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) S (CommRing.toCommSemiring.{u1} R _inst_1) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toSemiring.{u2} S _inst_4) (Polynomial.algebraOfAlgebra.{u1, u1} R R (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _inst_6))))) (Polynomial.aeval.{u1, u2} R S (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} S _inst_4) _inst_6 s) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) 0 (Zero.toOfNat0.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (MonoidWithZero.toZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Semiring.toMonoidWithZero.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (Ring.toSemiring.{u2} ((fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => S) (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) _inst_4))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zeroₓ'. -/
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 :=
@@ -325,6 +469,12 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
+/- warning: polynomial.eval₂_prim_part_eq_zero -> Polynomial.eval₂_primPart_eq_zero is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))))))))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {S : Type.{u2}} [_inst_4 : CommRing.{u2} S] [_inst_5 : IsDomain.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4))] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))}, (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4)))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_4))))))) f)) -> (forall {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {s : S}, (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s p) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_4)) f s (Polynomial.primPart.{u1} R _inst_1 _inst_2 _inst_3 p)) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} S (IsDomain.toCancelCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_4) _inst_5)))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_prim_part_eq_zero Polynomial.eval₂_primPart_eq_zeroₓ'. -/
theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 :=
@@ -338,6 +488,12 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
end PrimPart
+/- warning: polynomial.gcd_content_eq_of_dvd_sub -> Polynomial.gcd_content_eq_of_dvd_sub is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGcdMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {a : R} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Dvd.dvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (semigroupDvd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (SemigroupWithZero.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalSemiring.toSemigroupWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalRing.toNonUnitalSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (NonUnitalCommRing.toNonUnitalRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (CommRing.toNonUnitalCommRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.commRing.{u1} R _inst_1))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) p q)) -> (Eq.{succ u1} R (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p)) (GCDMonoid.gcd.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) (NormalizedGCDMonoid.toGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2) _inst_3) a (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q)))
+Case conversion may be inaccurate. Consider using '#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_subₓ'. -/
theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
by
@@ -352,6 +508,7 @@ theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
rw [← coeff_sub, hw, coeff_C_mul]
#align polynomial.gcd_content_eq_of_dvd_sub Polynomial.gcd_content_eq_of_dvd_sub
+#print Polynomial.content_mul_aux /-
theorem content_mul_aux {p q : R[X]} :
GCDMonoid.gcd (p * q).eraseLead.content p.leadingCoeff =
GCDMonoid.gcd (p.eraseLead * q).content p.leadingCoeff :=
@@ -362,7 +519,14 @@ theorem content_mul_aux {p q : R[X]} :
sub_sub_cancel, leading_coeff_mul, RingHom.map_mul, mul_assoc, mul_assoc]
apply dvd_sub (Dvd.intro _ rfl) (Dvd.intro _ rfl)
#align polynomial.content_mul_aux Polynomial.content_mul_aux
+-/
+/- warning: polynomial.content_mul -> Polynomial.content_mul is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsDomain.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))] [_inst_3 : NormalizedGCDMonoid.{u1} R (IsDomain.toCancelCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) _inst_2)] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Eq.{succ u1} R (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 p) (Polynomial.content.{u1} R _inst_1 _inst_2 _inst_3 q))
+Case conversion may be inaccurate. Consider using '#align polynomial.content_mul Polynomial.content_mulₓ'. -/
@[simp]
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
classical
@@ -408,23 +572,28 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
apply p.prim_part_ne_zero
#align polynomial.content_mul Polynomial.content_mul
+#print Polynomial.IsPrimitive.mul /-
theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
(p * q).IsPrimitive := by
rw [is_primitive_iff_content_eq_one, content_mul, hp.content_eq_one, hq.content_eq_one, mul_one]
#align polynomial.is_primitive.mul Polynomial.IsPrimitive.mul
+-/
+#print Polynomial.primPart_mul /-
@[simp]
theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) : (p * q).primPart = p.primPart * q.primPart :=
by
rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_lhs =>
- rw [← (p * q).eq_c_content_mul_primPart, p.eq_C_content_mul_prim_part,
+ rw [← (p * q).eq_C_content_mul_primPart, p.eq_C_content_mul_prim_part,
q.eq_C_content_mul_prim_part]
rw [content_mul, RingHom.map_mul]
ring
#align polynomial.prim_part_mul Polynomial.primPart_mul
+-/
+#print Polynomial.IsPrimitive.dvd_primPart_iff_dvd /-
theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq : q ≠ 0) :
p ∣ q.primPart ↔ p ∣ q :=
by
@@ -433,7 +602,9 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
apply Dvd.intro _
rw [prim_part_mul hq, hp.prim_part_eq]
#align polynomial.is_primitive.dvd_prim_part_iff_dvd Polynomial.IsPrimitive.dvd_primPart_iff_dvd
+-/
+#print Polynomial.exists_primitive_lcm_of_isPrimitive /-
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
classical
@@ -475,7 +646,9 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
apply h.trans (Associated.symm ⟨u, _⟩).Dvd
rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm]
#align polynomial.exists_primitive_lcm_of_is_primitive Polynomial.exists_primitive_lcm_of_isPrimitive
+-/
+#print Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart /-
theorem dvd_iff_content_dvd_content_and_primPart_dvd_primPart {p q : R[X]} (hq : q ≠ 0) :
p ∣ q ↔ p.content ∣ q.content ∧ p.primPart ∣ q.primPart :=
by
@@ -486,7 +659,9 @@ theorem dvd_iff_content_dvd_content_and_primPart_dvd_primPart {p q : R[X]} (hq :
· rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part]
exact mul_dvd_mul (RingHom.map_dvd C h.1) h.2
#align polynomial.dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart
+-/
+#print Polynomial.normalizedGcdMonoid /-
instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
normalizedGCDMonoidOfExistsLCM fun p q =>
by
@@ -505,18 +680,23 @@ instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
IsUnit.mul_left_dvd _ _ _ (is_unit_prim_part_C (lcm p.content q.content)), ← hr s.prim_part]
tauto
#align polynomial.normalized_gcd_monoid Polynomial.normalizedGcdMonoid
+-/
+#print Polynomial.degree_gcd_le_left /-
theorem degree_gcd_le_left {p : R[X]} (hp : p ≠ 0) (q) : (gcd p q).degree ≤ p.degree :=
by
have := nat_degree_le_iff_degree_le.mp (nat_degree_le_of_dvd (gcd_dvd_left p q) hp)
rwa [degree_eq_nat_degree hp]
#align polynomial.degree_gcd_le_left Polynomial.degree_gcd_le_left
+-/
+#print Polynomial.degree_gcd_le_right /-
theorem degree_gcd_le_right (p) {q : R[X]} (hq : q ≠ 0) : (gcd p q).degree ≤ q.degree :=
by
rw [gcd_comm]
exact degree_gcd_le_left hq p
#align polynomial.degree_gcd_le_right Polynomial.degree_gcd_le_right
+-/
end NormalizedGCDMonoid
mathlib commit https://github.com/leanprover-community/mathlib/commit/38f16f960f5006c6c0c2bac7b0aba5273188f4e5
@@ -43,16 +43,16 @@ variable {R : Type _} [CommSemiring R]
/-- A polynomial is primitive when the only constant polynomials dividing it are units -/
def IsPrimitive (p : R[X]) : Prop :=
- ∀ r : R, c r ∣ p → IsUnit r
+ ∀ r : R, C r ∣ p → IsUnit r
#align polynomial.is_primitive Polynomial.IsPrimitive
-theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, c r ∣ p → IsUnit r :=
+theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvd
@[simp]
theorem isPrimitive_one : IsPrimitive (1 : R[X]) := fun r h =>
- isUnit_c.mp (isUnit_of_dvd_one (c r) h)
+ isUnit_C.mp (isUnit_of_dvd_one (C r) h)
#align polynomial.is_primitive_one Polynomial.isPrimitive_one
theorem Monic.isPrimitive {p : R[X]} (hp : p.Monic) : p.IsPrimitive :=
@@ -94,7 +94,7 @@ theorem content_dvd_coeff {p : R[X]} (n : ℕ) : p.content ∣ p.coeff n :=
#align polynomial.content_dvd_coeff Polynomial.content_dvd_coeff
@[simp]
-theorem content_c {r : R} : (c r).content = normalize r :=
+theorem content_c {r : R} : (C r).content = normalize r :=
by
rw [content]
by_cases h0 : r = 0
@@ -111,7 +111,7 @@ theorem content_zero : content (0 : R[X]) = 0 := by rw [← C_0, content_C, norm
theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, normalize_one]
#align polynomial.content_one Polynomial.content_one
-theorem content_x_mul {p : R[X]} : content (x * p) = content p :=
+theorem content_x_mul {p : R[X]} : content (X * p) = content p :=
by
rw [content, content, Finset.gcd_def, Finset.gcd_def]
refine' congr rfl _
@@ -138,7 +138,7 @@ theorem content_x_mul {p : R[X]} : content (x * p) = content p :=
#align polynomial.content_X_mul Polynomial.content_x_mul
@[simp]
-theorem content_x_pow {k : ℕ} : content ((x : R[X]) ^ k) = 1 :=
+theorem content_x_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 :=
by
induction' k with k hi
· simp
@@ -146,10 +146,10 @@ theorem content_x_pow {k : ℕ} : content ((x : R[X]) ^ k) = 1 :=
#align polynomial.content_X_pow Polynomial.content_x_pow
@[simp]
-theorem content_x : content (x : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
+theorem content_x : content (X : R[X]) = 1 := by rw [← mul_one X, content_X_mul, content_one]
#align polynomial.content_X Polynomial.content_x
-theorem content_c_mul (r : R) (p : R[X]) : (c r * p).content = normalize r * p.content :=
+theorem content_c_mul (r : R) (p : R[X]) : (C r * p).content = normalize r * p.content :=
by
by_cases h0 : r = 0; · simp [h0]
rw [content]; rw [content]; rw [← Finset.gcd_mul_left]
@@ -213,7 +213,7 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
rw [erase_lead_coeff, if_neg hi.1]
#align polynomial.content_eq_gcd_leading_coeff_content_erase_lead Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
-theorem dvd_content_iff_c_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ c r ∣ p :=
+theorem dvd_content_iff_c_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ C r ∣ p :=
by
rw [C_dvd_iff_dvd_coeff]
constructor
@@ -225,7 +225,7 @@ theorem dvd_content_iff_c_dvd {p : R[X]} {r : R} : r ∣ p.content ↔ c r ∣ p
apply h i
#align polynomial.dvd_content_iff_C_dvd Polynomial.dvd_content_iff_c_dvd
-theorem c_content_dvd (p : R[X]) : c p.content ∣ p :=
+theorem c_content_dvd (p : R[X]) : C p.content ∣ p :=
dvd_content_iff_c_dvd.1 dvd_rfl
#align polynomial.C_content_dvd Polynomial.c_content_dvd
@@ -252,7 +252,7 @@ def primPart (p : R[X]) : R[X] :=
if p = 0 then 1 else Classical.choose (c_content_dvd p)
#align polynomial.prim_part Polynomial.primPart
-theorem eq_c_content_mul_primPart (p : R[X]) : p = c p.content * p.primPart :=
+theorem eq_c_content_mul_primPart (p : R[X]) : p = C p.content * p.primPart :=
by
by_cases h : p = 0; · simp [h]
rw [prim_part, if_neg h, ← Classical.choose_spec (C_content_dvd p)]
@@ -294,7 +294,7 @@ theorem IsPrimitive.primPart_eq {p : R[X]} (hp : p.IsPrimitive) : p.primPart = p
rw [← one_mul p.prim_part, ← C_1, ← hp.content_eq_one, ← p.eq_C_content_mul_prim_part]
#align polynomial.is_primitive.prim_part_eq Polynomial.IsPrimitive.primPart_eq
-theorem isUnit_primPart_c (r : R) : IsUnit (c r).primPart :=
+theorem isUnit_primPart_c (r : R) : IsUnit (C r).primPart :=
by
by_cases h0 : r = 0
· simp [h0]
@@ -311,7 +311,7 @@ theorem isUnit_primPart_c (r : R) : IsUnit (c r).primPart :=
#align polynomial.is_unit_prim_part_C Polynomial.isUnit_primPart_c
theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
- Dvd.intro_left (c p.content) p.eq_c_content_mul_primPart.symm
+ Dvd.intro_left (C p.content) p.eq_c_content_mul_primPart.symm
#align polynomial.prim_part_dvd Polynomial.primPart_dvd
theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
@@ -338,7 +338,7 @@ theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R
end PrimPart
-theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : c a ∣ p - q) :
+theorem gcd_content_eq_of_dvd_sub {a : R} {p q : R[X]} (h : C a ∣ p - q) :
GCDMonoid.gcd a p.content = GCDMonoid.gcd a q.content :=
by
rw [content_eq_gcd_range_of_lt p (max p.nat_degree q.nat_degree).succ
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>
@@ -204,7 +204,7 @@ theorem content_eq_gcd_leadingCoeff_content_eraseLead (p : R[X]) :
p.content = GCDMonoid.gcd p.leadingCoeff (eraseLead p).content := by
by_cases h : p = 0
· simp [h]
- rw [← leadingCoeff_eq_zero, leadingCoeff, ← Ne.def, ← mem_support_iff] at h
+ rw [← leadingCoeff_eq_zero, leadingCoeff, ← Ne, ← mem_support_iff] at h
rw [content, ← Finset.insert_erase h, Finset.gcd_insert, leadingCoeff, content,
eraseLead_support]
refine' congr rfl (Finset.gcd_congr rfl fun i hi => _)
Data
(#11751)
Polynomial
and MvPolynomial
are algebraic objects, hence should be under Algebra
(or at least not under Data
)
@@ -4,9 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.Algebra.GCDMonoid.Finset
-import Mathlib.Data.Polynomial.FieldDivision
-import Mathlib.Data.Polynomial.EraseLead
-import Mathlib.Data.Polynomial.CancelLeads
+import Mathlib.Algebra.Polynomial.CancelLeads
+import Mathlib.Algebra.Polynomial.EraseLead
+import Mathlib.Algebra.Polynomial.FieldDivision
#align_import ring_theory.polynomial.content from "leanprover-community/mathlib"@"7a030ab8eb5d99f05a891dccc49c5b5b90c947d3"
@@ -111,7 +111,7 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p := by
refine' congr rfl _
have h : (X * p).support = p.support.map ⟨Nat.succ, Nat.succ_injective⟩ := by
ext a
- simp only [exists_prop, Finset.mem_map, Function.Embedding.coeFn_mk, Ne.def, mem_support_iff]
+ simp only [exists_prop, Finset.mem_map, Function.Embedding.coeFn_mk, Ne, mem_support_iff]
cases' a with a
· simp [coeff_X_mul_zero, Nat.succ_ne_zero]
rw [mul_comm, coeff_mul_X]
@@ -189,7 +189,7 @@ theorem content_eq_gcd_range_of_lt (p : R[X]) (n : ℕ) (h : p.natDegree < n) :
apply content_dvd_coeff _
· apply Finset.gcd_mono
intro i
- simp only [Nat.lt_succ_iff, mem_support_iff, Ne.def, Finset.mem_range]
+ simp only [Nat.lt_succ_iff, mem_support_iff, Ne, Finset.mem_range]
contrapose!
intro h1
apply coeff_eq_zero_of_natDegree_lt (lt_of_lt_of_le h h1)
@@ -393,11 +393,11 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
content_eq_gcd_leadingCoeff_content_eraseLead, content_primPart]
· rw [← heq, degree_mul, WithBot.add_lt_add_iff_right]
· apply degree_erase_lt p.primPart_ne_zero
- · rw [Ne.def, degree_eq_bot]
+ · rw [Ne, degree_eq_bot]
apply q.primPart_ne_zero
· rw [mul_comm, ← heq, degree_mul, WithBot.add_lt_add_iff_left]
· apply degree_erase_lt q.primPart_ne_zero
- · rw [Ne.def, degree_eq_bot]
+ · rw [Ne, degree_eq_bot]
apply p.primPart_ne_zero
#align polynomial.content_mul Polynomial.content_mul
@@ -409,7 +409,7 @@ theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
@[simp]
theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) :
(p * q).primPart = p.primPart * q.primPart := by
- rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
+ rw [Ne, ← content_eq_zero_iff, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_lhs =>
rw [← (p * q).eq_C_content_mul_primPart, p.eq_C_content_mul_primPart,
@@ -462,7 +462,7 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
have h :=
dvd_add rcs (Dvd.intro_left (C (leadingCoeff s) * X ^ (natDegree s - natDegree r)) rfl)
have hC0 := rprim.ne_zero
- rw [Ne.def, ← leadingCoeff_eq_zero, ← C_eq_zero] at hC0
+ rw [Ne, ← leadingCoeff_eq_zero, ← C_eq_zero] at hC0
rw [sub_add_cancel, ← rprim.dvd_primPart_iff_dvd (mul_ne_zero hC0 s0)] at h
rcases isUnit_primPart_C r.leadingCoeff with ⟨u, hu⟩
apply h.trans (Associated.symm ⟨u, _⟩).dvd
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -134,7 +134,7 @@ set_option linter.uppercaseLean3 false in
theorem content_X_pow {k : ℕ} : content ((X : R[X]) ^ k) = 1 := by
induction' k with k hi
· simp
- rw [pow_succ, content_X_mul, hi]
+ rw [pow_succ', content_X_mul, hi]
set_option linter.uppercaseLean3 false in
#align polynomial.content_X_pow Polynomial.content_X_pow
have
, replace
and suffices
(#10640)
No changes to tactic file, it's just boring fixes throughout the library.
This follows on from #6964.
Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -357,8 +357,8 @@ theorem content_mul_aux {p q : R[X]} :
theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
classical
suffices h :
- ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content
- · apply h
+ ∀ (n : ℕ) (p q : R[X]), (p * q).degree < n → (p * q).content = p.content * q.content by
+ apply h
apply lt_of_le_of_lt degree_le_natDegree (WithBot.coe_lt_coe.2 (Nat.lt_succ_self _))
intro n
induction' n with n ih
@@ -381,8 +381,8 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
Nat.cast_add, ← degree_eq_natDegree p.primPart_ne_zero,
← degree_eq_natDegree q.primPart_ne_zero] at heq
rw [p.eq_C_content_mul_primPart, q.eq_C_content_mul_primPart]
- suffices h : (q.primPart * p.primPart).content = 1
- · rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.primPart, mul_assoc, content_C_mul,
+ suffices h : (q.primPart * p.primPart).content = 1 by
+ rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.primPart, mul_assoc, content_C_mul,
content_C_mul, h, mul_one, content_primPart, content_primPart, mul_one, mul_one]
rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
content_eq_gcd_leadingCoeff_content_eraseLead, leadingCoeff_mul, gcd_comm]
@@ -433,8 +433,8 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
- suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
- · apply hs s.natDegree s rfl
+ suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s from
+ hs s.natDegree s rfl
clear s
by_contra! con
rcases Nat.find_spec con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
IsRelPrime
and DecompositionMonoid
and refactor (#10327)
Introduce typeclass DecompositionMonoid
, which says every element in the monoid is primal, i.e., whenever an element divides a product b * c
, it can be factored into a product such that the factors divides b
and c
respectively. A domain is called pre-Schreier if its multiplicative monoid is a decomposition monoid, and these are more general than GCD domains.
Show that any GCDMonoid
is a DecompositionMonoid
. In order for lemmas about DecompositionMonoid
s to automatically apply to UniqueFactorizationMonoid
s, we add instances from UniqueFactorizationMonoid α
to Nonempty (NormalizedGCDMonoid α)
to Nonempty (GCDMonoid α)
to DecompositionMonoid α
. (Zulip) See the bottom of message for an updated diagram of classes and instances.
Introduce binary predicate IsRelPrime
which says that the only common divisors of the two elements are units. Replace previous occurrences in mathlib by this predicate.
Duplicate all lemmas about IsCoprime
in Coprime/Basic (except three lemmas about smul) to IsRelPrime
. Due to import constraints, they are spread into three files Algebra/Divisibility/Units (including key lemmas assuming DecompositionMonoid), GroupWithZero/Divisibility, and Coprime/Basic.
Show IsCoprime
always imply IsRelPrime
and is equivalent to it in Bezout rings. To reduce duplication, the definition of Bezout rings and the GCDMonoid instance are moved from RingTheory/Bezout to RingTheory/PrincipalIdealDomain, and some results in PrincipalIdealDomain are generalized to Bezout rings.
Remove the recently added file Squarefree/UniqueFactorizationMonoid and place the results appropriately within Squarefree/Basic. All results are generalized to DecompositionMonoid or weaker except the last one.
With this PR, all the following instances (indicated by arrows) now work; this PR fills the central part.
EuclideanDomain (bundled)
↙ ↖
IsPrincipalIdealRing ← Field (bundled)
↓ ↓
NormalizationMonoid ← NormalizedGCDMonoid → GCDMonoid IsBezout ← ValuationRing ← DiscreteValuationRing
↓ ↓ ↘ ↙
Nonempty NormalizationMonoid ← Nonempty NormalizedGCDMonoid → Nonempty GCDMonoid → IsIntegrallyClosed
↑ ↓
WfDvdMonoid ← UniqueFactorizationMonoid → DecompositionMonoid
↑
IsPrincipalIdealRing
Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: Oliver Nash <github@olivernash.org>
@@ -494,7 +494,7 @@ noncomputable instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMono
iterate 3 rw [dvd_iff_content_dvd_content_and_primPart_dvd_primPart hs]
rw [content_mul, rprim.content_eq_one, mul_one, content_C, normalize_lcm, lcm_dvd_iff,
primPart_mul (mul_ne_zero hpq rprim.ne_zero), rprim.primPart_eq,
- IsUnit.mul_left_dvd _ _ _ (isUnit_primPart_C (lcm p.content q.content)), ← hr s.primPart]
+ (isUnit_primPart_C (lcm p.content q.content)).mul_left_dvd, ← hr s.primPart]
tauto
#align polynomial.normalized_gcd_monoid Polynomial.normalizedGcdMonoid
@@ -436,7 +436,7 @@ theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (h
suffices hs : ∀ (n : ℕ) (s : R[X]), s.natDegree = n → p ∣ s ∧ q ∣ s → r ∣ s
· apply hs s.natDegree s rfl
clear s
- by_contra' con
+ by_contra! con
rcases Nat.find_spec con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩
have s0 : s ≠ 0 := by
contrapose! rs
@@ -378,7 +378,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
rcases hpq with (hlt | heq)
· apply ih _ _ hlt
rw [← p.natDegree_primPart, ← q.natDegree_primPart, ← Nat.cast_inj (R := WithBot ℕ),
- Nat.cast_add, ←degree_eq_natDegree p.primPart_ne_zero,
+ Nat.cast_add, ← degree_eq_natDegree p.primPart_ne_zero,
← degree_eq_natDegree q.primPart_ne_zero] at heq
rw [p.eq_C_content_mul_primPart, q.eq_C_content_mul_primPart]
suffices h : (q.primPart * p.primPart).content = 1
open Classical
(#7706)
This doesn't change any polynomial operations, but:
Decidable
values computable (otherwise, they're pointless!)This is exhaustive, within the directories it touches.
Once again, the use of letI := Classical.decEq R
instead of classical
here is because of the weird style of proofs in these files, where if
is preferred to by_cases
.
@@ -239,13 +239,12 @@ theorem IsPrimitive.content_eq_one {p : R[X]} (hp : p.IsPrimitive) : p.content =
isPrimitive_iff_content_eq_one.mp hp
#align polynomial.is_primitive.content_eq_one Polynomial.IsPrimitive.content_eq_one
-open Classical
-
section PrimPart
/-- The primitive part of a polynomial `p` is the primitive polynomial gained by dividing `p` by
`p.content`. If `p = 0`, then `p.primPart = 1`. -/
noncomputable def primPart (p : R[X]) : R[X] :=
+ letI := Classical.decEq R
if p = 0 then 1 else Classical.choose (C_content_dvd p)
#align polynomial.prim_part Polynomial.primPart
@@ -481,6 +480,7 @@ theorem dvd_iff_content_dvd_content_and_primPart_dvd_primPart {p q : R[X]} (hq :
#align polynomial.dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart
noncomputable instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
+ letI := Classical.decEq R
normalizedGCDMonoidOfExistsLCM fun p q => by
rcases exists_primitive_lcm_of_isPrimitive p.isPrimitive_primPart
q.isPrimitive_primPart with
@@ -365,7 +365,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
induction' n with n ih
· intro p q hpq
dsimp at hpq
- rw [Nat.cast_withBot, WithBot.coe_zero,
+ rw [Nat.cast_zero,
Nat.WithBot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq
rcases hpq with (rfl | rfl) <;> simp
intro p q hpq
@@ -373,15 +373,14 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
· simp [p0]
by_cases q0 : q = 0
· simp [q0]
- rw [degree_eq_natDegree (mul_ne_zero p0 q0), Nat.cast_withBot,
- Nat.cast_withBot, WithBot.coe_lt_coe, Nat.lt_succ_iff_lt_or_eq, ←
- WithBot.coe_lt_coe, ←Nat.cast_withBot, ← degree_eq_natDegree (mul_ne_zero p0 q0),
- natDegree_mul p0 q0] at hpq
+ rw [degree_eq_natDegree (mul_ne_zero p0 q0), Nat.cast_lt,
+ Nat.lt_succ_iff_lt_or_eq, ← Nat.cast_lt (α := WithBot ℕ),
+ ← degree_eq_natDegree (mul_ne_zero p0 q0), natDegree_mul p0 q0] at hpq
rcases hpq with (hlt | heq)
· apply ih _ _ hlt
- rw [← p.natDegree_primPart, ← q.natDegree_primPart, ← WithBot.coe_eq_coe,
- WithBot.coe_add, ← Nat.cast_withBot, ←degree_eq_natDegree p.primPart_ne_zero,
- ← Nat.cast_withBot, ← degree_eq_natDegree q.primPart_ne_zero] at heq
+ rw [← p.natDegree_primPart, ← q.natDegree_primPart, ← Nat.cast_inj (R := WithBot ℕ),
+ Nat.cast_add, ←degree_eq_natDegree p.primPart_ne_zero,
+ ← degree_eq_natDegree q.primPart_ne_zero] at heq
rw [p.eq_C_content_mul_primPart, q.eq_C_content_mul_primPart]
suffices h : (q.primPart * p.primPart).content = 1
· rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.primPart, mul_assoc, content_C_mul,
@@ -393,11 +392,11 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
content_eq_gcd_leadingCoeff_content_eraseLead, content_primPart, one_mul,
mul_comm q.primPart, content_mul_aux, ih, content_primPart, mul_one, gcd_comm, ←
content_eq_gcd_leadingCoeff_content_eraseLead, content_primPart]
- · rw [Nat.cast_withBot, ← heq, degree_mul, WithBot.add_lt_add_iff_right]
+ · rw [← heq, degree_mul, WithBot.add_lt_add_iff_right]
· apply degree_erase_lt p.primPart_ne_zero
· rw [Ne.def, degree_eq_bot]
apply q.primPart_ne_zero
- · rw [mul_comm, Nat.cast_withBot, ← heq, degree_mul, WithBot.add_lt_add_iff_left]
+ · rw [mul_comm, ← heq, degree_mul, WithBot.add_lt_add_iff_left]
· apply degree_erase_lt q.primPart_ne_zero
· rw [Ne.def, degree_eq_bot]
apply p.primPart_ne_zero
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -36,7 +36,7 @@ open Polynomial
section Primitive
-variable {R : Type _} [CommSemiring R]
+variable {R : Type*} [CommSemiring R]
/-- A polynomial is primitive when the only constant polynomials dividing it are units -/
def IsPrimitive (p : R[X]) : Prop :=
@@ -69,7 +69,7 @@ theorem isPrimitive_of_dvd {p q : R[X]} (hp : IsPrimitive p) (hq : q ∣ p) : Is
end Primitive
-variable {R : Type _} [CommRing R] [IsDomain R]
+variable {R : Type*} [CommRing R] [IsDomain R]
section NormalizedGCDMonoid
@@ -309,7 +309,7 @@ theorem primPart_dvd (p : R[X]) : p.primPart ∣ p :=
Dvd.intro_left (C p.content) p.eq_C_content_mul_primPart.symm
#align polynomial.prim_part_dvd Polynomial.primPart_dvd
-theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
+theorem aeval_primPart_eq_zero {S : Type*} [Ring S] [IsDomain S] [Algebra R S]
[NoZeroSMulDivisors R S] {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : aeval s p = 0) :
aeval s p.primPart = 0 := by
rw [eq_C_content_mul_primPart p, map_mul, aeval_C] at hp
@@ -319,7 +319,7 @@ theorem aeval_primPart_eq_zero {S : Type _} [Ring S] [IsDomain S] [Algebra R S]
exact eq_zero_of_ne_zero_of_mul_left_eq_zero hcont hp
#align polynomial.aeval_prim_part_eq_zero Polynomial.aeval_primPart_eq_zero
-theorem eval₂_primPart_eq_zero {S : Type _} [CommRing S] [IsDomain S] {f : R →+* S}
+theorem eval₂_primPart_eq_zero {S : Type*} [CommRing S] [IsDomain S] {f : R →+* S}
(hinj : Function.Injective f) {p : R[X]} {s : S} (hpzero : p ≠ 0) (hp : eval₂ f s p = 0) :
eval₂ f s p.primPart = 0 := by
rw [eq_C_content_mul_primPart p, eval₂_mul, eval₂_C] at hp
use
provide last constructor argument, introduce mathlib3-like flattening use!
(#5350)
Changes:
use
now by default discharges with try with_reducible use_discharger
with a custom discharger tactic rather than try with_reducible rfl
, which makes it be closer to exists
and the use
in mathlib3. It doesn't go so far as to do try with_reducible trivial
since that involves the contradiction
tactic.use (discharger := tacticSeq...)
use
evaluation loop will try refining after constructor failure, so it can be used to fill in all arguments rather than all but the last, like in mathlib3 (closes #5072) but with the caveat that it only works so long as the last argument is not an inductive type (like Eq
).use!
, which is nearly the same as the mathlib3 use
and fills in constructor arguments along the nodes and leaves of the nested constructor expressions. This version tries refining before applying constructors, so it can be used like exact
for the last argument.The difference between mathlib3 use
and this use!
is that (1) use!
uses a different tactic to discharge goals (mathlib3 used trivial'
, which did reducible refl, but also contradiction
, which we don't emulate) (2) it does not rewrite using exists_prop
. Regarding 2, this feature seems to be less useful now that bounded existentials encode the bound using a conjunction rather than with nested existentials. We do have exists_prop
as part of use_discharger
however.
Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>
@@ -118,7 +118,6 @@ theorem content_X_mul {p : R[X]} : content (X * p) = content p := by
constructor
· intro h
use a
- simp [h]
· rintro ⟨b, ⟨h1, h2⟩⟩
rw [← Nat.succ_injective h2]
apply h1
@@ -2,17 +2,14 @@
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-
-! This file was ported from Lean 3 source module ring_theory.polynomial.content
-! leanprover-community/mathlib commit 7a030ab8eb5d99f05a891dccc49c5b5b90c947d3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.GCDMonoid.Finset
import Mathlib.Data.Polynomial.FieldDivision
import Mathlib.Data.Polynomial.EraseLead
import Mathlib.Data.Polynomial.CancelLeads
+#align_import ring_theory.polynomial.content from "leanprover-community/mathlib"@"7a030ab8eb5d99f05a891dccc49c5b5b90c947d3"
+
/-!
# GCD structures on polynomials
This PR is the result of running
find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;
which firstly replaces .
focusing dots with ·
and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.
@@ -180,8 +180,8 @@ theorem normalize_content {p : R[X]} : normalize p.content = p.content :=
@[simp]
theorem normUnit_content {p : R[X]} : normUnit (content p) = 1 := by
by_cases hp0 : p.content = 0
- . simp [hp0]
- . ext
+ · simp [hp0]
+ · ext
apply mul_left_cancel₀ hp0
erw [← normalize_apply, normalize_content, mul_one]
@@ -388,8 +388,7 @@ theorem content_mul {p q : R[X]} : (p * q).content = p.content * q.content := by
← Nat.cast_withBot, ← degree_eq_natDegree q.primPart_ne_zero] at heq
rw [p.eq_C_content_mul_primPart, q.eq_C_content_mul_primPart]
suffices h : (q.primPart * p.primPart).content = 1
- ·
- rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.primPart, mul_assoc, content_C_mul,
+ · rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.primPart, mul_assoc, content_C_mul,
content_C_mul, h, mul_one, content_primPart, content_primPart, mul_one, mul_one]
rw [← normalize_content, normalize_eq_one, isUnit_iff_dvd_one,
content_eq_gcd_leadingCoeff_content_eraseLead, leadingCoeff_mul, gcd_comm]
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -166,7 +166,7 @@ theorem content_eq_zero_iff {p : R[X]} : content p = 0 ↔ p = 0 := by
by_cases h0 : n ∈ p.support
· rw [h n h0, coeff_zero]
· rw [mem_support_iff] at h0
- push_neg at h0
+ push_neg at h0
simp [h0]
· intro x
simp [h]
@@ -436,7 +436,7 @@ theorem IsPrimitive.dvd_primPart_iff_dvd {p q : R[X]} (hp : p.IsPrimitive) (hq :
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s := by
classical
- have h : ∃ (n : ℕ)(r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
+ have h : ∃ (n : ℕ) (r : R[X]), r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r :=
⟨(p * q).natDegree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩
rcases Nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩
refine' ⟨r, rprim, fun s => ⟨_, fun rs => ⟨pr.trans rs, qr.trans rs⟩⟩⟩
by
s! (#3825)
This PR puts, with one exception, every single remaining by
that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh
. The exception is when the by
begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.
Essentially this is s/\n *by$/ by/g
, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated by
s".
@@ -112,8 +112,7 @@ theorem content_one : content (1 : R[X]) = 1 := by rw [← C_1, content_C, norma
theorem content_X_mul {p : R[X]} : content (X * p) = content p := by
rw [content, content, Finset.gcd_def, Finset.gcd_def]
refine' congr rfl _
- have h : (X * p).support = p.support.map ⟨Nat.succ, Nat.succ_injective⟩ :=
- by
+ have h : (X * p).support = p.support.map ⟨Nat.succ, Nat.succ_injective⟩ := by
ext a
simp only [exists_prop, Finset.mem_map, Function.Embedding.coeFn_mk, Ne.def, mem_support_iff]
cases' a with a
@@ -415,8 +414,8 @@ theorem IsPrimitive.mul {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
#align polynomial.is_primitive.mul Polynomial.IsPrimitive.mul
@[simp]
-theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) : (p * q).primPart = p.primPart * q.primPart :=
- by
+theorem primPart_mul {p q : R[X]} (h0 : p * q ≠ 0) :
+ (p * q).primPart = p.primPart * q.primPart := by
rw [Ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0
apply mul_left_cancel₀ h0
conv_lhs =>
@@ -488,8 +487,7 @@ theorem dvd_iff_content_dvd_content_and_primPart_dvd_primPart {p q : R[X]} (hq :
#align polynomial.dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart
noncomputable instance (priority := 100) normalizedGcdMonoid : NormalizedGCDMonoid R[X] :=
- normalizedGCDMonoidOfExistsLCM fun p q =>
- by
+ normalizedGCDMonoidOfExistsLCM fun p q => by
rcases exists_primitive_lcm_of_isPrimitive p.isPrimitive_primPart
q.isPrimitive_primPart with
⟨r, rprim, hr⟩
@@ -46,10 +46,10 @@ def IsPrimitive (p : R[X]) : Prop :=
∀ r : R, C r ∣ p → IsUnit r
#align polynomial.is_primitive Polynomial.IsPrimitive
-theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
+theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
Iff.rfl
set_option linter.uppercaseLean3 false in
-#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvd
+#align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvd
@[simp]
theorem isPrimitive_one : IsPrimitive (1 : R[X]) := fun _ h =>
@@ -67,7 +67,7 @@ theorem IsPrimitive.ne_zero [Nontrivial R] {p : R[X]} (hp : p.IsPrimitive) : p
#align polynomial.is_primitive.ne_zero Polynomial.IsPrimitive.ne_zero
theorem isPrimitive_of_dvd {p q : R[X]} (hp : IsPrimitive p) (hq : q ∣ p) : IsPrimitive q :=
- fun a ha => isPrimitive_iff_isUnit_of_c_dvd.mp hp a (dvd_trans ha hq)
+ fun a ha => isPrimitive_iff_isUnit_of_C_dvd.mp hp a (dvd_trans ha hq)
#align polynomial.is_primitive_of_dvd Polynomial.isPrimitive_of_dvd
end Primitive
The unported dependencies are