ring_theory.polynomial.dicksonMathlib.RingTheory.Polynomial.Dickson

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -110,7 +110,7 @@ variable {R S k a}
 #print Polynomial.map_dickson /-
 theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dickson k (f a) n
   | 0 => by
-    simp only [dickson_zero, Polynomial.map_sub, Polynomial.map_nat_cast, bit1, bit0,
+    simp only [dickson_zero, Polynomial.map_sub, Polynomial.map_natCast, bit1, bit0,
       Polynomial.map_add, Polynomial.map_one]
   | 1 => by simp only [dickson_one, map_X]
   | n + 2 =>
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Julian Kuelshammer
 -/
 import Algebra.CharP.Invertible
-import Data.Zmod.Basic
+import Data.ZMod.Basic
 import RingTheory.Localization.FractionRing
 import RingTheory.Polynomial.Chebyshev
 import RingTheory.Ideal.LocalRing
@@ -158,7 +158,7 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     by
     simp only [eval_sub, eval_mul, dickson_one_one_eval_add_inv, eval_X, dickson_add_two, C_1,
       eval_one]
-    conv_lhs => simp only [pow_succ, add_mul, mul_add, h, ← mul_assoc, mul_comm y x, one_mul]
+    conv_lhs => simp only [pow_succ', add_mul, mul_add, h, ← mul_assoc, mul_comm y x, one_mul]
     ring
 #align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_inv
 -/
Diff
@@ -251,7 +251,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
   -- Now we need to show that the set of such `x` is infinite.
   -- If the set is finite, then we will show that `K` is also finite.
   · intro h
-    rw [← Set.infinite_univ_iff] at H 
+    rw [← Set.infinite_univ_iff] at H
     apply H
     -- To each `x` of the form `x = y + y⁻¹`
     -- we `bind` the set of `y` that solve the equation `x = y + y⁻¹`.
Diff
@@ -271,6 +271,17 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
       classical
+      convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
+      ext1 y
+      simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
+        mem_roots hφ, is_root, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
+        Multiset.mem_singleton]
+      by_cases hy : y = 0
+      · simp only [hy, eq_self_iff_true, or_true_iff]
+      apply or_congr _ Iff.rfl
+      rw [← mul_left_inj' hy, eq_comm, ← sub_eq_zero, add_mul, inv_mul_cancel hy]
+      apply eq_iff_eq_cancel_right.mpr
+      ring
     -- Finally, we prove the claim that our finite union of finite sets covers all of `K`.
     · apply (Set.eq_univ_of_forall _).symm
       intro x
Diff
@@ -271,17 +271,6 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
       classical
-      convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
-      ext1 y
-      simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
-        mem_roots hφ, is_root, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
-        Multiset.mem_singleton]
-      by_cases hy : y = 0
-      · simp only [hy, eq_self_iff_true, or_true_iff]
-      apply or_congr _ Iff.rfl
-      rw [← mul_left_inj' hy, eq_comm, ← sub_eq_zero, add_mul, inv_mul_cancel hy]
-      apply eq_iff_eq_cancel_right.mpr
-      ring
     -- Finally, we prove the claim that our finite union of finite sets covers all of `K`.
     · apply (Set.eq_univ_of_forall _).symm
       intro x
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2021 Julian Kuelshammer. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Julian Kuelshammer
 -/
-import Mathbin.Algebra.CharP.Invertible
-import Mathbin.Data.Zmod.Basic
-import Mathbin.RingTheory.Localization.FractionRing
-import Mathbin.RingTheory.Polynomial.Chebyshev
-import Mathbin.RingTheory.Ideal.LocalRing
+import Algebra.CharP.Invertible
+import Data.Zmod.Basic
+import RingTheory.Localization.FractionRing
+import RingTheory.Polynomial.Chebyshev
+import RingTheory.Ideal.LocalRing
 
 #align_import ring_theory.polynomial.dickson from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Julian Kuelshammer. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Julian Kuelshammer
-
-! This file was ported from Lean 3 source module ring_theory.polynomial.dickson
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.CharP.Invertible
 import Mathbin.Data.Zmod.Basic
@@ -14,6 +9,8 @@ import Mathbin.RingTheory.Localization.FractionRing
 import Mathbin.RingTheory.Polynomial.Chebyshev
 import Mathbin.RingTheory.Ideal.LocalRing
 
+#align_import ring_theory.polynomial.dickson from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
 /-!
 # Dickson polynomials
 
Diff
@@ -72,10 +72,12 @@ noncomputable def dickson : ℕ → R[X]
 #align polynomial.dickson Polynomial.dickson
 -/
 
+#print Polynomial.dickson_zero /-
 @[simp]
 theorem dickson_zero : dickson k a 0 = 3 - k :=
   rfl
 #align polynomial.dickson_zero Polynomial.dickson_zero
+-/
 
 #print Polynomial.dickson_one /-
 @[simp]
@@ -84,14 +86,19 @@ theorem dickson_one : dickson k a 1 = X :=
 #align polynomial.dickson_one Polynomial.dickson_one
 -/
 
+#print Polynomial.dickson_two /-
 theorem dickson_two : dickson k a 2 = X ^ 2 - C a * (3 - k) := by simp only [dickson, sq]
 #align polynomial.dickson_two Polynomial.dickson_two
+-/
 
+#print Polynomial.dickson_add_two /-
 @[simp]
 theorem dickson_add_two (n : ℕ) :
     dickson k a (n + 2) = X * dickson k a (n + 1) - C a * dickson k a n := by rw [dickson]
 #align polynomial.dickson_add_two Polynomial.dickson_add_two
+-/
 
+#print Polynomial.dickson_of_two_le /-
 theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
     dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2) :=
   by
@@ -99,9 +106,11 @@ theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
   rw [add_comm]
   exact dickson_add_two k a n
 #align polynomial.dickson_of_two_le Polynomial.dickson_of_two_le
+-/
 
 variable {R S k a}
 
+#print Polynomial.map_dickson /-
 theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dickson k (f a) n
   | 0 => by
     simp only [dickson_zero, Polynomial.map_sub, Polynomial.map_nat_cast, bit1, bit0,
@@ -112,9 +121,11 @@ theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dicks
     simp only [dickson_add_two, Polynomial.map_sub, Polynomial.map_mul, map_X, map_C]
     rw [map_dickson, map_dickson]
 #align polynomial.map_dickson Polynomial.map_dickson
+-/
 
 variable {R}
 
+#print Polynomial.dickson_two_zero /-
 @[simp]
 theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
   | 0 => by simp only [dickson_zero, pow_zero]; norm_num
@@ -123,6 +134,7 @@ theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
     simp only [dickson_add_two, C_0, MulZeroClass.zero_mul, sub_zero]
     rw [dickson_two_zero, pow_add X (n + 1) 1, mul_comm, pow_one]
 #align polynomial.dickson_two_zero Polynomial.dickson_two_zero
+-/
 
 section Dickson
 
@@ -140,6 +152,7 @@ There is exactly one other Lambda structure on `ℤ[X]` in terms of binomial pol
 
 variable {R}
 
+#print Polynomial.dickson_one_one_eval_add_inv /-
 theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     ∀ n, (dickson 1 (1 : R) n).eval (x + y) = x ^ n + y ^ n
   | 0 => by simp only [bit0, eval_one, eval_add, pow_zero, dickson_zero]; norm_num
@@ -151,9 +164,11 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     conv_lhs => simp only [pow_succ, add_mul, mul_add, h, ← mul_assoc, mul_comm y x, one_mul]
     ring
 #align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_inv
+-/
 
 variable (R)
 
+#print Polynomial.dickson_one_one_eq_chebyshev_T /-
 theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
   | 0 => by simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]; norm_num
@@ -168,7 +183,9 @@ theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     rw [C_1, one_mul]
     ring
 #align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_T
+-/
 
+#print Polynomial.chebyshev_T_eq_dickson_one_one /-
 theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
     Chebyshev.T R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
   by
@@ -176,7 +193,9 @@ theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
   simp only [comp_assoc, mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul]
   rw [invOf_mul_self, C_1, one_mul, one_mul, comp_X]
 #align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_one
+-/
 
+#print Polynomial.dickson_one_one_mul /-
 /-- The `(m * n)`-th Dickson polynomial of the first kind is the composition of the `m`-th and
 `n`-th. -/
 theorem dickson_one_one_mul (m n : ℕ) :
@@ -196,12 +215,16 @@ theorem dickson_one_one_mul (m n : ℕ) :
   apply eval₂_congr rfl _ rfl
   rw [mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul, invOf_mul_self, C_1, one_mul]
 #align polynomial.dickson_one_one_mul Polynomial.dickson_one_one_mul
+-/
 
+#print Polynomial.dickson_one_one_comp_comm /-
 theorem dickson_one_one_comp_comm (m n : ℕ) :
     (dickson 1 (1 : R) m).comp (dickson 1 1 n) = (dickson 1 1 n).comp (dickson 1 1 m) := by
   rw [← dickson_one_one_mul, mul_comm, dickson_one_one_mul]
 #align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_comm
+-/
 
+#print Polynomial.dickson_one_one_zmod_p /-
 theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p :=
   by
   -- Recall that `dickson_eval_add_inv` characterises `dickson 1 1 p`
@@ -272,7 +295,9 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
       · simp only [hx, or_false_iff, exists_eq_right]
         exact ⟨_, rfl, hx⟩
 #align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_p
+-/
 
+#print Polynomial.dickson_one_one_charP /-
 theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = X ^ p :=
   by
   have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1
@@ -280,6 +305,7 @@ theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (
   rw [h, ← map_dickson (ZMod.castHom (dvd_refl p) R), dickson_one_one_zmod_p, Polynomial.map_pow,
     map_X]
 #align polynomial.dickson_one_one_char_p Polynomial.dickson_one_one_charP
+-/
 
 end Dickson
 
Diff
@@ -223,7 +223,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
   rw [map_dickson, Polynomial.map_pow, map_X]
   apply eq_of_infinite_eval_eq
   -- The two polynomials agree on all `x` of the form `x = y + y⁻¹`.
-  apply @Set.Infinite.mono _ { x : K | ∃ y, x = y + y⁻¹ ∧ y ≠ 0 }
+  apply @Set.Infinite.mono _ {x : K | ∃ y, x = y + y⁻¹ ∧ y ≠ 0}
   · rintro _ ⟨x, rfl, hx⟩
     simp only [eval_X, eval_pow, Set.mem_setOf_eq, @add_pow_char K _ p,
       dickson_one_one_eval_add_inv _ _ (mul_inv_cancel hx), inv_pow, ZMod.castHom_apply,
@@ -239,7 +239,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
     -- For the moment, we claim that all these sets together cover `K`.
     suffices
       (Set.univ : Set K) =
-        { x : K | ∃ y : K, x = y + y⁻¹ ∧ y ≠ 0 } >>= fun x => { y | x = y + y⁻¹ ∨ y = 0 }
+        {x : K | ∃ y : K, x = y + y⁻¹ ∧ y ≠ 0} >>= fun x => {y | x = y + y⁻¹ ∨ y = 0}
       by
       rw [this]; clear this
       refine' h.bUnion fun x hx => _
@@ -251,17 +251,17 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
       classical
-        convert(φ.roots ∪ {0}).toFinset.finite_toSet using 1
-        ext1 y
-        simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
-          mem_roots hφ, is_root, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
-          Multiset.mem_singleton]
-        by_cases hy : y = 0
-        · simp only [hy, eq_self_iff_true, or_true_iff]
-        apply or_congr _ Iff.rfl
-        rw [← mul_left_inj' hy, eq_comm, ← sub_eq_zero, add_mul, inv_mul_cancel hy]
-        apply eq_iff_eq_cancel_right.mpr
-        ring
+      convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
+      ext1 y
+      simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
+        mem_roots hφ, is_root, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
+        Multiset.mem_singleton]
+      by_cases hy : y = 0
+      · simp only [hy, eq_self_iff_true, or_true_iff]
+      apply or_congr _ Iff.rfl
+      rw [← mul_left_inj' hy, eq_comm, ← sub_eq_zero, add_mul, inv_mul_cancel hy]
+      apply eq_iff_eq_cancel_right.mpr
+      ring
     -- Finally, we prove the claim that our finite union of finite sets covers all of `K`.
     · apply (Set.eq_univ_of_forall _).symm
       intro x
Diff
@@ -209,7 +209,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
   -- Since `X ^ p` also satisfies this property in characteristic `p`,
   -- we can use a variant on `polynomial.funext` to conclude that these polynomials are equal.
   -- For this argument, we need an arbitrary infinite field of characteristic `p`.
-  obtain ⟨K, _, _, H⟩ : ∃ (K : Type)(_ : Field K), ∃ _ : CharP K p, Infinite K :=
+  obtain ⟨K, _, _, H⟩ : ∃ (K : Type) (_ : Field K), ∃ _ : CharP K p, Infinite K :=
     by
     let K := FractionRing (Polynomial (ZMod p))
     let f : ZMod p →+* K := (algebraMap _ (FractionRing _)).comp C
@@ -231,7 +231,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
   -- Now we need to show that the set of such `x` is infinite.
   -- If the set is finite, then we will show that `K` is also finite.
   · intro h
-    rw [← Set.infinite_univ_iff] at H
+    rw [← Set.infinite_univ_iff] at H 
     apply H
     -- To each `x` of the form `x = y + y⁻¹`
     -- we `bind` the set of `y` that solve the equation `x = y + y⁻¹`.
Diff
@@ -58,7 +58,7 @@ noncomputable section
 
 namespace Polynomial
 
-open Polynomial
+open scoped Polynomial
 
 variable {R S : Type _} [CommRing R] [CommRing S] (k : ℕ) (a : R)
 
Diff
@@ -72,12 +72,6 @@ noncomputable def dickson : ℕ → R[X]
 #align polynomial.dickson Polynomial.dickson
 -/
 
-/- warning: polynomial.dickson_zero -> Polynomial.dickson_zero is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (bit1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HasLiftT.mk.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CoeTCₓ.coe.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Nat.castCoe.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) k))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Nat.cast.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k))
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_zero Polynomial.dickson_zeroₓ'. -/
 @[simp]
 theorem dickson_zero : dickson k a 0 = 3 - k :=
   rfl
@@ -90,23 +84,14 @@ theorem dickson_one : dickson k a 1 = X :=
 #align polynomial.dickson_one Polynomial.dickson_one
 -/
 
-/- warning: polynomial.dickson_two -> Polynomial.dickson_two is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two Polynomial.dickson_twoₓ'. -/
 theorem dickson_two : dickson k a 2 = X ^ 2 - C a * (3 - k) := by simp only [dickson, sq]
 #align polynomial.dickson_two Polynomial.dickson_two
 
-/- warning: polynomial.dickson_add_two -> Polynomial.dickson_add_two is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_add_two Polynomial.dickson_add_twoₓ'. -/
 @[simp]
 theorem dickson_add_two (n : ℕ) :
     dickson k a (n + 2) = X * dickson k a (n + 1) - C a * dickson k a n := by rw [dickson]
 #align polynomial.dickson_add_two Polynomial.dickson_add_two
 
-/- warning: polynomial.dickson_of_two_le -> Polynomial.dickson_of_two_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_of_two_le Polynomial.dickson_of_two_leₓ'. -/
 theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
     dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2) :=
   by
@@ -117,12 +102,6 @@ theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
 
 variable {R S k a}
 
-/- warning: polynomial.map_dickson -> Polynomial.map_dickson is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {k : Nat} {a : R} (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (n : Nat), Eq.{succ u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f (Polynomial.dickson.{u1} R _inst_1 k a n)) (Polynomial.dickson.{u2} S _inst_2 k (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f a) n)
-but is expected to have type
-  forall {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommRing.{u2} R] [_inst_2 : CommRing.{u1} S] {k : Nat} {a : R} (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) (n : Nat), Eq.{succ u1} (Polynomial.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))) (Polynomial.map.{u2, u1} R S (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)) f (Polynomial.dickson.{u2} R _inst_1 k a n)) (Polynomial.dickson.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) a) _inst_2 k (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))))))) f a) n)
-Case conversion may be inaccurate. Consider using '#align polynomial.map_dickson Polynomial.map_dicksonₓ'. -/
 theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dickson k (f a) n
   | 0 => by
     simp only [dickson_zero, Polynomial.map_sub, Polynomial.map_nat_cast, bit1, bit0,
@@ -136,12 +115,6 @@ theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dicks
 
 variable {R}
 
-/- warning: polynomial.dickson_two_zero -> Polynomial.dickson_two_zero is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) n) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) n)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) n)
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two_zero Polynomial.dickson_two_zeroₓ'. -/
 @[simp]
 theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
   | 0 => by simp only [dickson_zero, pow_zero]; norm_num
@@ -167,12 +140,6 @@ There is exactly one other Lambda structure on `ℤ[X]` in terms of binomial pol
 
 variable {R}
 
-/- warning: polynomial.dickson_one_one_eval_add_inv -> Polynomial.dickson_one_one_eval_add_inv is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R) (y : R), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) -> (forall (n : Nat), Eq.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x n) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y n)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R) (y : R), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) x y) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (forall (n : Nat), Eq.{succ u1} R (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x n) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y n)))
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_invₓ'. -/
 theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     ∀ n, (dickson 1 (1 : R) n).eval (x + y) = x ^ n + y ^ n
   | 0 => by simp only [bit0, eval_one, eval_add, pow_zero, dickson_zero]; norm_num
@@ -187,9 +154,6 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
 
 variable (R)
 
-/- warning: polynomial.dickson_one_one_eq_chebyshev_T -> Polynomial.dickson_one_one_eq_chebyshev_T is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_Tₓ'. -/
 theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
   | 0 => by simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]; norm_num
@@ -205,9 +169,6 @@ theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ring
 #align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_T
 
-/- warning: polynomial.chebyshev_T_eq_dickson_one_one -> Polynomial.chebyshev_T_eq_dickson_one_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_oneₓ'. -/
 theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
     Chebyshev.T R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
   by
@@ -216,12 +177,6 @@ theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
   rw [invOf_mul_self, C_1, one_mul, one_mul, comp_X]
 #align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_one
 
-/- warning: polynomial.dickson_one_one_mul -> Polynomial.dickson_one_one_mul is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) m n)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) m n)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n))
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_mul Polynomial.dickson_one_one_mulₓ'. -/
 /-- The `(m * n)`-th Dickson polynomial of the first kind is the composition of the `m`-th and
 `n`-th. -/
 theorem dickson_one_one_mul (m n : ℕ) :
@@ -242,23 +197,11 @@ theorem dickson_one_one_mul (m n : ℕ) :
   rw [mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul, invOf_mul_self, C_1, one_mul]
 #align polynomial.dickson_one_one_mul Polynomial.dickson_one_one_mul
 
-/- warning: polynomial.dickson_one_one_comp_comm -> Polynomial.dickson_one_one_comp_comm is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m))
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_commₓ'. -/
 theorem dickson_one_one_comp_comm (m n : ℕ) :
     (dickson 1 (1 : R) m).comp (dickson 1 1 n) = (dickson 1 1 n).comp (dickson 1 1 m) := by
   rw [← dickson_one_one_mul, mul_comm, dickson_one_one_mul]
 #align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_comm
 
-/- warning: polynomial.dickson_one_one_zmod_p -> Polynomial.dickson_one_one_zmod_p is a dubious translation:
-lean 3 declaration is
-  forall (p : Nat) [_inst_3 : Fact (Nat.Prime p)], Eq.{1} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.dickson.{0} (ZMod p) (ZMod.commRing p) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} (ZMod p) 1 (OfNat.mk.{0} (ZMod p) 1 (One.one.{0} (ZMod p) (AddMonoidWithOne.toOne.{0} (ZMod p) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod p) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod p) (Ring.toAddCommGroupWithOne.{0} (ZMod p) (DivisionRing.toRing.{0} (ZMod p) (Field.toDivisionRing.{0} (ZMod p) (ZMod.field p _inst_3)))))))))) p) (HPow.hPow.{0, 0, 0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) Nat (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (instHPow.{0, 0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) Nat (Monoid.Pow.{0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Ring.toMonoid.{0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.ring.{0} (ZMod p) (DivisionRing.toRing.{0} (ZMod p) (Field.toDivisionRing.{0} (ZMod p) (ZMod.field p _inst_3))))))) (Polynomial.X.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) p)
-but is expected to have type
-  forall (p : Nat) [_inst_3 : Fact (Nat.Prime p)], Eq.{1} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.dickson.{0} (ZMod p) (ZMod.commRing p) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} (ZMod p) 1 (One.toOfNat1.{0} (ZMod p) (Semiring.toOne.{0} (ZMod p) (DivisionSemiring.toSemiring.{0} (ZMod p) (Semifield.toDivisionSemiring.{0} (ZMod p) (Field.toSemifield.{0} (ZMod p) (ZMod.instFieldZMod p _inst_3))))))) p) (HPow.hPow.{0, 0, 0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) Nat (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (instHPow.{0, 0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) Nat (Monoid.Pow.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (MonoidWithZero.toMonoid.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Semiring.toMonoidWithZero.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.semiring.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))))))) (Polynomial.X.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) p)
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_pₓ'. -/
 theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p :=
   by
   -- Recall that `dickson_eval_add_inv` characterises `dickson 1 1 p`
@@ -330,12 +273,6 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         exact ⟨_, rfl, hx⟩
 #align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_p
 
-/- warning: polynomial.dickson_one_one_char_p -> Polynomial.dickson_one_one_charP is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) p) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p)
-Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_char_p Polynomial.dickson_one_one_charPₓ'. -/
 theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = X ^ p :=
   by
   have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1
Diff
@@ -144,9 +144,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two_zero Polynomial.dickson_two_zeroₓ'. -/
 @[simp]
 theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
-  | 0 => by
-    simp only [dickson_zero, pow_zero]
-    norm_num
+  | 0 => by simp only [dickson_zero, pow_zero]; norm_num
   | 1 => by simp only [dickson_one, pow_one]
   | n + 2 => by
     simp only [dickson_add_two, C_0, MulZeroClass.zero_mul, sub_zero]
@@ -177,9 +175,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_invₓ'. -/
 theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     ∀ n, (dickson 1 (1 : R) n).eval (x + y) = x ^ n + y ^ n
-  | 0 => by
-    simp only [bit0, eval_one, eval_add, pow_zero, dickson_zero]
-    norm_num
+  | 0 => by simp only [bit0, eval_one, eval_add, pow_zero, dickson_zero]; norm_num
   | 1 => by simp only [eval_X, dickson_one, pow_one]
   | n + 2 =>
     by
@@ -196,9 +192,7 @@ variable (R)
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_Tₓ'. -/
 theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
-  | 0 => by
-    simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]
-    norm_num
+  | 0 => by simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]; norm_num
   | 1 => by
     rw [dickson_one, chebyshev.T_one, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul, mul_invOf_self,
       C_1, one_mul]
@@ -276,9 +270,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
     by
     let K := FractionRing (Polynomial (ZMod p))
     let f : ZMod p →+* K := (algebraMap _ (FractionRing _)).comp C
-    have : CharP K p := by
-      rw [← f.char_p_iff_char_p]
-      infer_instance
+    have : CharP K p := by rw [← f.char_p_iff_char_p]; infer_instance
     haveI : Infinite K :=
       Infinite.of_injective (algebraMap (Polynomial (ZMod p)) (FractionRing (Polynomial (ZMod p))))
         (IsFractionRing.injective _ _)
@@ -306,8 +298,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
       (Set.univ : Set K) =
         { x : K | ∃ y : K, x = y + y⁻¹ ∧ y ≠ 0 } >>= fun x => { y | x = y + y⁻¹ ∨ y = 0 }
       by
-      rw [this]
-      clear this
+      rw [this]; clear this
       refine' h.bUnion fun x hx => _
       -- The following quadratic polynomial has as solutions the `y` for which `x = y + y⁻¹`.
       let φ : K[X] := X ^ 2 - C x * X + 1
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Julian Kuelshammer
 
 ! This file was ported from Lean 3 source module ring_theory.polynomial.dickson
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -17,6 +17,9 @@ import Mathbin.RingTheory.Ideal.LocalRing
 /-!
 # Dickson polynomials
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 The (generalised) Dickson polynomials are a family of polynomials indexed by `ℕ × ℕ`,
 with coefficients in a commutative ring `R` depending on an element `a∈R`. More precisely, the
 they satisfy the recursion `dickson k a (n + 2) = X * (dickson k a n + 1) - a * (dickson k a n)`
@@ -88,19 +91,13 @@ theorem dickson_one : dickson k a 1 = X :=
 -/
 
 /- warning: polynomial.dickson_two -> Polynomial.dickson_two is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (bit1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HasLiftT.mk.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CoeTCₓ.coe.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Nat.castCoe.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) k))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Nat.cast.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two Polynomial.dickson_twoₓ'. -/
 theorem dickson_two : dickson k a 2 = X ^ 2 - C a * (3 - k) := by simp only [dickson, sq]
 #align polynomial.dickson_two Polynomial.dickson_two
 
 /- warning: polynomial.dickson_add_two -> Polynomial.dickson_add_two is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a n)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a n)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_add_two Polynomial.dickson_add_twoₓ'. -/
 @[simp]
 theorem dickson_add_two (n : ℕ) :
@@ -108,10 +105,7 @@ theorem dickson_add_two (n : ℕ) :
 #align polynomial.dickson_add_two Polynomial.dickson_add_two
 
 /- warning: polynomial.dickson_of_two_le -> Polynomial.dickson_of_two_le is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) {n : Nat}, (LE.le.{0} Nat Nat.hasLe (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) n) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a n) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) {n : Nat}, (LE.le.{0} Nat instLENat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) n) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a n) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_of_two_le Polynomial.dickson_of_two_leₓ'. -/
 theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
     dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2) :=
@@ -198,10 +192,7 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
 variable (R)
 
 /- warning: polynomial.dickson_one_one_eq_chebyshev_T -> Polynomial.dickson_one_one_eq_chebyshev_T is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (bit0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Invertible.invOf.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) _inst_3)) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_Tₓ'. -/
 theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
@@ -221,10 +212,7 @@ theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
 #align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_T
 
 /- warning: polynomial.chebyshev_T_eq_dickson_one_one -> Polynomial.chebyshev_T_eq_dickson_one_one is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Invertible.invOf.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) _inst_3)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (bit0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_oneₓ'. -/
 theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
     Chebyshev.T R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
Diff
@@ -59,6 +59,7 @@ open Polynomial
 
 variable {R S : Type _} [CommRing R] [CommRing S] (k : ℕ) (a : R)
 
+#print Polynomial.dickson /-
 /-- `dickson` is the `n`the (generalised) Dickson polynomial of the `k`-th kind associated to the
 element `a ∈ R`. -/
 noncomputable def dickson : ℕ → R[X]
@@ -66,25 +67,52 @@ noncomputable def dickson : ℕ → R[X]
   | 1 => X
   | n + 2 => X * dickson (n + 1) - C a * dickson n
 #align polynomial.dickson Polynomial.dickson
+-/
 
+/- warning: polynomial.dickson_zero -> Polynomial.dickson_zero is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (bit1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HasLiftT.mk.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CoeTCₓ.coe.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Nat.castCoe.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) k))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Nat.cast.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_zero Polynomial.dickson_zeroₓ'. -/
 @[simp]
 theorem dickson_zero : dickson k a 0 = 3 - k :=
   rfl
 #align polynomial.dickson_zero Polynomial.dickson_zero
 
+#print Polynomial.dickson_one /-
 @[simp]
 theorem dickson_one : dickson k a 1 = X :=
   rfl
 #align polynomial.dickson_one Polynomial.dickson_one
+-/
 
+/- warning: polynomial.dickson_two -> Polynomial.dickson_two is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 3 (bit1.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HasLiftT.mk.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CoeTCₓ.coe.{1, succ u1} Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Nat.castCoe.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) k))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 3 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Nat.cast.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) k))))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two Polynomial.dickson_twoₓ'. -/
 theorem dickson_two : dickson k a 2 = X ^ 2 - C a * (3 - k) := by simp only [dickson, sq]
 #align polynomial.dickson_two Polynomial.dickson_two
 
+/- warning: polynomial.dickson_add_two -> Polynomial.dickson_add_two is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a n)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a n)))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_add_two Polynomial.dickson_add_twoₓ'. -/
 @[simp]
 theorem dickson_add_two (n : ℕ) :
     dickson k a (n + 2) = X * dickson k a (n + 1) - C a * dickson k a n := by rw [dickson]
 #align polynomial.dickson_add_two Polynomial.dickson_add_two
 
+/- warning: polynomial.dickson_of_two_le -> Polynomial.dickson_of_two_le is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) {n : Nat}, (LE.le.{0} Nat Nat.hasLe (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) n) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a n) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (k : Nat) (a : R) {n : Nat}, (LE.le.{0} Nat instLENat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) n) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a n) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.dickson.{u1} R _inst_1 k a (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_of_two_le Polynomial.dickson_of_two_leₓ'. -/
 theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
     dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2) :=
   by
@@ -95,6 +123,12 @@ theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
 
 variable {R S k a}
 
+/- warning: polynomial.map_dickson -> Polynomial.map_dickson is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {k : Nat} {a : R} (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (n : Nat), Eq.{succ u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f (Polynomial.dickson.{u1} R _inst_1 k a n)) (Polynomial.dickson.{u2} S _inst_2 k (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f a) n)
+but is expected to have type
+  forall {R : Type.{u2}} {S : Type.{u1}} [_inst_1 : CommRing.{u2} R] [_inst_2 : CommRing.{u1} S] {k : Nat} {a : R} (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) (n : Nat), Eq.{succ u1} (Polynomial.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))) (Polynomial.map.{u2, u1} R S (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)) f (Polynomial.dickson.{u2} R _inst_1 k a n)) (Polynomial.dickson.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) a) _inst_2 k (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S (CommRing.toCommSemiring.{u1} S _inst_2))))))) f a) n)
+Case conversion may be inaccurate. Consider using '#align polynomial.map_dickson Polynomial.map_dicksonₓ'. -/
 theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dickson k (f a) n
   | 0 => by
     simp only [dickson_zero, Polynomial.map_sub, Polynomial.map_nat_cast, bit1, bit0,
@@ -108,6 +142,12 @@ theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dicks
 
 variable {R}
 
+/- warning: polynomial.dickson_two_zero -> Polynomial.dickson_two_zero is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) n) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) n)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) n)
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_two_zero Polynomial.dickson_two_zeroₓ'. -/
 @[simp]
 theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
   | 0 => by
@@ -135,6 +175,12 @@ There is exactly one other Lambda structure on `ℤ[X]` in terms of binomial pol
 
 variable {R}
 
+/- warning: polynomial.dickson_one_one_eval_add_inv -> Polynomial.dickson_one_one_eval_add_inv is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R) (y : R), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) -> (forall (n : Nat), Eq.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x n) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y n)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R) (y : R), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) x y) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (forall (n : Nat), Eq.{succ u1} R (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x n) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y n)))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_invₓ'. -/
 theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     ∀ n, (dickson 1 (1 : R) n).eval (x + y) = x ^ n + y ^ n
   | 0 => by
@@ -151,7 +197,13 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
 
 variable (R)
 
-theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
+/- warning: polynomial.dickson_one_one_eq_chebyshev_T -> Polynomial.dickson_one_one_eq_chebyshev_T is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (bit0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Invertible.invOf.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) _inst_3)) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_Tₓ'. -/
+theorem dickson_one_one_eq_chebyshev_T [Invertible (2 : R)] :
     ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
   | 0 => by
     simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]
@@ -166,16 +218,28 @@ theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
     simp only [← C_1, ← C_bit0, ← mul_assoc, ← C_mul, mul_invOf_self]
     rw [C_1, one_mul]
     ring
-#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_t
-
-theorem chebyshev_t_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
+#align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_T
+
+/- warning: polynomial.chebyshev_T_eq_dickson_one_one -> Polynomial.chebyshev_T_eq_dickson_one_one is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Invertible.invOf.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) _inst_3)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 2 (bit0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (One.one.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.hasOne.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_3 : Invertible.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))] (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.Chebyshev.T.{u1} R _inst_1 n) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Invertible.invOf.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) _inst_3)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (instOfNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 2 (Polynomial.natCast.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_oneₓ'. -/
+theorem chebyshev_T_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
     Chebyshev.T R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
   by
   rw [dickson_one_one_eq_chebyshev_T]
   simp only [comp_assoc, mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul]
   rw [invOf_mul_self, C_1, one_mul, one_mul, comp_X]
-#align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_t_eq_dickson_one_one
-
+#align polynomial.chebyshev_T_eq_dickson_one_one Polynomial.chebyshev_T_eq_dickson_one_one
+
+/- warning: polynomial.dickson_one_one_mul -> Polynomial.dickson_one_one_mul is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) m n)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) m n)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_mul Polynomial.dickson_one_one_mulₓ'. -/
 /-- The `(m * n)`-th Dickson polynomial of the first kind is the composition of the `m`-th and
 `n`-th. -/
 theorem dickson_one_one_mul (m n : ℕ) :
@@ -196,12 +260,24 @@ theorem dickson_one_one_mul (m n : ℕ) :
   rw [mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul, invOf_mul_self, C_1, one_mul]
 #align polynomial.dickson_one_one_mul Polynomial.dickson_one_one_mul
 
+/- warning: polynomial.dickson_one_one_comp_comm -> Polynomial.dickson_one_one_comp_comm is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n)) (Polynomial.comp.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) n) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) m))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (m : Nat) (n : Nat), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n)) (Polynomial.comp.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) n) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) m))
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_commₓ'. -/
 theorem dickson_one_one_comp_comm (m n : ℕ) :
     (dickson 1 (1 : R) m).comp (dickson 1 1 n) = (dickson 1 1 n).comp (dickson 1 1 m) := by
   rw [← dickson_one_one_mul, mul_comm, dickson_one_one_mul]
 #align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_comm
 
-theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p :=
+/- warning: polynomial.dickson_one_one_zmod_p -> Polynomial.dickson_one_one_zmod_p is a dubious translation:
+lean 3 declaration is
+  forall (p : Nat) [_inst_3 : Fact (Nat.Prime p)], Eq.{1} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.dickson.{0} (ZMod p) (ZMod.commRing p) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} (ZMod p) 1 (OfNat.mk.{0} (ZMod p) 1 (One.one.{0} (ZMod p) (AddMonoidWithOne.toOne.{0} (ZMod p) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod p) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod p) (Ring.toAddCommGroupWithOne.{0} (ZMod p) (DivisionRing.toRing.{0} (ZMod p) (Field.toDivisionRing.{0} (ZMod p) (ZMod.field p _inst_3)))))))))) p) (HPow.hPow.{0, 0, 0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) Nat (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (instHPow.{0, 0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) Nat (Monoid.Pow.{0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Ring.toMonoid.{0} (Polynomial.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.ring.{0} (ZMod p) (DivisionRing.toRing.{0} (ZMod p) (Field.toDivisionRing.{0} (ZMod p) (ZMod.field p _inst_3))))))) (Polynomial.X.{0} (ZMod p) (Ring.toSemiring.{0} (ZMod p) (CommRing.toRing.{0} (ZMod p) (ZMod.commRing p)))) p)
+but is expected to have type
+  forall (p : Nat) [_inst_3 : Fact (Nat.Prime p)], Eq.{1} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.dickson.{0} (ZMod p) (ZMod.commRing p) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} (ZMod p) 1 (One.toOfNat1.{0} (ZMod p) (Semiring.toOne.{0} (ZMod p) (DivisionSemiring.toSemiring.{0} (ZMod p) (Semifield.toDivisionSemiring.{0} (ZMod p) (Field.toSemifield.{0} (ZMod p) (ZMod.instFieldZMod p _inst_3))))))) p) (HPow.hPow.{0, 0, 0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) Nat (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (instHPow.{0, 0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) Nat (Monoid.Pow.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (MonoidWithZero.toMonoid.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Semiring.toMonoidWithZero.{0} (Polynomial.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) (Polynomial.semiring.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))))))) (Polynomial.X.{0} (ZMod p) (CommSemiring.toSemiring.{0} (ZMod p) (CommRing.toCommSemiring.{0} (ZMod p) (ZMod.commRing p)))) p)
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_pₓ'. -/
+theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p :=
   by
   -- Recall that `dickson_eval_add_inv` characterises `dickson 1 1 p`
   -- as a polynomial that maps `x + x⁻¹` to `x ^ p + (x⁻¹) ^ p`.
@@ -273,8 +349,14 @@ theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         exact ⟨_, 1, rfl, one_ne_zero⟩
       · simp only [hx, or_false_iff, exists_eq_right]
         exact ⟨_, rfl, hx⟩
-#align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zMod_p
-
+#align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_p
+
+/- warning: polynomial.dickson_one_one_char_p -> Polynomial.dickson_one_one_charP is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) p) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.dickson.{u1} R _inst_1 (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p)
+Case conversion may be inaccurate. Consider using '#align polynomial.dickson_one_one_char_p Polynomial.dickson_one_one_charPₓ'. -/
 theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = X ^ p :=
   by
   have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1
Diff
@@ -267,7 +267,7 @@ theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
     -- Finally, we prove the claim that our finite union of finite sets covers all of `K`.
     · apply (Set.eq_univ_of_forall _).symm
       intro x
-      simp only [exists_prop, Set.mem_unionᵢ, Set.bind_def, Ne.def, Set.mem_setOf_eq]
+      simp only [exists_prop, Set.mem_iUnion, Set.bind_def, Ne.def, Set.mem_setOf_eq]
       by_cases hx : x = 0
       · simp only [hx, and_true_iff, eq_self_iff_true, inv_zero, or_true_iff]
         exact ⟨_, 1, rfl, one_ne_zero⟩
Diff
@@ -152,7 +152,7 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
 variable (R)
 
 theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
-    ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.t R n).comp (C (⅟ 2) * X)
+    ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.T R n).comp (C (⅟ 2) * X)
   | 0 => by
     simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]
     norm_num
@@ -169,7 +169,7 @@ theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
 #align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_t
 
 theorem chebyshev_t_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
-    Chebyshev.t R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
+    Chebyshev.T R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
   by
   rw [dickson_one_one_eq_chebyshev_T]
   simp only [comp_assoc, mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul]
Diff
@@ -253,7 +253,7 @@ theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
       classical
-        convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
+        convert(φ.roots ∪ {0}).toFinset.finite_toSet using 1
         ext1 y
         simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
           mem_roots hφ, is_root, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
Diff
@@ -115,7 +115,7 @@ theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
     norm_num
   | 1 => by simp only [dickson_one, pow_one]
   | n + 2 => by
-    simp only [dickson_add_two, C_0, zero_mul, sub_zero]
+    simp only [dickson_add_two, C_0, MulZeroClass.zero_mul, sub_zero]
     rw [dickson_two_zero, pow_add X (n + 1) 1, mul_comm, pow_one]
 #align polynomial.dickson_two_zero Polynomial.dickson_two_zero
 
@@ -250,8 +250,8 @@ theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
       have hφ : φ ≠ 0 := by
         intro H
         have : φ.eval 0 = 0 := by rw [H, eval_zero]
-        simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul, mul_zero, sq,
-          zero_add, one_ne_zero]
+        simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
+          MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
       classical
         convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
         ext1 y
Diff
@@ -63,8 +63,8 @@ variable {R S : Type _} [CommRing R] [CommRing S] (k : ℕ) (a : R)
 element `a ∈ R`. -/
 noncomputable def dickson : ℕ → R[X]
   | 0 => 3 - k
-  | 1 => x
-  | n + 2 => x * dickson (n + 1) - c a * dickson n
+  | 1 => X
+  | n + 2 => X * dickson (n + 1) - C a * dickson n
 #align polynomial.dickson Polynomial.dickson
 
 @[simp]
@@ -73,20 +73,20 @@ theorem dickson_zero : dickson k a 0 = 3 - k :=
 #align polynomial.dickson_zero Polynomial.dickson_zero
 
 @[simp]
-theorem dickson_one : dickson k a 1 = x :=
+theorem dickson_one : dickson k a 1 = X :=
   rfl
 #align polynomial.dickson_one Polynomial.dickson_one
 
-theorem dickson_two : dickson k a 2 = x ^ 2 - c a * (3 - k) := by simp only [dickson, sq]
+theorem dickson_two : dickson k a 2 = X ^ 2 - C a * (3 - k) := by simp only [dickson, sq]
 #align polynomial.dickson_two Polynomial.dickson_two
 
 @[simp]
 theorem dickson_add_two (n : ℕ) :
-    dickson k a (n + 2) = x * dickson k a (n + 1) - c a * dickson k a n := by rw [dickson]
+    dickson k a (n + 2) = X * dickson k a (n + 1) - C a * dickson k a n := by rw [dickson]
 #align polynomial.dickson_add_two Polynomial.dickson_add_two
 
 theorem dickson_of_two_le {n : ℕ} (h : 2 ≤ n) :
-    dickson k a n = x * dickson k a (n - 1) - c a * dickson k a (n - 2) :=
+    dickson k a n = X * dickson k a (n - 1) - C a * dickson k a (n - 2) :=
   by
   obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
   rw [add_comm]
@@ -109,7 +109,7 @@ theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dicks
 variable {R}
 
 @[simp]
-theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = x ^ n
+theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
   | 0 => by
     simp only [dickson_zero, pow_zero]
     norm_num
@@ -152,7 +152,7 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
 variable (R)
 
 theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
-    ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.t R n).comp (c (⅟ 2) * x)
+    ∀ n, dickson 1 (1 : R) n = 2 * (Chebyshev.t R n).comp (C (⅟ 2) * X)
   | 0 => by
     simp only [chebyshev.T_zero, mul_one, one_comp, dickson_zero]
     norm_num
@@ -169,7 +169,7 @@ theorem dickson_one_one_eq_chebyshev_t [Invertible (2 : R)] :
 #align polynomial.dickson_one_one_eq_chebyshev_T Polynomial.dickson_one_one_eq_chebyshev_t
 
 theorem chebyshev_t_eq_dickson_one_one [Invertible (2 : R)] (n : ℕ) :
-    Chebyshev.t R n = c (⅟ 2) * (dickson 1 1 n).comp (2 * x) :=
+    Chebyshev.t R n = C (⅟ 2) * (dickson 1 1 n).comp (2 * X) :=
   by
   rw [dickson_one_one_eq_chebyshev_T]
   simp only [comp_assoc, mul_comp, C_comp, X_comp, ← mul_assoc, ← C_1, ← C_bit0, ← C_mul]
@@ -201,7 +201,7 @@ theorem dickson_one_one_comp_comm (m n : ℕ) :
   rw [← dickson_one_one_mul, mul_comm, dickson_one_one_mul]
 #align polynomial.dickson_one_one_comp_comm Polynomial.dickson_one_one_comp_comm
 
-theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = x ^ p :=
+theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p :=
   by
   -- Recall that `dickson_eval_add_inv` characterises `dickson 1 1 p`
   -- as a polynomial that maps `x + x⁻¹` to `x ^ p + (x⁻¹) ^ p`.
@@ -275,7 +275,7 @@ theorem dickson_one_one_zMod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         exact ⟨_, rfl, hx⟩
 #align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zMod_p
 
-theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = x ^ p :=
+theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = X ^ p :=
   by
   have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1
   simp only [ZMod.castHom_apply, ZMod.cast_one']

Changes in mathlib4

mathlib3
mathlib4
chore: Rename nat_cast/int_cast/rat_cast to natCast/intCast/ratCast (#11486)

Now that I am defining NNRat.cast, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast/intCast/ratCast over nat_cast/int_cast/rat_cast, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.

Diff
@@ -94,7 +94,7 @@ variable {k a}
 
 theorem map_dickson (f : R →+* S) : ∀ n : ℕ, map f (dickson k a n) = dickson k (f a) n
   | 0 => by
-    simp_rw [dickson_zero, Polynomial.map_sub, Polynomial.map_nat_cast, Polynomial.map_ofNat]
+    simp_rw [dickson_zero, Polynomial.map_sub, Polynomial.map_natCast, Polynomial.map_ofNat]
   | 1 => by simp only [dickson_one, map_X]
   | n + 2 => by
     simp only [dickson_add_two, Polynomial.map_sub, Polynomial.map_mul, map_X, map_C]
chore: remove more simp-related porting notes which are fixed now (#12128)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -125,14 +125,10 @@ There is exactly one other Lambda structure on `ℤ[X]` in terms of binomial pol
 
 -/
 
-
 theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
     ∀ n, (dickson 1 (1 : R) n).eval (x + y) = x ^ n + y ^ n
   | 0 => by
-    -- Porting note: Original proof was
-    -- `simp only [bit0, eval_one, eval_add, pow_zero, dickson_zero]; norm_num`
-    suffices eval (x + y) 2 = 2 by convert this <;> norm_num
-    exact eval_nat_cast
+    simp only [eval_one, eval_add, pow_zero, dickson_zero]; norm_num
   | 1 => by simp only [eval_X, dickson_one, pow_one]
   | n + 2 => by
     simp only [eval_sub, eval_mul, dickson_one_one_eval_add_inv x y h _, eval_X, dickson_add_two,
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -256,7 +256,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
     -- Finally, we prove the claim that our finite union of finite sets covers all of `K`.
     · apply (Set.eq_univ_of_forall _).symm
       intro x
-      simp only [exists_prop, Set.mem_iUnion, Set.bind_def, Ne.def, Set.mem_setOf_eq]
+      simp only [exists_prop, Set.mem_iUnion, Set.bind_def, Ne, Set.mem_setOf_eq]
       by_cases hx : x = 0
       · simp only [hx, and_true_iff, eq_self_iff_true, inv_zero, or_true_iff]
         exact ⟨_, 1, rfl, one_ne_zero⟩
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -137,7 +137,7 @@ theorem dickson_one_one_eval_add_inv (x y : R) (h : x * y = 1) :
   | n + 2 => by
     simp only [eval_sub, eval_mul, dickson_one_one_eval_add_inv x y h _, eval_X, dickson_add_two,
       C_1, eval_one]
-    conv_lhs => simp only [pow_succ, add_mul, mul_add, h, ← mul_assoc, mul_comm y x, one_mul]
+    conv_lhs => simp only [pow_succ', add_mul, mul_add, h, ← mul_assoc, mul_comm y x, one_mul]
     ring
 #align polynomial.dickson_one_one_eval_add_inv Polynomial.dickson_one_one_eval_add_inv
 
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -239,12 +239,12 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
       have hφ : φ ≠ 0 := by
         intro H
         have : φ.eval 0 = 0 := by rw [H, eval_zero]
-        simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
+        simpa [φ, eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           mul_zero, sq, zero_add, one_ne_zero]
       classical
         convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
         ext1 y
-        simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
+        simp only [φ, Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
           mem_roots hφ, IsRoot, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
           Multiset.mem_singleton]
         by_cases hy : y = 0
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -176,8 +176,7 @@ set_option linter.uppercaseLean3 false in
 `n`-th. -/
 theorem dickson_one_one_mul (m n : ℕ) :
     dickson 1 (1 : R) (m * n) = (dickson 1 1 m).comp (dickson 1 1 n) := by
-  have h : (1 : R) = Int.castRingHom R 1
-  simp only [eq_intCast, Int.cast_one]
+  have h : (1 : R) = Int.castRingHom R 1 := by simp only [eq_intCast, Int.cast_one]
   rw [h]
   simp only [← map_dickson (Int.castRingHom R), ← map_comp]
   congr 1
@@ -266,8 +265,8 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
 #align polynomial.dickson_one_one_zmod_p Polynomial.dickson_one_one_zmod_p
 
 theorem dickson_one_one_charP (p : ℕ) [Fact p.Prime] [CharP R p] : dickson 1 (1 : R) p = X ^ p := by
-  have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1
-  simp only [ZMod.castHom_apply, ZMod.cast_one']
+  have h : (1 : R) = ZMod.castHom (dvd_refl p) R 1 := by
+    simp only [ZMod.castHom_apply, ZMod.cast_one']
   rw [h, ← map_dickson (ZMod.castHom (dvd_refl p) R), dickson_one_one_zmod_p, Polynomial.map_pow,
     map_X]
 #align polynomial.dickson_one_one_char_p Polynomial.dickson_one_one_charP
feat: make Set.monad not an instance and add (Subtype.val '' ·) coercion (#8413)

The monad instance on Set isn't computationally relevant, and it causes Lean's monad lifting coercion logic to activate. We introduce a coercion instance for the case that's actually used in practice: when s : Set X and t : Set s then (t : Set X) ought to be Subtype.val '' t. This way we do not see Lean.Internal.coeM terms.

If the monad is still wanted, it can be activated using a local attribute or by using the SetM.run function.

Diff
@@ -231,7 +231,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
     -- For every `x`, that set is finite (since it is governed by a quadratic equation).
     -- For the moment, we claim that all these sets together cover `K`.
     suffices (Set.univ : Set K) =
-        { x : K | ∃ y : K, x = y + y⁻¹ ∧ y ≠ 0 } >>= fun x => { y | x = y + y⁻¹ ∨ y = 0 } by
+        ⋃ x ∈ { x : K | ∃ y : K, x = y + y⁻¹ ∧ y ≠ 0 }, { y | x = y + y⁻¹ ∨ y = 0 }  by
       rw [this]
       clear this
       refine' h.biUnion fun x _ => _
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -243,7 +243,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
           mul_zero, sq, zero_add, one_ne_zero]
       classical
-        convert(φ.roots ∪ {0}).toFinset.finite_toSet using 1
+        convert (φ.roots ∪ {0}).toFinset.finite_toSet using 1
         ext1 y
         simp only [Multiset.mem_toFinset, Set.mem_setOf_eq, Finset.mem_coe, Multiset.mem_union,
           mem_roots hφ, IsRoot, eval_add, eval_sub, eval_pow, eval_mul, eval_X, eval_C, eval_one,
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -108,7 +108,7 @@ theorem dickson_two_zero : ∀ n : ℕ, dickson 2 (0 : R) n = X ^ n
     norm_num
   | 1 => by simp only [dickson_one, pow_one]
   | n + 2 => by
-    simp only [dickson_add_two, C_0, MulZeroClass.zero_mul, sub_zero]
+    simp only [dickson_add_two, C_0, zero_mul, sub_zero]
     rw [dickson_two_zero (n + 1), pow_add X (n + 1) 1, mul_comm, pow_one]
 #align polynomial.dickson_two_zero Polynomial.dickson_two_zero
 
@@ -241,7 +241,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
         intro H
         have : φ.eval 0 = 0 := by rw [H, eval_zero]
         simpa [eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul,
-          MulZeroClass.mul_zero, sq, zero_add, one_ne_zero]
+          mul_zero, sq, zero_add, one_ne_zero]
       classical
         convert(φ.roots ∪ {0}).toFinset.finite_toSet using 1
         ext1 y
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -54,7 +54,7 @@ namespace Polynomial
 
 open Polynomial
 
-variable {R S : Type _} [CommRing R] [CommRing S] (k : ℕ) (a : R)
+variable {R S : Type*} [CommRing R] [CommRing S] (k : ℕ) (a : R)
 
 /-- `dickson` is the `n`-th (generalised) Dickson polynomial of the `k`-th kind associated to the
 element `a ∈ R`. -/
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Julian Kuelshammer. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Julian Kuelshammer
-
-! This file was ported from Lean 3 source module ring_theory.polynomial.dickson
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.CharP.Invertible
 import Mathlib.Data.ZMod.Basic
@@ -14,6 +9,8 @@ import Mathlib.RingTheory.Localization.FractionRing
 import Mathlib.RingTheory.Polynomial.Chebyshev
 import Mathlib.RingTheory.Ideal.LocalRing
 
+#align_import ring_theory.polynomial.dickson from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
+
 /-!
 # Dickson polynomials
 
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -205,7 +205,7 @@ theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p)
   -- Since `X ^ p` also satisfies this property in characteristic `p`,
   -- we can use a variant on `Polynomial.funext` to conclude that these polynomials are equal.
   -- For this argument, we need an arbitrary infinite field of characteristic `p`.
-  obtain ⟨K, _, _, H⟩ : ∃ (K : Type)(_ : Field K), ∃ _ : CharP K p, Infinite K := by
+  obtain ⟨K, _, _, H⟩ : ∃ (K : Type) (_ : Field K), ∃ _ : CharP K p, Infinite K := by
     let K := FractionRing (Polynomial (ZMod p))
     let f : ZMod p →+* K := (algebraMap _ (FractionRing _)).comp C
     have : CharP K p := by
feat: port RingTheory.Polynomial.Dickson (#4382)

Rewrote the proof for dickson_one_one_eq_chebyshev_T and chebyshev_T_eq_dickson_one_one

Dependencies 8 + 547

548 files ported (98.6%)
228817 lines ported (98.7%)
Show graph

The unported dependencies are