ring_theory.unique_factorization_domainMathlib.RingTheory.UniqueFactorizationDomain

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(ring_theory/localization/away) : Add num_denom section (#18830)

Added a section num_denom: the main result is the lemma exists_reduced_fraction that shows that every non-zero element b in a localization.away x of a UFM can be written in a unique way as b=x^n * a with n : ℤ and a not divisible by x.

Co-authored-by: Vierkantor <vierkantor@vierkantor.com>

Diff
@@ -863,12 +863,12 @@ lemma pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬ is_unit a) {i j : ℕ} :
 (pow_right_injective ha0 ha1).eq_iff
 
 section multiplicity
-variables [nontrivial R] [normalization_monoid R] [decidable_eq R]
+variables [nontrivial R] [normalization_monoid R]
 variables [dec_dvd : decidable_rel (has_dvd.dvd : R → R → Prop)]
 open multiplicity multiset
 
 include dec_dvd
-lemma le_multiplicity_iff_replicate_le_normalized_factors {a b : R} {n : ℕ}
+lemma le_multiplicity_iff_replicate_le_normalized_factors [decidable_eq R] {a b : R} {n : ℕ}
   (ha : irreducible a) (hb : b ≠ 0) :
   ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalized_factors b :=
 begin
@@ -894,8 +894,8 @@ the normalized factor occurs in the `normalized_factors`.
 See also `count_normalized_factors_eq` which expands the definition of `multiplicity`
 to produce a specification for `count (normalized_factors _) _`..
 -/
-lemma multiplicity_eq_count_normalized_factors {a b : R} (ha : irreducible a) (hb : b ≠ 0) :
-  multiplicity a b = (normalized_factors b).count (normalize a) :=
+lemma multiplicity_eq_count_normalized_factors [decidable_eq R] {a b : R} (ha : irreducible a)
+ (hb : b ≠ 0) : multiplicity a b = (normalized_factors b).count (normalize a) :=
 begin
   apply le_antisymm,
   { apply part_enat.le_of_lt_add_one,
@@ -912,8 +912,8 @@ the number of times it divides `x`.
 
 See also `multiplicity_eq_count_normalized_factors` if `n` is given by `multiplicity p x`.
 -/
-lemma count_normalized_factors_eq {p x : R} (hp : irreducible p) (hnorm : normalize p = p) {n : ℕ}
-  (hle : p^n ∣ x) (hlt : ¬ (p^(n+1) ∣ x)) :
+lemma count_normalized_factors_eq [decidable_eq R] {p x : R} (hp : irreducible p)
+  (hnorm : normalize p = p) {n : ℕ} (hle : p^n ∣ x) (hlt : ¬ (p^(n+1) ∣ x)) :
   (normalized_factors x).count p = n :=
 begin
   letI : decidable_rel ((∣) : R → R → Prop) := λ _ _, classical.prop_decidable _,
@@ -931,8 +931,8 @@ the number of times it divides `x`. This is a slightly more general version of
 
 See also `multiplicity_eq_count_normalized_factors` if `n` is given by `multiplicity p x`.
 -/
-lemma count_normalized_factors_eq' {p x : R} (hp : p = 0 ∨ irreducible p) (hnorm : normalize p = p)
-  {n : ℕ} (hle : p^n ∣ x) (hlt : ¬ (p^(n+1) ∣ x)) :
+lemma count_normalized_factors_eq' [decidable_eq R] {p x : R} (hp : p = 0 ∨ irreducible p)
+  (hnorm : normalize p = p) {n : ℕ} (hle : p^n ∣ x) (hlt : ¬ (p^(n+1) ∣ x)) :
   (normalized_factors x).count p = n :=
 begin
   rcases hp with rfl|hp,
@@ -943,6 +943,18 @@ begin
   { exact count_normalized_factors_eq hp hnorm hle hlt }
 end
 
+lemma max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : irreducible x) :
+  ∃ n : ℕ, ∃ a : R, ¬ x ∣ a ∧ a₀ = x ^ n * a :=
+begin
+  classical,
+  let n := (normalized_factors a₀).count (normalize x),
+  obtain ⟨a, ha1, ha2⟩ := (@exists_eq_pow_mul_and_not_dvd R _ _ x a₀
+    (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))),
+  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1,
+  use [n, a, ha2, ha1],
+  use [n, (multiplicity_eq_count_normalized_factors hx h)],
+end
+
 end multiplicity
 
 section multiplicative

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -1655,11 +1655,11 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
 #align associates.factors Associates.factors
 -/
 
-#print Associates.factors_0 /-
+#print Associates.factors_zero /-
 @[simp]
-theorem factors_0 : (0 : Associates α).factors = ⊤ :=
+theorem factors_zero : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
-#align associates.factors_0 Associates.factors_0
+#align associates.factors_0 Associates.factors_zero
 -/
 
 #print Associates.factors_mk /-
@@ -1696,13 +1696,13 @@ theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors =
 #align associates.factors_subsingleton Associates.factors_subsingleton
 -/
 
-#print Associates.factors_eq_none_iff_zero /-
-theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 :=
+#print Associates.factors_eq_top_iff_zero /-
+theorem factors_eq_top_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 :=
   by
   nontriviality α
   exact
     ⟨fun h => by rwa [← factors_prod a, factor_set.prod_eq_zero_iff], fun h => h.symm ▸ factors_0⟩
-#align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
+#align associates.factors_eq_none_iff_zero Associates.factors_eq_top_iff_zero
 -/
 
 #print Associates.factors_eq_some_iff_ne_zero /-
@@ -1991,7 +1991,7 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a :=
   by
   nontriviality α
-  rw [← Associates.mk_le_mk_iff_dvd_iff]
+  rw [← Associates.mk_le_mk_iff_dvd]
   refine'
     ⟨fun h =>
       Associates.le_of_count_ne_zero (associates.mk_ne_zero.mpr ha0)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
 -/
 import Algebra.BigOperators.Associated
-import Algebra.GcdMonoid.Basic
+import Algebra.GCDMonoid.Basic
 import Data.Finsupp.Multiset
 import RingTheory.Noetherian
 import RingTheory.Multiplicity
@@ -167,7 +167,7 @@ theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
 
 section Prio
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option default_priority -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:340:40: warning: unsupported option default_priority -/
 set_option default_priority 100
 
 #print UniqueFactorizationMonoid /-
@@ -588,7 +588,7 @@ theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n
   · simp
   by_cases h0 : x = 0
   · simp [h0, zero_pow n.succ_pos, smul_zero]
-  rw [pow_succ, succ_nsmul]
+  rw [pow_succ', succ_nsmul']
   refine' Multiset.Rel.trans _ (factors_mul h0 (pow_ne_zero n h0)) _
   refine' Multiset.Rel.add _ ih
   exact Multiset.rel_refl_of_refl_on fun y hy => Associated.refl _
@@ -694,7 +694,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 #print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
@@ -794,7 +794,7 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   · simp
   by_cases h0 : x = 0
   · simp [h0, zero_pow n.succ_pos, smul_zero]
-  rw [pow_succ, succ_nsmul, normalized_factors_mul h0 (pow_ne_zero _ h0), ih]
+  rw [pow_succ', succ_nsmul', normalized_factors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
 -/
 
@@ -1029,7 +1029,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 #print UniqueFactorizationMonoid.exists_reduced_factors /-
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
@@ -1113,8 +1113,8 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
   intro b hb
   constructor
   · rintro ⟨c, rfl⟩
-    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb
-    rw [pow_succ, mul_assoc, normalized_factors_mul hb.1 hb.2, replicate_succ,
+    rw [Ne.def, pow_succ', mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb
+    rw [pow_succ', mul_assoc, normalized_factors_mul hb.1 hb.2, replicate_succ,
       normalized_factors_irreducible ha, singleton_add, cons_le_cons_iff, ← ih hb.2]
     apply Dvd.intro _ rfl
   · rw [Multiset.le_iff_exists_add]
@@ -1206,7 +1206,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 
 open scoped BigOperators
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 #print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
@@ -1227,7 +1227,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.induction_on_prime_power /-
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
@@ -1275,8 +1275,8 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.multiplicative_prime_power /-
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
@@ -2101,7 +2101,7 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).fact
   by
   induction' k with n h
   · rw [zero_nsmul, pow_zero]; exact factors_one
-  · rw [pow_succ, succ_nsmul, factors_mul, h]
+  · rw [pow_succ', succ_nsmul', factors_mul, h]
 #align associates.pow_factors Associates.pow_factors
 -/
 
@@ -2111,7 +2111,7 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
   by
   induction' k with n h
   · rw [pow_zero, factors_one, MulZeroClass.zero_mul, count_zero hp]
-  · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]; ring
+  · rw [pow_succ', count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]; ring
 #align associates.count_pow Associates.count_pow
 -/
 
Diff
@@ -234,7 +234,7 @@ theorem exists_prime_factors (a : α) : a ≠ 0 → ∃ f : Multiset α, (∀ b
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a :=
   by
-  simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime] at h₃ 
+  simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime] at h₃
   exact WfDvdMonoid.induction_on_irreducible a h₁ h₂ h₃
 #align unique_factorization_monoid.induction_on_prime UniqueFactorizationMonoid.induction_on_prime
 -/
@@ -346,7 +346,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
     · convert (Classical.choose_spec (pf c cne0)).2.symm
       rw [Con, Multiset.prod_zero]
     · intro x hadd
-      rw [Multiset.mem_add] at hadd 
+      rw [Multiset.mem_add] at hadd
       cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
     · rw [Multiset.prod_add]
       trans a * c
@@ -496,7 +496,7 @@ theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).Prod a :
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   by
   intro ha
-  rw [factors, dif_pos ha] at h 
+  rw [factors, dif_pos ha] at h
   exact Multiset.not_mem_zero _ h
 #align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factors
 -/
@@ -511,7 +511,7 @@ theorem dvd_of_mem_factors {p a : α} (h : p ∈ factors a) : p ∣ a :=
 theorem prime_of_factor {a : α} (x : α) (hx : x ∈ factors a) : Prime x :=
   by
   have ane0 := ne_zero_of_mem_factors hx
-  rw [factors, dif_neg ane0] at hx 
+  rw [factors, dif_neg ane0] at hx
   exact (Classical.choose_spec (UniqueFactorizationMonoid.exists_prime_factors a ane0)).1 x hx
 #align unique_factorization_monoid.prime_of_factor UniqueFactorizationMonoid.prime_of_factor
 -/
@@ -878,7 +878,7 @@ theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
   by
   use(normalized_factors r).card
   have := UniqueFactorizationMonoid.normalizedFactors_prod hr
-  rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this 
+  rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this
 #align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor
 -/
 
@@ -1014,7 +1014,7 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     apply units.dvd_mul_right.mp a_dvd_bx
   · intro c p hc hp ih no_factors a_dvd_bpc
     apply ih fun q dvd_a dvd_c hq => no_factors dvd_a (dvd_c.hMul_left _) hq
-    rw [mul_left_comm] at a_dvd_bpc 
+    rw [mul_left_comm] at a_dvd_bpc
     refine' Or.resolve_left (hp.left_dvd_or_dvd_right_of_dvd_mul a_dvd_bpc) fun h => _
     exact no_factors h (dvd_mul_right p c) hp
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
@@ -1083,7 +1083,7 @@ theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
   obtain ⟨p', hp', dvd'⟩ := WfDvdMonoid.exists_irreducible_factor ha1 ha0
   obtain ⟨p, mem, _⟩ := exists_mem_normalized_factors_of_dvd ha0 hp' dvd'
   have := congr_arg (fun x => Multiset.count p (normalized_factors x)) hij
-  simp only [normalized_factors_pow, Multiset.count_nsmul] at this 
+  simp only [normalized_factors_pow, Multiset.count_nsmul] at this
   exact mul_right_cancel₀ (multiset.count_ne_zero.mpr mem) this
 #align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injective
 -/
@@ -1113,7 +1113,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
   intro b hb
   constructor
   · rintro ⟨c, rfl⟩
-    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb 
+    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb
     rw [pow_succ, mul_assoc, normalized_factors_mul hb.1 hb.2, replicate_succ,
       normalized_factors_irreducible ha, singleton_add, cons_le_cons_iff, ← ih hb.2]
     apply Dvd.intro _ rfl
@@ -1155,7 +1155,7 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
-  · simp [hx0] at hlt ; contradiction
+  · simp [hx0] at hlt; contradiction
   rw [← PartENat.natCast_inj]
   convert (multiplicity_eq_count_normalized_factors hp hx0).symm
   · exact hnorm.symm
@@ -1177,7 +1177,7 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   rcases hp with (rfl | hp)
   · cases n
     · exact count_eq_zero.2 (zero_not_mem_normalized_factors _)
-    · rw [zero_pow (Nat.succ_pos _)] at hle hlt 
+    · rw [zero_pow (Nat.succ_pos _)] at hle hlt
       exact absurd hle hlt
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
@@ -1190,7 +1190,7 @@ theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x
   let n := (normalized_factors a₀).count (normalize x)
   obtain ⟨a, ha1, ha2⟩ :=
     @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
-  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
+  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1
   use n, a, ha2, ha1
   use n, multiplicity_eq_count_normalized_factors hx h
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
@@ -1459,7 +1459,7 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod =
   · simp only [iff_self_iff, eq_self_iff_true, Associates.prod_top]
   simp only [prod_coe, WithTop.coe_ne_top, iff_false_iff, prod_eq_zero_iff, Multiset.mem_map]
   rintro ⟨⟨a, ha⟩, -, eq⟩
-  rw [Subtype.coe_mk] at eq 
+  rw [Subtype.coe_mk] at eq
   exact ha.ne_zero Eq
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
 -/
@@ -1550,7 +1550,7 @@ theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
 #print Associates.reducible_not_mem_factorSet /-
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
     ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
-  rwa [dif_neg hp] at h 
+  rwa [dif_neg hp] at h
 #align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSet
 -/
 
@@ -1627,7 +1627,7 @@ theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).m
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  · rw [associated_zero_iff_eq_zero] at h ; rw [h]
+  · rw [associated_zero_iff_eq_zero] at h; rw [h]
   have ha : a ≠ 0 := by
     contrapose! hb with ha
     rw [← associated_zero_iff_eq_zero, ← ha]
@@ -1649,7 +1649,7 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
   intro a b hab
   apply Function.hfunext
   · have : a ~ᵤ 0 ↔ b ~ᵤ 0 := Iff.intro (fun ha0 => hab.symm.trans ha0) fun hb0 => hab.trans hb0
-    simp only [associated_zero_iff_eq_zero] at this 
+    simp only [associated_zero_iff_eq_zero] at this
     simp only [quotient_mk_eq_mk, this, mk_eq_zero]
   exact fun ha hb eq => hEq_of_eq <| congr_arg some <| factors'_cong hab
 #align associates.factors Associates.factors
@@ -1717,7 +1717,7 @@ theorem factors_eq_some_iff_ne_zero {a : Associates α} :
 theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factors) : a = b :=
   by
   have : a.factors.Prod = b.factors.Prod := by rw [h]
-  rwa [factors_prod, factors_prod] at this 
+  rwa [factors_prod, factors_prod] at this
 #align associates.eq_of_factors_eq_factors Associates.eq_of_factors_eq_factors
 -/
 
@@ -1725,7 +1725,7 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
   have : a.prod.factors = b.prod.factors := by rw [h]
-  rwa [prod_factors, prod_factors] at this 
+  rwa [prod_factors, prod_factors] at this
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 -/
 
@@ -1762,7 +1762,7 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
   rw [h_sa, h_sb] at h ⊢
-  rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h 
+  rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h
   exact Multiset.count_le_of_le _ h
 #align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_le
 -/
@@ -1789,7 +1789,7 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
   Iff.intro
     (fun h => by
       have : a.factors.Prod ≤ b.factors.Prod := prod_mono h
-      rwa [factors_prod, factors_prod] at this )
+      rwa [factors_prod, factors_prod] at this)
     factors_mono
 #align associates.factors_le Associates.factors_le
 -/
@@ -1807,7 +1807,7 @@ theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a 
     Iff.intro
       (fun h => by
         have : a.prod.factors ≤ b.prod.factors := factors_mono h
-        rwa [prod_factors, prod_factors] at this )
+        rwa [prod_factors, prod_factors] at this)
       prod_mono
 #align associates.prod_le Associates.prod_le
 -/
@@ -1913,9 +1913,9 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     change (factors (Associates.mk a) ⊓ factors (Associates.mk b)).Prod = 1
     rw [hf]
     exact Multiset.prod_zero
-  rw [factors_mk a ha, factors_mk b hb, ← WithTop.coe_inf] at hz 
+  rw [factors_mk a ha, factors_mk b hb, ← WithTop.coe_inf] at hz
   obtain ⟨⟨p0, p0_irr⟩, p0_mem⟩ := Multiset.exists_mem_of_ne_zero ((mt with_top.coe_eq_coe.mpr) hz)
-  rw [Multiset.inf_eq_inter] at p0_mem 
+  rw [Multiset.inf_eq_inter] at p0_mem
   obtain ⟨p, rfl⟩ : ∃ p, Associates.mk p = p0 := Quot.exists_rep p0
   refine' ⟨p, _, _, _⟩
   · rw [← irreducible_iff_prime, ← irreducible_mk]
@@ -2000,7 +2000,7 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · rw [← pow_one (Associates.mk p),
       Associates.prime_pow_dvd_iff_le (associates.mk_ne_zero.mpr ha0)
         ((Associates.irreducible_mk p).mpr hp)] at
-      h 
+      h
     exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 -/
@@ -2081,7 +2081,7 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
   by_cases ha : a = 0; · simpa [*] using habk
   cases' count_of_coprime ha hb hab hp with hz h
   · rw [hz]; exact dvd_zero k
-  · rw [count_mul ha hb hp, h] at habk ; exact habk
+  · rw [count_mul ha hb hp, h] at habk; exact habk
 #align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mul
 -/
 
@@ -2128,7 +2128,7 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
     ∃ b : Associates α, a = b ^ k :=
   by
   obtain ⟨a0, hz, rfl⟩ := exists_non_zero_rep ha
-  rw [factors_mk a0 hz] at hk 
+  rw [factors_mk a0 hz] at hk
   have hk' : ∀ p, p ∈ factors' a0 → k ∣ (factors' a0).count p :=
     by
     rintro p -
@@ -2194,7 +2194,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
     rw [h]
     apply dvd_count_pow _ hp
     rintro rfl
-    rw [zero_pow _ hk0] at h 
+    rw [zero_pow _ hk0] at h
     cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 -/
@@ -2316,7 +2316,7 @@ noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
       (normalized_factors_prod hy).dvd_iff_dvd_right]
     exact Multiset.prod_dvd_prod_of_le hs
   · rintro (h : x ∣ y)
-    have hx : x ≠ 0 := by refine' mt (fun hx => _) hy; rwa [hx, zero_dvd_iff] at h 
+    have hx : x ≠ 0 := by refine' mt (fun hx => _) hy; rwa [hx, zero_dvd_iff] at h
     obtain ⟨u, hu⟩ := normalized_factors_prod hx
     refine' ⟨⟨normalized_factors x, u⟩, _, (mul_comm _ _).trans hu⟩
     exact (dvd_iff_normalized_factors_le_normalized_factors hx hy).mp h
@@ -2387,7 +2387,7 @@ theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • fac
 theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
     (h : factorization a = factorization b) : Associated a b :=
   by
-  simp_rw [factorization, AddEquiv.apply_eq_iff_eq] at h 
+  simp_rw [factorization, AddEquiv.apply_eq_iff_eq] at h
   rwa [associated_iff_normalized_factors_eq_normalized_factors ha hb]
 #align associated_of_factorization_eq associated_of_factorization_eq
 -/
Diff
@@ -196,13 +196,13 @@ class UniqueFactorizationMonoid (α : Type _) [CancelCommMonoidWithZero α] exte
 #align unique_factorization_monoid UniqueFactorizationMonoid
 -/
 
-#print ufm_of_gcd_of_wfDvdMonoid /-
+#print ufm_of_decomposition_of_wfDvdMonoid /-
 /-- Can't be an instance because it would cause a loop `ufm → wf_dvd_monoid → ufm → ...`. -/
 @[reducible]
-theorem ufm_of_gcd_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α] [GCDMonoid α] :
-    UniqueFactorizationMonoid α :=
-  { ‹WfDvdMonoid α› with irreducible_iff_prime := fun _ => GCDMonoid.irreducible_iff_prime }
-#align ufm_of_gcd_of_wf_dvd_monoid ufm_of_gcd_of_wfDvdMonoid
+theorem ufm_of_decomposition_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α]
+    [GCDMonoid α] : UniqueFactorizationMonoid α :=
+  { ‹WfDvdMonoid α› with irreducible_iff_prime := fun _ => irreducible_iff_prime }
+#align ufm_of_gcd_of_wf_dvd_monoid ufm_of_decomposition_of_wfDvdMonoid
 -/
 
 #print Associates.ufm /-
@@ -988,13 +988,13 @@ namespace UniqueFactorizationMonoid
 
 variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
-#print UniqueFactorizationMonoid.no_factors_of_no_prime_factors /-
-theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
+#print UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors /-
+theorem isRelPrime_iff_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
   induction_on_prime d (by simp only [zero_dvd_iff]; intros; contradiction) (fun x hx _ _ => hx)
     fun d q hp hq ih dvd_a dvd_b =>
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
-#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
+#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors
 -/
 
 #print UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors /-
Diff
@@ -2194,7 +2194,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
     rw [h]
     apply dvd_count_pow _ hp
     rintro rfl
-    rw [zero_pow' _ hk0] at h 
+    rw [zero_pow _ hk0] at h 
     cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 -/
Diff
@@ -138,7 +138,12 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
   ⟨fun hnu => by
     obtain ⟨f, hi, u, rfl⟩ := exists_factors a hn0
     obtain ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero fun h : f = 0 => hnu <| by simp [h]
-    classical, fun ⟨f, hi, he, hne⟩ =>
+    classical
+    refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
+    · obtain rfl | ha := Multiset.mem_cons.1 ha
+      exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
+    · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
+    fun ⟨f, hi, he, hne⟩ =>
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
     not_isUnit_of_not_isUnit_dvd (hi b h).not_unit <| he ▸ Multiset.dvd_prod h⟩
 #align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eq
@@ -314,7 +319,40 @@ variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime
 
 #print WfDvdMonoid.of_exists_prime_factors /-
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
-  ⟨by classical⟩
+  ⟨by
+    classical
+    refine'
+      RelHomClass.wellFounded
+        (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
+        (WithTop.instWellFoundedLT Nat.lt_wfRel)
+    · intro a
+      by_cases h : a = 0; · exact ⊤
+      exact (Classical.choose (pf a h)).card
+    rintro a b ⟨ane0, ⟨c, hc, b_eq⟩⟩
+    rw [dif_neg ane0]
+    by_cases h : b = 0
+    · simp [h, lt_top_iff_ne_top]
+    rw [dif_neg h, WithTop.coe_lt_coe]
+    have cne0 : c ≠ 0 := by refine' mt (fun con => _) h; rw [b_eq, Con, MulZeroClass.mul_zero]
+    calc
+      Multiset.card (Classical.choose (pf a ane0)) <
+          _ + Multiset.card (Classical.choose (pf c cne0)) :=
+        lt_add_of_pos_right _
+          (multiset.card_pos.mpr fun con => hc (associated_one_iff_is_unit.mp _))
+      _ = Multiset.card (Classical.choose (pf a ane0) + Classical.choose (pf c cne0)) :=
+        (Multiset.card_add _ _).symm
+      _ = Multiset.card (Classical.choose (pf b h)) :=
+        Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
+    · convert (Classical.choose_spec (pf c cne0)).2.symm
+      rw [Con, Multiset.prod_zero]
+    · intro x hadd
+      rw [Multiset.mem_add] at hadd 
+      cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
+    · rw [Multiset.prod_add]
+      trans a * c
+      · apply Associated.mul_mul <;> apply (Classical.choose_spec (pf _ _)).2
+      · rw [← b_eq]
+        apply (Classical.choose_spec (pf _ _)).2.symm⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
 -/
 
@@ -1147,7 +1185,14 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
 
 #print UniqueFactorizationMonoid.max_power_factor /-
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
-    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by classical
+    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
+  classical
+  let n := (normalized_factors a₀).count (normalize x)
+  obtain ⟨a, ha1, ha2⟩ :=
+    @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
+  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
+  use n, a, ha2, ha1
+  use n, multiplicity_eq_count_normalized_factors hx h
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
 -/
 
@@ -1544,7 +1589,20 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 #print Associates.prod_le_prod_iff_le /-
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
-  Iff.intro (by classical) prod_le_prod
+  Iff.intro
+    (by
+      classical
+      rintro ⟨c, eqc⟩
+      refine' Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx => _) _⟩
+      · obtain h | h := Multiset.mem_add.1 hx
+        · exact hp x h
+        · exact irreducible_of_factor _ h
+      · rw [eqc, Multiset.prod_add]
+        congr
+        refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
+        refine' not_irreducible_zero (hq _ _)
+        rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
+    prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 -/
 
@@ -1606,7 +1664,10 @@ theorem factors_0 : (0 : Associates α).factors = ⊤ :=
 
 #print Associates.factors_mk /-
 @[simp]
-theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by classical
+theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
+  classical
+  apply dif_neg
+  apply mt mk_eq_zero.1 h
 #align associates.factors_mk Associates.factors_mk
 -/
 
@@ -1663,6 +1724,8 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 #print Associates.eq_of_prod_eq_prod /-
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
+  have : a.prod.factors = b.prod.factors := by rw [h]
+  rwa [prod_factors, prod_factors] at this 
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 -/
 
@@ -1739,7 +1802,13 @@ theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irredu
 -/
 
 #print Associates.prod_le /-
-theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by classical
+theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
+  classical exact
+    Iff.intro
+      (fun h => by
+        have : a.prod.factors ≤ b.prod.factors := factors_mono h
+        rwa [prod_factors, prod_factors] at this )
+      prod_mono
 #align associates.prod_le Associates.prod_le
 -/
 
@@ -2113,7 +2182,20 @@ theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible
 #print Associates.eq_pow_of_mul_eq_pow /-
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
-    ∃ d : Associates α, a = d ^ k := by classical
+    ∃ d : Associates α, a = d ^ k := by
+  classical
+  by_cases hk0 : k = 0
+  · use 1
+    rw [hk0, pow_zero] at h ⊢
+    apply (mul_eq_one_iff.1 h).1
+  · refine' is_pow_of_dvd_count ha _
+    intro p hp
+    apply dvd_count_of_dvd_count_mul hb hp hab
+    rw [h]
+    apply dvd_count_pow _ hp
+    rintro rfl
+    rw [zero_pow' _ hk0] at h 
+    cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 -/
 
@@ -2121,7 +2203,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) : a = p ^ Nat.find ⟨n, h⟩ := by
-  classical
+  classical rw [count_factors_eq_find_of_dvd_pow hp, ← eq_pow_count_factors_of_dvd_pow hp h]
 #align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_pow
 -/
 
Diff
@@ -138,12 +138,7 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
   ⟨fun hnu => by
     obtain ⟨f, hi, u, rfl⟩ := exists_factors a hn0
     obtain ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero fun h : f = 0 => hnu <| by simp [h]
-    classical
-    refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
-    · obtain rfl | ha := Multiset.mem_cons.1 ha
-      exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
-    · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
-    fun ⟨f, hi, he, hne⟩ =>
+    classical, fun ⟨f, hi, he, hne⟩ =>
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
     not_isUnit_of_not_isUnit_dvd (hi b h).not_unit <| he ▸ Multiset.dvd_prod h⟩
 #align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eq
@@ -319,40 +314,7 @@ variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime
 
 #print WfDvdMonoid.of_exists_prime_factors /-
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
-  ⟨by
-    classical
-    refine'
-      RelHomClass.wellFounded
-        (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
-        (WithTop.instWellFoundedLT Nat.lt_wfRel)
-    · intro a
-      by_cases h : a = 0; · exact ⊤
-      exact (Classical.choose (pf a h)).card
-    rintro a b ⟨ane0, ⟨c, hc, b_eq⟩⟩
-    rw [dif_neg ane0]
-    by_cases h : b = 0
-    · simp [h, lt_top_iff_ne_top]
-    rw [dif_neg h, WithTop.coe_lt_coe]
-    have cne0 : c ≠ 0 := by refine' mt (fun con => _) h; rw [b_eq, Con, MulZeroClass.mul_zero]
-    calc
-      Multiset.card (Classical.choose (pf a ane0)) <
-          _ + Multiset.card (Classical.choose (pf c cne0)) :=
-        lt_add_of_pos_right _
-          (multiset.card_pos.mpr fun con => hc (associated_one_iff_is_unit.mp _))
-      _ = Multiset.card (Classical.choose (pf a ane0) + Classical.choose (pf c cne0)) :=
-        (Multiset.card_add _ _).symm
-      _ = Multiset.card (Classical.choose (pf b h)) :=
-        Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
-    · convert (Classical.choose_spec (pf c cne0)).2.symm
-      rw [Con, Multiset.prod_zero]
-    · intro x hadd
-      rw [Multiset.mem_add] at hadd 
-      cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
-    · rw [Multiset.prod_add]
-      trans a * c
-      · apply Associated.mul_mul <;> apply (Classical.choose_spec (pf _ _)).2
-      · rw [← b_eq]
-        apply (Classical.choose_spec (pf _ _)).2.symm⟩
+  ⟨by classical⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
 -/
 
@@ -1185,14 +1147,7 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
 
 #print UniqueFactorizationMonoid.max_power_factor /-
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
-    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
-  classical
-  let n := (normalized_factors a₀).count (normalize x)
-  obtain ⟨a, ha1, ha2⟩ :=
-    @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
-  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
-  use n, a, ha2, ha1
-  use n, multiplicity_eq_count_normalized_factors hx h
+    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by classical
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
 -/
 
@@ -1589,20 +1544,7 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 #print Associates.prod_le_prod_iff_le /-
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
-  Iff.intro
-    (by
-      classical
-      rintro ⟨c, eqc⟩
-      refine' Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx => _) _⟩
-      · obtain h | h := Multiset.mem_add.1 hx
-        · exact hp x h
-        · exact irreducible_of_factor _ h
-      · rw [eqc, Multiset.prod_add]
-        congr
-        refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
-        refine' not_irreducible_zero (hq _ _)
-        rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
-    prod_le_prod
+  Iff.intro (by classical) prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 -/
 
@@ -1664,10 +1606,7 @@ theorem factors_0 : (0 : Associates α).factors = ⊤ :=
 
 #print Associates.factors_mk /-
 @[simp]
-theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
-  classical
-  apply dif_neg
-  apply mt mk_eq_zero.1 h
+theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by classical
 #align associates.factors_mk Associates.factors_mk
 -/
 
@@ -1724,8 +1663,6 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 #print Associates.eq_of_prod_eq_prod /-
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
-  have : a.prod.factors = b.prod.factors := by rw [h]
-  rwa [prod_factors, prod_factors] at this 
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 -/
 
@@ -1802,13 +1739,7 @@ theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irredu
 -/
 
 #print Associates.prod_le /-
-theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
-  classical exact
-    Iff.intro
-      (fun h => by
-        have : a.prod.factors ≤ b.prod.factors := factors_mono h
-        rwa [prod_factors, prod_factors] at this )
-      prod_mono
+theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by classical
 #align associates.prod_le Associates.prod_le
 -/
 
@@ -2182,20 +2113,7 @@ theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible
 #print Associates.eq_pow_of_mul_eq_pow /-
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
-    ∃ d : Associates α, a = d ^ k := by
-  classical
-  by_cases hk0 : k = 0
-  · use 1
-    rw [hk0, pow_zero] at h ⊢
-    apply (mul_eq_one_iff.1 h).1
-  · refine' is_pow_of_dvd_count ha _
-    intro p hp
-    apply dvd_count_of_dvd_count_mul hb hp hab
-    rw [h]
-    apply dvd_count_pow _ hp
-    rintro rfl
-    rw [zero_pow' _ hk0] at h 
-    cases mul_eq_zero.mp h <;> contradiction
+    ∃ d : Associates α, a = d ^ k := by classical
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 -/
 
@@ -2203,7 +2121,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) : a = p ^ Nat.find ⟨n, h⟩ := by
-  classical rw [count_factors_eq_find_of_dvd_pow hp, ← eq_pow_count_factors_of_dvd_pow hp h]
+  classical
 #align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_pow
 -/
 
Diff
@@ -2213,11 +2213,9 @@ section
 
 open Associates UniqueFactorizationMonoid
 
-#print Associates.quot_out /-
 theorem Associates.quot_out {α : Type _} [CommMonoid α] (a : Associates α) :
     Associates.mk (Quot.out a) = a := by rw [← quot_mk_eq_mk, Quot.out_eq]
-#align associates.quot_out Associates.quot_out
--/
+#align associates.quot_out Associates.quot_outₓ
 
 #print UniqueFactorizationMonoid.toGCDMonoid /-
 /-- `to_gcd_monoid` constructs a GCD monoid out of a unique factorization domain. -/
@@ -2228,15 +2226,15 @@ noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type _) [CancelCom
   lcm a b := Quot.out (Associates.mk a ⊔ Associates.mk b : Associates α)
   gcd_dvd_left a b :=
     by
-    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, dvd_eq_le]
+    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_outₓ, dvd_eq_le]
     exact inf_le_left
   gcd_dvd_right a b :=
     by
-    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, dvd_eq_le]
+    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_outₓ, dvd_eq_le]
     exact inf_le_right
   dvd_gcd a b c hac hab :=
     by
-    rw [← mk_dvd_mk, (Associates.mk c ⊓ Associates.mk b).quot_out, dvd_eq_le, le_inf_iff,
+    rw [← mk_dvd_mk, (Associates.mk c ⊓ Associates.mk b).quot_outₓ, dvd_eq_le, le_inf_iff,
       mk_le_mk_iff_dvd_iff, mk_le_mk_iff_dvd_iff]
     exact ⟨hac, hab⟩
   lcm_zero_left a := by
Diff
@@ -97,7 +97,7 @@ theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
   ⟨b,
     ⟨hs.2, fun c d he =>
       let h := dvd_trans ⟨d, he⟩ hs.1
-      or_iff_not_imp_left.2 fun hc =>
+      Classical.or_iff_not_imp_left.2 fun hc =>
         of_not_not fun hd => hr c ⟨h, hc⟩ ⟨ne_zero_of_dvd_ne_zero ha0 h, d, hd, he⟩⟩,
     hs.1⟩
 #align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factor
@@ -324,7 +324,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
     refine'
       RelHomClass.wellFounded
         (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
-        (WithTop.wellFounded_lt Nat.lt_wfRel)
+        (WithTop.instWellFoundedLT Nat.lt_wfRel)
     · intro a
       by_cases h : a = 0; · exact ⊤
       exact (Classical.choose (pf a h)).card
@@ -2038,7 +2038,7 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
     count p a.factors = 0 ∨ count p b.factors = 0 :=
   by
-  rw [or_iff_not_imp_left, ← Ne.def]
+  rw [Classical.or_iff_not_imp_left, ← Ne.def]
   intro hca
   contrapose! hab with hcb
   exact
Diff
@@ -2017,7 +2017,7 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
   not_ne_iff.mp fun h' =>
     h <|
       associated_iff_eq.mp <|
-        hp.associated_of_dvd hq <| by nontriviality α; exact le_of_count_ne_zero hq.ne_zero hp h'
+        hp.associated_of_dvdₓ hq <| by nontriviality α; exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 -/
 
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
 -/
-import Mathbin.Algebra.BigOperators.Associated
-import Mathbin.Algebra.GcdMonoid.Basic
-import Mathbin.Data.Finsupp.Multiset
-import Mathbin.RingTheory.Noetherian
-import Mathbin.RingTheory.Multiplicity
+import Algebra.BigOperators.Associated
+import Algebra.GcdMonoid.Basic
+import Data.Finsupp.Multiset
+import RingTheory.Noetherian
+import RingTheory.Multiplicity
 
 #align_import ring_theory.unique_factorization_domain from "leanprover-community/mathlib"@"570e9f4877079b3a923135b3027ac3be8695ab8c"
 
@@ -167,7 +167,7 @@ theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
 
 section Prio
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option default_priority -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option default_priority -/
 set_option default_priority 100
 
 #print UniqueFactorizationMonoid /-
@@ -694,7 +694,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 #print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
@@ -1029,7 +1029,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 #print UniqueFactorizationMonoid.exists_reduced_factors /-
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
@@ -1206,7 +1206,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 
 open scoped BigOperators
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 #print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
@@ -1227,7 +1227,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.induction_on_prime_power /-
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
@@ -1275,8 +1275,8 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.multiplicative_prime_power /-
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
Diff
@@ -67,7 +67,7 @@ open Associates Nat
 theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
   ⟨by
     haveI := h
-    refine' (Surjective.wellFounded_iff mk_surjective _).2 well_founded_dvd_not_unit
+    refine' (Function.Surjective.wellFounded_iff mk_surjective _).2 well_founded_dvd_not_unit
     intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associates
 -/
@@ -77,7 +77,7 @@ variable [WfDvdMonoid α]
 #print WfDvdMonoid.wfDvdMonoid_associates /-
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
   ⟨by
-    refine' (Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
+    refine' (Function.Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
     intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
 -/
Diff
@@ -128,7 +128,7 @@ theorem exists_factors (a : α) :
     (fun u hu _ => ⟨0, fun _ h => h.elim, hu.Unit, one_mul _⟩) fun a i ha0 hi ih _ =>
     let ⟨s, hs⟩ := ih ha0
     ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b), by
-      rw [s.prod_cons i]; exact hs.2.mul_left i⟩
+      rw [s.prod_cons i]; exact hs.2.hMul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
 -/
 
@@ -442,7 +442,7 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
           · exact fun i hi => (Multiset.mem_add.1 hi).elim (hfa.1 _) (hfb.1 _)
           calc
             Multiset.prod (p ::ₘ fx) ~ᵤ a * b := by
-              rw [hx, Multiset.prod_cons] <;> exact hfx.2.mul_left _
+              rw [hx, Multiset.prod_cons] <;> exact hfx.2.hMul_left _
             _ ~ᵤ fa.Prod * fb.Prod := (hfa.2.symm.mul_mul hfb.2.symm)
             _ = _ := by rw [Multiset.prod_add]
         exact
@@ -553,7 +553,7 @@ theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p
           Multiset.prod (factors a) ~ᵤ a := factors_prod ha0
           _ = p * b := hb
           _ ~ᵤ Multiset.prod (p ::ₘ factors b) := by
-            rw [Multiset.prod_cons] <;> exact (factors_prod hb0).symm.mul_left _)
+            rw [Multiset.prod_cons] <;> exact (factors_prod hb0).symm.hMul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvd
 -/
@@ -723,7 +723,7 @@ theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irr
           Multiset.prod (normalizedFactors a) ~ᵤ a := normalizedFactors_prod ha0
           _ = p * b := hb
           _ ~ᵤ Multiset.prod (p ::ₘ normalizedFactors b) := by
-            rw [Multiset.prod_cons] <;> exact (normalized_factors_prod hb0).symm.mul_left _)
+            rw [Multiset.prod_cons] <;> exact (normalized_factors_prod hb0).symm.hMul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
 -/
@@ -1013,7 +1013,7 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
   · rintro _ ⟨x, rfl⟩ _ a_dvd_bx
     apply units.dvd_mul_right.mp a_dvd_bx
   · intro c p hc hp ih no_factors a_dvd_bpc
-    apply ih fun q dvd_a dvd_c hq => no_factors dvd_a (dvd_c.mul_left _) hq
+    apply ih fun q dvd_a dvd_c hq => no_factors dvd_a (dvd_c.hMul_left _) hq
     rw [mul_left_comm] at a_dvd_bpc 
     refine' Or.resolve_left (hp.left_dvd_or_dvd_right_of_dvd_mul a_dvd_bpc) fun h => _
     exact no_factors h (dvd_mul_right p c) hp
Diff
@@ -876,7 +876,7 @@ theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a)
 theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
     (h : ∀ {m}, m ∈ normalizedFactors r → m = p) (hr : r ≠ 0) : ∃ i : ℕ, Associated (p ^ i) r :=
   by
-  use (normalized_factors r).card
+  use(normalized_factors r).card
   have := UniqueFactorizationMonoid.normalizedFactors_prod hr
   rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this 
 #align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor
@@ -2135,7 +2135,7 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
     have pp : p = ⟨p.val, p.2⟩ := by simp only [Subtype.coe_eta, Subtype.val_eq_coe]
     rw [pp, ← count_some p.2]; exact hk p.val p.2
   obtain ⟨u, hu⟩ := Multiset.exists_smul_of_dvd_count _ hk'
-  use (u : factor_set α).Prod
+  use(u : factor_set α).Prod
   apply eq_of_factors_eq_factors
   rw [pow_factors, prod_factors, factors_mk a0 hz, ← WithTop.some_eq_coe, hu]
   exact WithBot.coe_nsmul u k
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
-
-! This file was ported from Lean 3 source module ring_theory.unique_factorization_domain
-! leanprover-community/mathlib commit 570e9f4877079b3a923135b3027ac3be8695ab8c
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.BigOperators.Associated
 import Mathbin.Algebra.GcdMonoid.Basic
@@ -14,6 +9,8 @@ import Mathbin.Data.Finsupp.Multiset
 import Mathbin.RingTheory.Noetherian
 import Mathbin.RingTheory.Multiplicity
 
+#align_import ring_theory.unique_factorization_domain from "leanprover-community/mathlib"@"570e9f4877079b3a923135b3027ac3be8695ab8c"
+
 /-!
 
 # Unique factorization
@@ -697,7 +694,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 #print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
@@ -1032,7 +1029,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 #print UniqueFactorizationMonoid.exists_reduced_factors /-
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
@@ -1209,7 +1206,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 
 open scoped BigOperators
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 #print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
@@ -1230,7 +1227,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.induction_on_prime_power /-
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
@@ -1278,8 +1275,8 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 #print UniqueFactorizationMonoid.multiplicative_prime_power /-
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
Diff
@@ -35,7 +35,6 @@ import Mathbin.RingTheory.Multiplicity
 
 variable {α : Type _}
 
--- mathport name: «expr ~ᵤ »
 local infixl:50 " ~ᵤ " => Associated
 
 #print WfDvdMonoid /-
@@ -67,27 +66,34 @@ variable [CommMonoidWithZero α]
 
 open Associates Nat
 
+#print WfDvdMonoid.of_wfDvdMonoid_associates /-
 theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
   ⟨by
     haveI := h
     refine' (Surjective.wellFounded_iff mk_surjective _).2 well_founded_dvd_not_unit
     intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associates
+-/
 
 variable [WfDvdMonoid α]
 
+#print WfDvdMonoid.wfDvdMonoid_associates /-
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
   ⟨by
     refine' (Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
     intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
+-/
 
+#print WfDvdMonoid.wellFounded_associates /-
 theorem wellFounded_associates : WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   Subrelation.wf (fun x y => dvdNotUnit_of_lt) wellFounded_dvdNotUnit
 #align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associates
+-/
 
 attribute [local elab_as_elim] WellFounded.fix
 
+#print WfDvdMonoid.exists_irreducible_factor /-
 theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     ∃ i, Irreducible i ∧ i ∣ a :=
   let ⟨b, hs, hr⟩ := wellFounded_dvdNotUnit.has_min {b | b ∣ a ∧ ¬IsUnit b} ⟨a, dvd_rfl, ha⟩
@@ -98,7 +104,9 @@ theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
         of_not_not fun hd => hr c ⟨h, hc⟩ ⟨ne_zero_of_dvd_ne_zero ha0 h, d, hd, he⟩⟩,
     hs.1⟩
 #align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factor
+-/
 
+#print WfDvdMonoid.induction_on_irreducible /-
 @[elab_as_elim]
 theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀ u : α, IsUnit u → P u)
     (hi : ∀ a i : α, a ≠ 0 → Irreducible i → P a → P (i * a)) : P a :=
@@ -114,7 +122,9 @@ theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀
           hb.symm ▸ hi b i hb0 hii <| ih b ⟨hb0, i, hii.1, mul_comm i b ▸ hb⟩)
     a
 #align wf_dvd_monoid.induction_on_irreducible WfDvdMonoid.induction_on_irreducible
+-/
 
+#print WfDvdMonoid.exists_factors /-
 theorem exists_factors (a : α) :
     a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ Associated f.Prod a :=
   induction_on_irreducible a (fun h => (h rfl).elim)
@@ -123,7 +133,9 @@ theorem exists_factors (a : α) :
     ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b), by
       rw [s.prod_cons i]; exact hs.2.mul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
+-/
 
+#print WfDvdMonoid.not_unit_iff_exists_factors_eq /-
 theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     ¬IsUnit a ↔ ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod = a ∧ f ≠ ∅ :=
   ⟨fun hnu => by
@@ -138,18 +150,23 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
     not_isUnit_of_not_isUnit_dvd (hi b h).not_unit <| he ▸ Multiset.dvd_prod h⟩
 #align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eq
+-/
 
 end WfDvdMonoid
 
+#print WfDvdMonoid.of_wellFounded_associates /-
 theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
     (h : WellFounded ((· < ·) : Associates α → Associates α → Prop)) : WfDvdMonoid α :=
   WfDvdMonoid.of_wfDvdMonoid_associates ⟨by convert h; ext; exact Associates.dvdNotUnit_iff_lt⟩
 #align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associates
+-/
 
+#print WfDvdMonoid.iff_wellFounded_associates /-
 theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
     WfDvdMonoid α ↔ WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   ⟨by apply WfDvdMonoid.wellFounded_associates, WfDvdMonoid.of_wellFounded_associates⟩
 #align wf_dvd_monoid.iff_well_founded_associates WfDvdMonoid.iff_wellFounded_associates
+-/
 
 section Prio
 
@@ -191,6 +208,7 @@ theorem ufm_of_gcd_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α]
 #align ufm_of_gcd_of_wf_dvd_monoid ufm_of_gcd_of_wfDvdMonoid
 -/
 
+#print Associates.ufm /-
 instance Associates.ufm [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
     UniqueFactorizationMonoid (Associates α) :=
   { (WfDvdMonoid.wfDvdMonoid_associates : WfDvdMonoid (Associates α)) with
@@ -198,6 +216,7 @@ instance Associates.ufm [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid
       rw [← Associates.irreducible_iff_prime_iff]
       apply UniqueFactorizationMonoid.irreducible_iff_prime }
 #align associates.ufm Associates.ufm
+-/
 
 end Prio
 
@@ -205,12 +224,15 @@ namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
+#print UniqueFactorizationMonoid.exists_prime_factors /-
 theorem exists_prime_factors (a : α) : a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
   by
   simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime]
   apply WfDvdMonoid.exists_factors a
 #align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factors
+-/
 
+#print UniqueFactorizationMonoid.induction_on_prime /-
 @[elab_as_elim]
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a :=
@@ -218,6 +240,7 @@ theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x
   simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime] at h₃ 
   exact WfDvdMonoid.induction_on_irreducible a h₁ h₂ h₃
 #align unique_factorization_monoid.induction_on_prime UniqueFactorizationMonoid.induction_on_prime
+-/
 
 end UniqueFactorizationMonoid
 
@@ -297,8 +320,7 @@ variable [CancelCommMonoidWithZero α]
 
 variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a)
 
-include pf
-
+#print WfDvdMonoid.of_exists_prime_factors /-
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
   ⟨by
     classical
@@ -335,7 +357,9 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
       · rw [← b_eq]
         apply (Classical.choose_spec (pf _ _)).2.symm⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
+-/
 
+#print irreducible_iff_prime_of_exists_prime_factors /-
 theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p ↔ Prime p :=
   by
   by_cases hp0 : p = 0
@@ -346,25 +370,31 @@ theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p 
   rw [hq.prime_iff]
   exact hf.1 q (Multiset.mem_singleton_self _)
 #align irreducible_iff_prime_of_exists_prime_factors irreducible_iff_prime_of_exists_prime_factors
+-/
 
+#print UniqueFactorizationMonoid.of_exists_prime_factors /-
 theorem UniqueFactorizationMonoid.of_exists_prime_factors : UniqueFactorizationMonoid α :=
   { WfDvdMonoid.of_exists_prime_factors pf with
     irreducible_iff_prime := fun _ => irreducible_iff_prime_of_exists_prime_factors pf }
 #align unique_factorization_monoid.of_exists_prime_factors UniqueFactorizationMonoid.of_exists_prime_factors
+-/
 
 end ExistsPrimeFactors
 
+#print UniqueFactorizationMonoid.iff_exists_prime_factors /-
 theorem UniqueFactorizationMonoid.iff_exists_prime_factors [CancelCommMonoidWithZero α] :
     UniqueFactorizationMonoid α ↔
       ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
   ⟨fun h => @UniqueFactorizationMonoid.exists_prime_factors _ _ h,
     UniqueFactorizationMonoid.of_exists_prime_factors⟩
 #align unique_factorization_monoid.iff_exists_prime_factors UniqueFactorizationMonoid.iff_exists_prime_factors
+-/
 
 section
 
 variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero β]
 
+#print MulEquiv.uniqueFactorizationMonoid /-
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β :=
   by
@@ -376,14 +406,18 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
       he ▸ e.prime_iff.1 (hp c hc),
       Units.map e.to_monoid_hom u, by erw [Multiset.prod_hom, ← e.map_mul, h]; simp⟩
 #align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoid
+-/
 
+#print MulEquiv.uniqueFactorizationMonoid_iff /-
 theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
     UniqueFactorizationMonoid α ↔ UniqueFactorizationMonoid β :=
   ⟨e.UniqueFactorizationMonoid, e.symm.UniqueFactorizationMonoid⟩
 #align mul_equiv.unique_factorization_monoid_iff MulEquiv.uniqueFactorizationMonoid_iff
+-/
 
 end
 
+#print irreducible_iff_prime_of_exists_unique_irreducible_factors /-
 theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -423,7 +457,9 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
             Or.inr <| hq.dvd_iff_dvd_left.2 <| hfb.2.dvd_iff_dvd_right.1 (Multiset.dvd_prod hqb)⟩,
     Prime.irreducible⟩
 #align irreducible_iff_prime_of_exists_unique_irreducible_factors irreducible_iff_prime_of_exists_unique_irreducible_factors
+-/
 
+#print UniqueFactorizationMonoid.of_exists_unique_irreducible_factors /-
 theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -436,6 +472,7 @@ theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCo
       convert eif
       simp_rw [irreducible_iff_prime_of_exists_unique_irreducible_factors eif uif])
 #align unique_factorization_monoid.of_exists_unique_irreducible_factors UniqueFactorizationMonoid.of_exists_unique_irreducible_factors
+-/
 
 namespace UniqueFactorizationMonoid
 
@@ -450,18 +487,22 @@ noncomputable def factors (a : α) : Multiset α :=
 #align unique_factorization_monoid.factors UniqueFactorizationMonoid.factors
 -/
 
+#print UniqueFactorizationMonoid.factors_prod /-
 theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).Prod a :=
   by
   rw [factors, dif_neg ane0]
   exact (Classical.choose_spec (exists_prime_factors a ane0)).2
 #align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prod
+-/
 
+#print UniqueFactorizationMonoid.ne_zero_of_mem_factors /-
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   by
   intro ha
   rw [factors, dif_pos ha] at h 
   exact Multiset.not_mem_zero _ h
 #align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factors
+-/
 
 #print UniqueFactorizationMonoid.dvd_of_mem_factors /-
 theorem dvd_of_mem_factors {p a : α} (h : p ∈ factors a) : p ∣ a :=
@@ -484,10 +525,13 @@ theorem irreducible_of_factor {a : α} : ∀ x : α, x ∈ factors a → Irreduc
 #align unique_factorization_monoid.irreducible_of_factor UniqueFactorizationMonoid.irreducible_of_factor
 -/
 
+#print UniqueFactorizationMonoid.factors_zero /-
 @[simp]
 theorem factors_zero : factors (0 : α) = 0 := by simp [factors]
 #align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zero
+-/
 
+#print UniqueFactorizationMonoid.factors_one /-
 @[simp]
 theorem factors_one : factors (1 : α) = 0 :=
   by
@@ -497,7 +541,9 @@ theorem factors_one : factors (1 : α) = 0 :=
   rw [Multiset.prod_zero]
   exact factors_prod one_ne_zero
 #align unique_factorization_monoid.factors_one UniqueFactorizationMonoid.factors_one
+-/
 
+#print UniqueFactorizationMonoid.exists_mem_factors_of_dvd /-
 theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ factors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -513,14 +559,18 @@ theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p
             rw [Multiset.prod_cons] <;> exact (factors_prod hb0).symm.mul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvd
+-/
 
+#print UniqueFactorizationMonoid.exists_mem_factors /-
 theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p ∈ factors x :=
   by
   obtain ⟨p', hp', hp'x⟩ := WfDvdMonoid.exists_irreducible_factor h hx
   obtain ⟨p, hp, hpx⟩ := exists_mem_factors_of_dvd hx hp' hp'x
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factors
+-/
 
+#print UniqueFactorizationMonoid.factors_mul /-
 theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     Multiset.Rel Associated (factors (x * y)) (factors x + factors y) :=
   by
@@ -532,7 +582,9 @@ theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
   rw [Multiset.prod_add]
   exact (Associated.mul_mul (factors_prod hx) (factors_prod hy)).symm
 #align unique_factorization_monoid.factors_mul UniqueFactorizationMonoid.factors_mul
+-/
 
+#print UniqueFactorizationMonoid.factors_pow /-
 theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n)) (n • factors x) :=
   by
   induction' n with n ih
@@ -544,7 +596,9 @@ theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n
   refine' Multiset.Rel.add _ ih
   exact Multiset.rel_refl_of_refl_on fun y hy => Associated.refl _
 #align unique_factorization_monoid.factors_pow UniqueFactorizationMonoid.factors_pow
+-/
 
+#print UniqueFactorizationMonoid.factors_pos /-
 @[simp]
 theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x :=
   by
@@ -558,6 +612,7 @@ theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x :=
       bot_lt_iff_ne_bot.mpr
         (mt multiset.eq_zero_iff_forall_not_mem.mp (not_forall.mpr ⟨p, not_not.mpr hp⟩))
 #align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_pos
+-/
 
 end UniqueFactorizationMonoid
 
@@ -588,6 +643,7 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
 -/
 
+#print UniqueFactorizationMonoid.normalizedFactors_prod /-
 theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalizedFactors a).Prod a :=
   by
   rw [normalized_factors, factors, dif_neg ane0]
@@ -598,6 +654,7 @@ theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalize
   ext
   rw [Function.comp_apply, Associates.mk_normalize]
 #align unique_factorization_monoid.normalized_factors_prod UniqueFactorizationMonoid.normalizedFactors_prod
+-/
 
 #print UniqueFactorizationMonoid.prime_of_normalized_factor /-
 theorem prime_of_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → Prime x :=
@@ -617,6 +674,7 @@ theorem irreducible_of_normalized_factor {a : α} :
 #align unique_factorization_monoid.irreducible_of_normalized_factor UniqueFactorizationMonoid.irreducible_of_normalized_factor
 -/
 
+#print UniqueFactorizationMonoid.normalize_normalized_factor /-
 theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → normalize x = x :=
   by
   rw [normalized_factors, factors]
@@ -625,7 +683,9 @@ theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFacto
   obtain ⟨y, hy, rfl⟩ := Multiset.mem_map.1 hx
   apply normalize_idem
 #align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factor
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_irreducible /-
 theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
     normalizedFactors a = {normalize a} :=
   by
@@ -635,6 +695,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
   convert hp
   rwa [← normalize_normalized_factor p p_mem, normalize_eq_normalize_iff, dvd_dvd_iff_associated]
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 #print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
@@ -651,6 +712,7 @@ theorem normalizedFactors_eq_of_dvd (a : α) :
 #align unique_factorization_monoid.normalized_factors_eq_of_dvd UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd
 -/
 
+#print UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd /-
 theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ normalizedFactors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -667,7 +729,9 @@ theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irr
             rw [Multiset.prod_cons] <;> exact (normalized_factors_prod hb0).symm.mul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
+-/
 
+#print UniqueFactorizationMonoid.exists_mem_normalizedFactors /-
 theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
     ∃ p, p ∈ normalizedFactors x :=
   by
@@ -675,12 +739,16 @@ theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
   obtain ⟨p, hp, hpx⟩ := exists_mem_normalized_factors_of_dvd hx hp' hp'x
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_normalized_factors UniqueFactorizationMonoid.exists_mem_normalizedFactors
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_zero /-
 @[simp]
 theorem normalizedFactors_zero : normalizedFactors (0 : α) = 0 := by
   simp [normalized_factors, factors]
 #align unique_factorization_monoid.normalized_factors_zero UniqueFactorizationMonoid.normalizedFactors_zero
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_one /-
 @[simp]
 theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   by
@@ -693,7 +761,9 @@ theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   · simp [normalized_factors_prod one_ne_zero]
   infer_instance
 #align unique_factorization_monoid.normalized_factors_one UniqueFactorizationMonoid.normalizedFactors_one
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_mul /-
 @[simp]
 theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     normalizedFactors (x * y) = normalizedFactors x + normalizedFactors y :=
@@ -716,7 +786,9 @@ theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
       ((normalized_factors_prod hx).mul_mul (normalized_factors_prod hy)).trans
         (normalized_factors_prod (mul_ne_zero hx hy)).symm
 #align unique_factorization_monoid.normalized_factors_mul UniqueFactorizationMonoid.normalizedFactors_mul
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_pow /-
 @[simp]
 theorem normalizedFactors_pow {x : α} (n : ℕ) :
     normalizedFactors (x ^ n) = n • normalizedFactors x :=
@@ -727,12 +799,16 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   · simp [h0, zero_pow n.succ_pos, smul_zero]
   rw [pow_succ, succ_nsmul, normalized_factors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
+-/
 
+#print Irreducible.normalizedFactors_pow /-
 theorem Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align irreducible.normalized_factors_pow Irreducible.normalizedFactors_pow
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_prod_eq /-
 theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducible a) :
     normalizedFactors s.Prod = s.map normalize :=
   by
@@ -749,7 +825,9 @@ theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducib
       normalized_factors_irreducible ia, ih]
     exacts [rfl, ib, Multiset.prod_ne_zero fun h => (ib 0 h).NeZero rfl]
 #align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eq
+-/
 
+#print UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors /-
 theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ∣ y ↔ normalizedFactors x ≤ normalizedFactors y :=
   by
@@ -760,7 +838,9 @@ theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0)
       (normalized_factors_prod hy).dvd_iff_dvd_right]
     apply Multiset.prod_dvd_prod_of_le
 #align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
+-/
 
+#print UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors /-
 theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ~ᵤ y ↔ normalizedFactors x = normalizedFactors y :=
   by
@@ -770,15 +850,20 @@ theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x
   apply le_antisymm <;> rw [← dvd_iff_normalized_factors_le_normalized_factors]
   all_goals simp [*, h.dvd, h.symm.dvd]
 #align unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors
+-/
 
+#print UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow /-
 theorem normalizedFactors_of_irreducible_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow
+-/
 
+#print UniqueFactorizationMonoid.zero_not_mem_normalizedFactors /-
 theorem zero_not_mem_normalizedFactors (x : α) : (0 : α) ∉ normalizedFactors x := fun h =>
   Prime.ne_zero (prime_of_normalized_factor _ h) rfl
 #align unique_factorization_monoid.zero_not_mem_normalized_factors UniqueFactorizationMonoid.zero_not_mem_normalizedFactors
+-/
 
 #print UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors /-
 theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a) : p ∣ a :=
@@ -790,6 +875,7 @@ theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a)
 #align unique_factorization_monoid.dvd_of_mem_normalized_factors UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
 -/
 
+#print UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor /-
 theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
     (h : ∀ {m}, m ∈ normalizedFactors r → m = p) (hr : r ≠ 0) : ∃ i : ℕ, Associated (p ^ i) r :=
   by
@@ -797,6 +883,7 @@ theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
   have := UniqueFactorizationMonoid.normalizedFactors_prod hr
   rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this 
 #align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor
+-/
 
 #print UniqueFactorizationMonoid.normalizedFactors_prod_of_prime /-
 theorem normalizedFactors_prod_of_prime [Nontrivial α] [Unique αˣ] {m : Multiset α}
@@ -817,6 +904,7 @@ theorem mem_normalizedFactors_eq_of_associated {a b c : α} (ha : a ∈ normaliz
 #align unique_factorization_monoid.mem_normalized_factors_eq_of_associated UniqueFactorizationMonoid.mem_normalizedFactors_eq_of_associated
 -/
 
+#print UniqueFactorizationMonoid.normalizedFactors_pos /-
 @[simp]
 theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x ↔ ¬IsUnit x :=
   by
@@ -832,7 +920,9 @@ theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x
       bot_lt_iff_ne_bot.mpr
         (mt multiset.eq_zero_iff_forall_not_mem.mp (not_forall.mpr ⟨p, not_not.mpr hp⟩))
 #align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_pos
+-/
 
+#print UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors /-
 theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     DvdNotUnit x y ↔ normalizedFactors x < normalizedFactors y :=
   by
@@ -846,6 +936,7 @@ theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x
         ((dvd_iff_normalized_factors_le_normalized_factors hx hy).mpr h.le)
         (mt (dvd_iff_normalized_factors_le_normalized_factors hy hx).mp h.not_le)
 #align unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors
+-/
 
 end UniqueFactorizationMonoid
 
@@ -900,13 +991,16 @@ namespace UniqueFactorizationMonoid
 
 variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
+#print UniqueFactorizationMonoid.no_factors_of_no_prime_factors /-
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
   induction_on_prime d (by simp only [zero_dvd_iff]; intros; contradiction) (fun x hx _ _ => hx)
     fun d q hp hq ih dvd_a dvd_b =>
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
 #align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
+-/
 
+#print UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors /-
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `c` have no common prime factors, `a ∣ b`.
 Compare `is_coprime.dvd_of_dvd_mul_left`. -/
 theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
@@ -927,15 +1021,19 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     refine' Or.resolve_left (hp.left_dvd_or_dvd_right_of_dvd_mul a_dvd_bpc) fun h => _
     exact no_factors h (dvd_mul_right p c) hp
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
+-/
 
+#print UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors /-
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `b` have no common prime factors, `a ∣ c`.
 Compare `is_coprime.dvd_of_dvd_mul_right`. -/
 theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
     (no_factors : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : a ∣ b * c → a ∣ c := by
   simpa [mul_comm b c] using dvd_of_dvd_mul_left_of_no_prime_factors ha @no_factors
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+#print UniqueFactorizationMonoid.exists_reduced_factors /-
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
@@ -967,13 +1065,17 @@ theorem exists_reduced_factors :
         contradiction
       exact coprime q_dvd_a' q_dvd_b'
 #align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factors
+-/
 
+#print UniqueFactorizationMonoid.exists_reduced_factors' /-
 theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
     ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b :=
   let ⟨b', a', c', no_factor, hb, ha⟩ := exists_reduced_factors b hb a
   ⟨a', b', c', fun _ hpb hpa => no_factor hpa hpb, ha, hb⟩
 #align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'
+-/
 
+#print UniqueFactorizationMonoid.pow_right_injective /-
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
     Function.Injective ((· ^ ·) a : ℕ → R) :=
   by
@@ -987,10 +1089,13 @@ theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
   simp only [normalized_factors_pow, Multiset.count_nsmul] at this 
   exact mul_right_cancel₀ (multiset.count_ne_zero.mpr mem) this
 #align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injective
+-/
 
+#print UniqueFactorizationMonoid.pow_eq_pow_iff /-
 theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} : a ^ i = a ^ j ↔ i = j :=
   (pow_right_injective ha0 ha1).eq_iff
 #align unique_factorization_monoid.pow_eq_pow_iff UniqueFactorizationMonoid.pow_eq_pow_iff
+-/
 
 section multiplicity
 
@@ -1000,8 +1105,7 @@ variable [dec_dvd : DecidableRel (Dvd.Dvd : R → R → Prop)]
 
 open multiplicity Multiset
 
-include dec_dvd
-
+#print UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors /-
 theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
     (ha : Irreducible a) (hb : b ≠ 0) :
     ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b :=
@@ -1021,7 +1125,9 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
     rw [← (normalized_factors_prod hb).dvd_iff_dvd_right, hu, prod_add, prod_replicate]
     exact (Associated.pow_pow <| associated_normalize a).Dvd.trans (Dvd.intro u.prod rfl)
 #align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors
+-/
 
+#print UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors /-
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
 
@@ -1038,9 +1144,9 @@ theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha :
     simp
   rw [le_multiplicity_iff_replicate_le_normalized_factors ha hb, ← le_count_iff_replicate_le]
 #align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors
+-/
 
-omit dec_dvd
-
+#print UniqueFactorizationMonoid.count_normalizedFactors_eq /-
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`.
 
@@ -1058,7 +1164,9 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   · exact hnorm.symm
   exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm
 #align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eq
+-/
 
+#print UniqueFactorizationMonoid.count_normalizedFactors_eq' /-
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`. This is a slightly more general version of
 `unique_factorization_monoid.count_normalized_factors_eq` that allows `p = 0`.
@@ -1076,7 +1184,9 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
       exact absurd hle hlt
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
+-/
 
+#print UniqueFactorizationMonoid.max_power_factor /-
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
     ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
   classical
@@ -1087,6 +1197,7 @@ theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x
   use n, a, ha2, ha1
   use n, multiplicity_eq_count_normalized_factors hx h
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
+-/
 
 end multiplicity
 
@@ -1120,6 +1231,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 -/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+#print UniqueFactorizationMonoid.induction_on_prime_power /-
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on a product of powers of distinct primes. -/
@@ -1139,7 +1251,9 @@ theorem induction_on_prime_power {P : α → Prop} (s : Finset α) (i : α → 
       (ih (fun q hq => is_prime _ (Finset.mem_insert_of_mem hq)) fun q hq q' hq' =>
         IsCoprime _ (Finset.mem_insert_of_mem hq) _ (Finset.mem_insert_of_mem hq'))
 #align unique_factorization_monoid.induction_on_prime_power UniqueFactorizationMonoid.induction_on_prime_power
+-/
 
+#print UniqueFactorizationMonoid.induction_on_coprime /-
 /-- If `P` holds for `0`, units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on all `a : α`. -/
@@ -1162,9 +1276,11 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
   · apply prime_of_normalized_factor
   · apply normalized_factors_eq_of_dvd
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+#print UniqueFactorizationMonoid.multiplicative_prime_power /-
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
 @[elab_as_elim]
@@ -1187,7 +1303,9 @@ theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α →
     hpr _ hpr_p, hcp (hcp_p _), hpr _ hpr_p, hcp (hcp_p _), hpr _ hpr_p, ih hpr_s hcp_s, pow_add,
     mul_assoc, mul_left_comm (f p ^ j p), mul_assoc]
 #align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_power
+-/
 
+#print UniqueFactorizationMonoid.multiplicative_of_coprime /-
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative everywhere. -/
 theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
@@ -1244,6 +1362,7 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
           ((prime_of_normalized_factor _ hp).Irreducible.dvd_symm
             (prime_of_normalized_factor _ hq).Irreducible hdvd)
 #align unique_factorization_monoid.multiplicative_of_coprime UniqueFactorizationMonoid.multiplicative_of_coprime
+-/
 
 end Multiplicative
 
@@ -1271,10 +1390,13 @@ def FactorSet.{u} (α : Type u) [CancelCommMonoidWithZero α] : Type u :=
 
 attribute [local instance] Associated.setoid
 
+#print Associates.FactorSet.coe_add /-
 theorem FactorSet.coe_add {a b : Multiset { a : Associates α // Irreducible a }} :
     (↑(a + b) : FactorSet α) = a + b := by norm_cast
 #align associates.factor_set.coe_add Associates.FactorSet.coe_add
+-/
 
+#print Associates.FactorSet.sup_add_inf_eq_add /-
 theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
     ∀ a b : FactorSet α, a ⊔ b + a ⊓ b = a + b
   | none, b => show ⊤ ⊔ b + ⊤ ⊓ b = ⊤ + b by simp
@@ -1286,6 +1408,7 @@ theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
         WithTop.coe_eq_coe]
       exact Multiset.union_add_inter _ _
 #align associates.factor_set.sup_add_inf_eq_add Associates.FactorSet.sup_add_inf_eq_add
+-/
 
 #print Associates.FactorSet.prod /-
 /-- Evaluates the product of a `factor_set` to be the product of the corresponding multiset,
@@ -1296,17 +1419,22 @@ def FactorSet.prod : FactorSet α → Associates α
 #align associates.factor_set.prod Associates.FactorSet.prod
 -/
 
+#print Associates.prod_top /-
 @[simp]
 theorem prod_top : (⊤ : FactorSet α).Prod = 0 :=
   rfl
 #align associates.prod_top Associates.prod_top
+-/
 
+#print Associates.prod_coe /-
 @[simp]
 theorem prod_coe {s : Multiset { a : Associates α // Irreducible a }} :
     (s : FactorSet α).Prod = (s.map coe).Prod :=
   rfl
 #align associates.prod_coe Associates.prod_coe
+-/
 
+#print Associates.prod_add /-
 @[simp]
 theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
   | none, b => show (⊤ + b).Prod = (⊤ : FactorSet α).Prod * b.Prod by simp
@@ -1315,7 +1443,9 @@ theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
     show (↑a + ↑b : FactorSet α).Prod = (↑a : FactorSet α).Prod * (↑b : FactorSet α).Prod by
       rw [← factor_set.coe_add, prod_coe, prod_coe, prod_coe, Multiset.map_add, Multiset.prod_add]
 #align associates.prod_add Associates.prod_add
+-/
 
+#print Associates.prod_mono /-
 theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | none, b, h => by
     have : b = ⊤ := top_unique h
@@ -1323,7 +1453,9 @@ theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | a, none, h => show a.Prod ≤ (⊤ : FactorSet α).Prod by simp <;> exact le_top
   | some a, some b, h => prod_le_prod <| Multiset.map_le_map <| WithTop.coe_le_coe.1 <| h
 #align associates.prod_mono Associates.prod_mono
+-/
 
+#print Associates.FactorSet.prod_eq_zero_iff /-
 theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod = 0 ↔ p = ⊤ :=
   by
   induction p using WithTop.recTopCoe
@@ -1333,50 +1465,58 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod =
   rw [Subtype.coe_mk] at eq 
   exact ha.ne_zero Eq
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
+-/
 
+#print Associates.bcount /-
 /-- `bcount p s` is the multiplicity of `p` in the factor_set `s` (with bundled `p`)-/
 def bcount [DecidableEq (Associates α)] (p : { a : Associates α // Irreducible a }) :
     FactorSet α → ℕ
   | none => 0
   | some s => s.count p
 #align associates.bcount Associates.bcount
+-/
 
 variable [dec_irr : ∀ p : Associates α, Decidable (Irreducible p)]
 
-include dec_irr
-
+#print Associates.count /-
 /-- `count p s` is the multiplicity of the irreducible `p` in the factor_set `s`.
 
 If `p` is not irreducible, `count p s` is defined to be `0`. -/
 def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → ℕ :=
   if hp : Irreducible p then bcount ⟨p, hp⟩ else 0
 #align associates.count Associates.count
+-/
 
+#print Associates.count_some /-
 @[simp]
 theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
     (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ := by dsimp only [count]; split_ifs; rfl
 #align associates.count_some Associates.count_some
+-/
 
+#print Associates.count_zero /-
 @[simp]
 theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
     count p (0 : FactorSet α) = 0 := by dsimp only [count]; split_ifs; rfl
 #align associates.count_zero Associates.count_zero
+-/
 
+#print Associates.count_reducible /-
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
   dif_neg hp
 #align associates.count_reducible Associates.count_reducible
+-/
 
-omit dec_irr
-
+#print Associates.BfactorSetMem /-
 /-- membership in a factor_set (bundled version) -/
 def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α → Prop
   | _, ⊤ => True
   | p, some l => p ∈ l
 #align associates.bfactor_set_mem Associates.BfactorSetMem
+-/
 
-include dec_irr
-
+#print Associates.FactorSetMem /-
 /-- `factor_set_mem p s` is the predicate that the irreducible `p` is a member of
 `s : factor_set α`.
 
@@ -1384,34 +1524,42 @@ If `p` is not irreducible, `p` is not a member of any `factor_set`. -/
 def FactorSetMem (p : Associates α) (s : FactorSet α) : Prop :=
   if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False
 #align associates.factor_set_mem Associates.FactorSetMem
+-/
 
 instance : Membership (Associates α) (FactorSet α) :=
   ⟨FactorSetMem⟩
 
+#print Associates.factorSetMem_eq_mem /-
 @[simp]
 theorem factorSetMem_eq_mem (p : Associates α) (s : FactorSet α) : FactorSetMem p s = (p ∈ s) :=
   rfl
 #align associates.factor_set_mem_eq_mem Associates.factorSetMem_eq_mem
+-/
 
+#print Associates.mem_factorSet_top /-
 theorem mem_factorSet_top {p : Associates α} {hp : Irreducible p} : p ∈ (⊤ : FactorSet α) := by
   dsimp only [Membership.Mem]; dsimp only [factor_set_mem]; split_ifs; exact trivial
 #align associates.mem_factor_set_top Associates.mem_factorSet_top
+-/
 
+#print Associates.mem_factorSet_some /-
 theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
     {l : Multiset { a : Associates α // Irreducible a }} :
     p ∈ (l : FactorSet α) ↔ Subtype.mk p hp ∈ l := by dsimp only [Membership.Mem];
   dsimp only [factor_set_mem]; split_ifs; rfl
 #align associates.mem_factor_set_some Associates.mem_factorSet_some
+-/
 
+#print Associates.reducible_not_mem_factorSet /-
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
     ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
   rwa [dif_neg hp] at h 
 #align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSet
-
-omit dec_irr
+-/
 
 variable [UniqueFactorizationMonoid α]
 
+#print Associates.unique' /-
 theorem unique' {p q : Multiset (Associates α)} :
     (∀ a ∈ p, Irreducible a) → (∀ a ∈ q, Irreducible a) → p.Prod = q.Prod → p = q :=
   by
@@ -1423,6 +1571,7 @@ theorem unique' {p q : Multiset (Associates α)} :
   · exact fun a ha => (irreducible_mk _).1 <| ht _ <| Multiset.mem_map_of_mem _ ha
   simpa [quot_mk_eq_mk, prod_mk, mk_eq_mk_iff_associated] using Eq
 #align associates.unique' Associates.unique'
+-/
 
 #print Associates.FactorSet.unique /-
 theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Prod) : p = q :=
@@ -1440,6 +1589,7 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 #align associates.factor_set.unique Associates.FactorSet.unique
 -/
 
+#print Associates.prod_le_prod_iff_le /-
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
   Iff.intro
@@ -1457,22 +1607,26 @@ theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
         rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
     prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
+-/
 
 variable [dec : DecidableEq α] [dec' : DecidableEq (Associates α)]
 
-include dec
-
+#print Associates.factors' /-
 /-- This returns the multiset of irreducible factors as a `factor_set`,
   a multiset of irreducible associates `with_top`. -/
 noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducible a } :=
   (factors a).pmap (fun a ha => ⟨Associates.mk a, (irreducible_mk _).2 ha⟩) irreducible_of_factor
 #align associates.factors' Associates.factors'
+-/
 
+#print Associates.map_subtype_coe_factors' /-
 @[simp]
 theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).map Associates.mk :=
   by simp [factors', Multiset.map_pmap, Multiset.pmap_eq_map]
 #align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'
+-/
 
+#print Associates.factors'_cong /-
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -1487,8 +1641,7 @@ theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
     factors_unique irreducible_of_factor irreducible_of_factor
       ((factors_prod ha).trans <| h.trans <| (factors_prod hb).symm)
 #align associates.factors'_cong Associates.factors'_cong
-
-include dec'
+-/
 
 #print Associates.factors /-
 /-- This returns the multiset of irreducible factors of an associate as a `factor_set`,
@@ -1505,17 +1658,21 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
 #align associates.factors Associates.factors
 -/
 
+#print Associates.factors_0 /-
 @[simp]
 theorem factors_0 : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
 #align associates.factors_0 Associates.factors_0
+-/
 
+#print Associates.factors_mk /-
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
   classical
   apply dif_neg
   apply mt mk_eq_zero.1 h
 #align associates.factors_mk Associates.factors_mk
+-/
 
 #print Associates.factors_prod /-
 @[simp]
@@ -1535,23 +1692,29 @@ theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.Prod.factors = s :=
 #align associates.prod_factors Associates.prod_factors
 -/
 
+#print Associates.factors_subsingleton /-
 @[nontriviality]
 theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = Option.none := by
   convert factors_0 <;> infer_instance
 #align associates.factors_subsingleton Associates.factors_subsingleton
+-/
 
+#print Associates.factors_eq_none_iff_zero /-
 theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 :=
   by
   nontriviality α
   exact
     ⟨fun h => by rwa [← factors_prod a, factor_set.prod_eq_zero_iff], fun h => h.symm ▸ factors_0⟩
 #align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
+-/
 
+#print Associates.factors_eq_some_iff_ne_zero /-
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
     (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
   rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne.def, Ne.def,
     factors_eq_none_iff_zero]
 #align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zero
+-/
 
 #print Associates.eq_of_factors_eq_factors /-
 theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factors) : a = b :=
@@ -1561,16 +1724,15 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 #align associates.eq_of_factors_eq_factors Associates.eq_of_factors_eq_factors
 -/
 
-omit dec dec'
-
+#print Associates.eq_of_prod_eq_prod /-
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
   have : a.prod.factors = b.prod.factors := by rw [h]
   rwa [prod_factors, prod_factors] at this 
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
+-/
 
-include dec dec' dec_irr
-
+#print Associates.eq_factors_of_eq_counts /-
 theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ (p : Associates α) (hp : Irreducible p), p.count a.factors = p.count b.factors) :
     a.factors = b.factors :=
@@ -1585,12 +1747,16 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   ext ⟨p, hp⟩
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
+-/
 
+#print Associates.eq_of_eq_counts /-
 theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
   eq_of_factors_eq_factors (eq_factors_of_eq_counts ha hb h)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
+-/
 
+#print Associates.count_le_count_of_factors_le /-
 theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
     (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors :=
   by
@@ -1602,9 +1768,9 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
   rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h 
   exact Multiset.count_le_of_le _ h
 #align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_le
+-/
 
-omit dec_irr
-
+#print Associates.factors_mul /-
 @[simp]
 theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors :=
   by
@@ -1613,11 +1779,15 @@ theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.fact
   refine' eq_of_prod_eq_prod (eq_of_factors_eq_factors _)
   rw [prod_add, factors_prod, factors_prod, factors_prod]
 #align associates.factors_mul Associates.factors_mul
+-/
 
+#print Associates.factors_mono /-
 theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
   | s, t, ⟨d, rfl⟩ => by rw [factors_mul] <;> exact le_add_of_nonneg_right bot_le
 #align associates.factors_mono Associates.factors_mono
+-/
 
+#print Associates.factors_le /-
 theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :=
   Iff.intro
     (fun h => by
@@ -1625,16 +1795,16 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
       rwa [factors_prod, factors_prod] at this )
     factors_mono
 #align associates.factors_le Associates.factors_le
+-/
 
-include dec_irr
-
+#print Associates.count_le_count_of_le /-
 theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
   count_le_count_of_factors_le hb hp <| factors_mono h
 #align associates.count_le_count_of_le Associates.count_le_count_of_le
+-/
 
-omit dec dec' dec_irr
-
+#print Associates.prod_le /-
 theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
   classical exact
     Iff.intro
@@ -1643,8 +1813,7 @@ theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a 
         rwa [prod_factors, prod_factors] at this )
       prod_mono
 #align associates.prod_le Associates.prod_le
-
-include dec dec'
+-/
 
 noncomputable instance : Sup (Associates α) :=
   ⟨fun a b => (a.factors ⊔ b.factors).Prod⟩
@@ -1666,6 +1835,7 @@ noncomputable instance : Lattice (Associates α) :=
     inf_le_left := fun a b => le_trans (prod_mono inf_le_left) (le_of_eq (factors_prod a))
     inf_le_right := fun a b => le_trans (prod_mono inf_le_right) (le_of_eq (factors_prod b)) }
 
+#print Associates.sup_mul_inf /-
 theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
   show (a.factors ⊔ b.factors).Prod * (a.factors ⊓ b.factors).Prod = a * b
     by
@@ -1673,9 +1843,9 @@ theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
     refine' eq_of_factors_eq_factors _
     rw [← prod_add, prod_factors, factors_mul, factor_set.sup_add_inf_eq_add]
 #align associates.sup_mul_inf Associates.sup_mul_inf
+-/
 
-include dec_irr
-
+#print Associates.dvd_of_mem_factors /-
 theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) : p ∣ a :=
   by
   by_cases ha0 : a = 0; · rw [ha0]; exact dvd_zero p
@@ -1686,9 +1856,9 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
   apply Multiset.dvd_prod; apply multiset.mem_map.mpr
   exact ⟨⟨p, hp⟩, mem_factor_set_some.mp hm, rfl⟩
 #align associates.dvd_of_mem_factors Associates.dvd_of_mem_factors
+-/
 
-omit dec'
-
+#print Associates.dvd_of_mem_factors' /-
 theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {hz : a ≠ 0}
     (h_mem : Subtype.mk p hp ∈ factors' a) : p ∣ Associates.mk a :=
   by
@@ -1697,9 +1867,9 @@ theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {h
   rw [factors_mk _ hz]
   apply mem_factor_set_some.2 h_mem
 #align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'
+-/
 
-omit dec_irr
-
+#print Associates.mem_factors'_of_dvd /-
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a :=
   by
@@ -1707,9 +1877,9 @@ theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd
   apply multiset.mem_pmap.mpr; use q; use hq
   exact Subtype.eq (Eq.symm (mk_eq_mk_iff_associated.mpr hpq))
 #align associates.mem_factors'_of_dvd Associates.mem_factors'_of_dvd
+-/
 
-include dec_irr
-
+#print Associates.mem_factors'_iff_dvd /-
 theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a :=
   by
@@ -1717,14 +1887,16 @@ theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · rw [← mk_dvd_mk]; apply dvd_of_mem_factors'; apply ha0
   · apply mem_factors'_of_dvd ha0
 #align associates.mem_factors'_iff_dvd Associates.mem_factors'_iff_dvd
+-/
 
-include dec'
-
+#print Associates.mem_factors_of_dvd /-
 theorem mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Associates.mk p ∈ factors (Associates.mk a) := by rw [factors_mk _ ha0];
   exact mem_factor_set_some.mpr (mem_factors'_of_dvd ha0 hp hd)
 #align associates.mem_factors_of_dvd Associates.mem_factors_of_dvd
+-/
 
+#print Associates.mem_factors_iff_dvd /-
 theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Associates.mk p ∈ factors (Associates.mk a) ↔ p ∣ a :=
   by
@@ -1732,7 +1904,9 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · rw [← mk_dvd_mk]; apply dvd_of_mem_factors; exact (irreducible_mk p).mpr hp
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
+-/
 
+#print Associates.exists_prime_dvd_of_not_inf_one /-
 theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b :=
   by
@@ -1756,7 +1930,9 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     apply dvd_of_mem_factors' (multiset.mem_inter.mp p0_mem).right
     apply hb
 #align associates.exists_prime_dvd_of_not_inf_one Associates.exists_prime_dvd_of_not_inf_one
+-/
 
+#print Associates.coprime_iff_inf_one /-
 theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
     Associates.mk a ⊓ Associates.mk b = 1 ↔ ∀ {d : α}, d ∣ a → d ∣ b → ¬Prime d :=
   by
@@ -1770,15 +1946,17 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
     obtain ⟨p, hp, hpa, hpb⟩ := exists_prime_dvd_of_not_inf_one ha0 hb0 hg
     exact hc hpa hpb hp
 #align associates.coprime_iff_inf_one Associates.coprime_iff_inf_one
+-/
 
-omit dec_irr
-
+#print Associates.factors_self /-
 theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
     p.factors = some {⟨p, hp⟩} :=
   eq_of_prod_eq_prod
     (by rw [factors_prod, factor_set.prod, map_singleton, prod_singleton, Subtype.coe_mk])
 #align associates.factors_self Associates.factors_self
+-/
 
+#print Associates.factors_prime_pow /-
 theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible p) (k : ℕ) :
     factors (p ^ k) = some (Multiset.replicate k ⟨p, hp⟩) :=
   eq_of_prod_eq_prod
@@ -1786,9 +1964,9 @@ theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible
       rw [Associates.factors_prod, factor_set.prod, Multiset.map_replicate, Multiset.prod_replicate,
         Subtype.coe_mk])
 #align associates.factors_prime_pow Associates.factors_prime_pow
+-/
 
-include dec_irr
-
+#print Associates.prime_pow_dvd_iff_le /-
 theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p)
     {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors :=
   by
@@ -1797,7 +1975,9 @@ theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠
     factors_le, factors_prime_pow h₂, factors_mk _ nz]
   exact WithTop.coe_le_coe
 #align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_le
+-/
 
+#print Associates.le_of_count_ne_zero /-
 theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) :
     count p m.factors ≠ 0 → p ≤ m := by
   nontriviality α
@@ -1807,7 +1987,9 @@ theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducib
   apply (prime_pow_dvd_iff_le h0 hp).2
   simpa only
 #align associates.le_of_count_ne_zero Associates.le_of_count_ne_zero
+-/
 
+#print Associates.count_ne_zero_iff_dvd /-
 theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a :=
   by
@@ -1824,11 +2006,15 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
       h 
     exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
+-/
 
+#print Associates.count_self /-
 theorem count_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) : p.count p.factors = 1 :=
   by simp [factors_self hp, Associates.count_some hp]
 #align associates.count_self Associates.count_self
+-/
 
+#print Associates.count_eq_zero_of_ne /-
 theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irreducible q)
     (h : p ≠ q) : p.count q.factors = 0 :=
   not_ne_iff.mp fun h' =>
@@ -1836,7 +2022,9 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
       associated_iff_eq.mp <|
         hp.associated_of_dvd hq <| by nontriviality α; exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
+-/
 
+#print Associates.count_mul /-
 theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) : count p (factors (a * b)) = count p a.factors + count p b.factors :=
   by
@@ -1846,7 +2034,9 @@ theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b
     WithTop.some_eq_coe, ← WithTop.some_eq_coe, ← WithTop.some_eq_coe, count_some hp,
     Multiset.count_add, count_some hp, count_some hp]
 #align associates.count_mul Associates.count_mul
+-/
 
+#print Associates.count_of_coprime /-
 theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
     count p a.factors = 0 ∨ count p b.factors = 0 :=
@@ -1857,7 +2047,9 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
   exact
     ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb, irreducible_iff_prime.mp hp⟩
 #align associates.count_of_coprime Associates.count_of_coprime
+-/
 
+#print Associates.count_mul_of_coprime /-
 theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p a.factors = 0 ∨ count p a.factors = count p (a * b).factors :=
@@ -1868,7 +2060,9 @@ theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠
   apply Or.intro_right
   rw [count_mul ha hb hp, hb0, add_zero]
 #align associates.count_mul_of_coprime Associates.count_mul_of_coprime
+-/
 
+#print Associates.count_mul_of_coprime' /-
 theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Irreducible p)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p (a * b).factors = count p a.factors ∨ count p (a * b).factors = count p b.factors :=
@@ -1880,7 +2074,9 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
   · apply Or.intro_right; rw [ha0, zero_add]
   · apply Or.intro_left; rw [hb0, add_zero]
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
+-/
 
+#print Associates.dvd_count_of_dvd_count_mul /-
 theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
     (habk : k ∣ count p (a * b).factors) : k ∣ count p a.factors :=
@@ -1890,9 +2086,9 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
   · rw [hz]; exact dvd_zero k
   · rw [count_mul ha hb hp, h] at habk ; exact habk
 #align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mul
+-/
 
-omit dec_irr
-
+#print Associates.factors_one /-
 @[simp]
 theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   by
@@ -1900,7 +2096,9 @@ theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   rw [Associates.factors_prod]
   exact Multiset.prod_zero
 #align associates.factors_one Associates.factors_one
+-/
 
+#print Associates.pow_factors /-
 @[simp]
 theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
   by
@@ -1908,9 +2106,9 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).fact
   · rw [zero_nsmul, pow_zero]; exact factors_one
   · rw [pow_succ, succ_nsmul, factors_mul, h]
 #align associates.pow_factors Associates.pow_factors
+-/
 
-include dec_irr
-
+#print Associates.count_pow /-
 theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors :=
   by
@@ -1918,12 +2116,16 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
   · rw [pow_zero, factors_one, MulZeroClass.zero_mul, count_zero hp]
   · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]; ring
 #align associates.count_pow Associates.count_pow
+-/
 
+#print Associates.dvd_count_pow /-
 theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors := by rw [count_pow ha hp];
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
+-/
 
+#print Associates.is_pow_of_dvd_count /-
 theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
     (hk : ∀ (p : Associates α) (hp : Irreducible p), k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k :=
@@ -1941,7 +2143,9 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
   rw [pow_factors, prod_factors, factors_mk a0 hz, ← WithTop.some_eq_coe, hu]
   exact WithBot.coe_nsmul u k
 #align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_count
+-/
 
+#print Associates.eq_pow_count_factors_of_dvd_pow /-
 /-- The only divisors of prime powers are prime powers. See `eq_pow_find_of_dvd_irreducible_pow`
 for an explicit expression as a p-power (without using `count`). -/
 theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible p) {n : ℕ}
@@ -1961,7 +2165,9 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
   · rw [h, count_self hp, mul_one]
   · rw [count_eq_zero_of_ne hq hp h, MulZeroClass.mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
+-/
 
+#print Associates.count_factors_eq_find_of_dvd_pow /-
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
     Nat.find ⟨n, h⟩ = p.count a.factors :=
@@ -1974,13 +2180,9 @@ theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible
     convert count_le_count_of_le hph hp (Nat.find_spec ⟨n, h⟩)
     rw [count_pow hp.ne_zero hp, count_self hp, mul_one]
 #align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_pow
+-/
 
-omit dec
-
-omit dec_irr
-
-omit dec'
-
+#print Associates.eq_pow_of_mul_eq_pow /-
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
     ∃ d : Associates α, a = d ^ k := by
@@ -1998,12 +2200,15 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
     rw [zero_pow' _ hk0] at h 
     cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
+-/
 
+#print Associates.eq_pow_find_of_dvd_irreducible_pow /-
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) : a = p ^ Nat.find ⟨n, h⟩ := by
   classical rw [count_factors_eq_find_of_dvd_pow hp, ← eq_pow_count_factors_of_dvd_pow hp h]
 #align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_pow
+-/
 
 end Associates
 
@@ -2084,6 +2289,7 @@ end
 
 namespace UniqueFactorizationMonoid
 
+#print UniqueFactorizationMonoid.fintypeSubtypeDvd /-
 /-- If `y` is a nonzero element of a unique factorization monoid with finitely
 many units (e.g. `ℤ`, `ideal (ring_of_integers K)`), it has finitely many divisors. -/
 noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
@@ -2120,6 +2326,7 @@ noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
     refine' ⟨⟨normalized_factors x, u⟩, _, (mul_comm _ _).trans hu⟩
     exact (dvd_iff_normalized_factors_le_normalized_factors hx hy).mp h
 #align unique_factorization_monoid.fintype_subtype_dvd UniqueFactorizationMonoid.fintypeSubtypeDvd
+-/
 
 end UniqueFactorizationMonoid
 
@@ -2144,13 +2351,17 @@ theorem factorization_eq_count {n p : α} :
 #align factorization_eq_count factorization_eq_count
 -/
 
+#print factorization_zero /-
 @[simp]
 theorem factorization_zero : factorization (0 : α) = 0 := by simp [factorization]
 #align factorization_zero factorization_zero
+-/
 
+#print factorization_one /-
 @[simp]
 theorem factorization_one : factorization (1 : α) = 0 := by simp [factorization]
 #align factorization_one factorization_one
+-/
 
 #print support_factorization /-
 /-- The support of `factorization n` is exactly the finset of normalized factors -/
@@ -2161,12 +2372,14 @@ theorem support_factorization {n : α} :
 #align support_factorization support_factorization
 -/
 
+#print factorization_mul /-
 /-- For nonzero `a` and `b`, the power of `p` in `a * b` is the sum of the powers in `a` and `b` -/
 @[simp]
 theorem factorization_mul {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) :
     factorization (a * b) = factorization a + factorization b := by
   simp [factorization, normalized_factors_mul ha hb]
 #align factorization_mul factorization_mul
+-/
 
 #print factorization_pow /-
 /-- For any `p`, the power of `p` in `x^n` is `n` times the power in `x` -/
@@ -2175,12 +2388,14 @@ theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • fac
 #align factorization_pow factorization_pow
 -/
 
+#print associated_of_factorization_eq /-
 theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
     (h : factorization a = factorization b) : Associated a b :=
   by
   simp_rw [factorization, AddEquiv.apply_eq_iff_eq] at h 
   rwa [associated_iff_normalized_factors_eq_normalized_factors ha hb]
 #align associated_of_factorization_eq associated_of_factorization_eq
+-/
 
 end Finsupp
 
Diff
@@ -1103,7 +1103,7 @@ open scoped BigOperators
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
     (is_coprime : ∀ (q) (_ : q ∈ insert p s) (q') (_ : q' ∈ insert p s), q ∣ q' → q = q') :
-    ∀ q : α, q ∣ p ^ i p → (q ∣ ∏ p' in s, p' ^ i p') → IsUnit q :=
+    ∀ q : α, q ∣ p ^ i p → q ∣ ∏ p' in s, p' ^ i p' → IsUnit q :=
   by
   have hp := is_prime _ (Finset.mem_insert_self _ _)
   refine' fun _ => no_factors_of_no_prime_factors (pow_ne_zero _ hp.ne_zero) _
Diff
@@ -324,7 +324,6 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
         (Multiset.card_add _ _).symm
       _ = Multiset.card (Classical.choose (pf b h)) :=
         Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
-      
     · convert (Classical.choose_spec (pf c cne0)).2.symm
       rw [Con, Multiset.prod_zero]
     · intro x hadd
@@ -415,7 +414,6 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
               rw [hx, Multiset.prod_cons] <;> exact hfx.2.mul_left _
             _ ~ᵤ fa.Prod * fb.Prod := (hfa.2.symm.mul_mul hfb.2.symm)
             _ = _ := by rw [Multiset.prod_add]
-            
         exact
           let ⟨q, hqf, hq⟩ := Multiset.exists_mem_of_rel_of_mem h (Multiset.mem_cons_self p _)
           (Multiset.mem_add.1 hqf).elim
@@ -512,8 +510,7 @@ theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p
           Multiset.prod (factors a) ~ᵤ a := factors_prod ha0
           _ = p * b := hb
           _ ~ᵤ Multiset.prod (p ::ₘ factors b) := by
-            rw [Multiset.prod_cons] <;> exact (factors_prod hb0).symm.mul_left _
-          )
+            rw [Multiset.prod_cons] <;> exact (factors_prod hb0).symm.mul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvd
 
@@ -667,8 +664,7 @@ theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irr
           Multiset.prod (normalizedFactors a) ~ᵤ a := normalizedFactors_prod ha0
           _ = p * b := hb
           _ ~ᵤ Multiset.prod (p ::ₘ normalizedFactors b) := by
-            rw [Multiset.prod_cons] <;> exact (normalized_factors_prod hb0).symm.mul_left _
-          )
+            rw [Multiset.prod_cons] <;> exact (normalized_factors_prod hb0).symm.mul_left _)
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
 
@@ -1209,7 +1205,6 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
       _ = 0 := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
       _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
       _ = f a * f b := by rw [mul_one]
-      
   have h1' : f 1 = 1 := (mul_left_inj' hf1).mp (by rw [← h1 isUnit_one, one_mul, one_mul])
   haveI : Nontrivial α := ⟨⟨_, _, ha0⟩⟩
   letI : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid
Diff
@@ -639,7 +639,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
   rwa [← normalize_normalized_factor p p_mem, normalize_eq_normalize_iff, dvd_dvd_iff_associated]
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 #print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
@@ -939,7 +939,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
   simpa [mul_comm b c] using dvd_of_dvd_mul_left_of_no_prime_factors ha @no_factors
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
@@ -1102,7 +1102,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 
 open scoped BigOperators
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 #print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
@@ -1123,7 +1123,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on a product of powers of distinct primes. -/
@@ -1167,8 +1167,8 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
   · apply normalized_factors_eq_of_dvd
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
 @[elab_as_elim]
Diff
@@ -90,7 +90,7 @@ attribute [local elab_as_elim] WellFounded.fix
 
 theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     ∃ i, Irreducible i ∧ i ∣ a :=
-  let ⟨b, hs, hr⟩ := wellFounded_dvdNotUnit.has_min { b | b ∣ a ∧ ¬IsUnit b } ⟨a, dvd_rfl, ha⟩
+  let ⟨b, hs, hr⟩ := wellFounded_dvdNotUnit.has_min {b | b ∣ a ∧ ¬IsUnit b} ⟨a, dvd_rfl, ha⟩
   ⟨b,
     ⟨hs.2, fun c d he =>
       let h := dvd_trans ⟨d, he⟩ hs.1
@@ -130,10 +130,10 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     obtain ⟨f, hi, u, rfl⟩ := exists_factors a hn0
     obtain ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero fun h : f = 0 => hnu <| by simp [h]
     classical
-      refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
-      · obtain rfl | ha := Multiset.mem_cons.1 ha
-        exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
-      · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
+    refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
+    · obtain rfl | ha := Multiset.mem_cons.1 ha
+      exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
+    · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
     fun ⟨f, hi, he, hne⟩ =>
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
     not_isUnit_of_not_isUnit_dvd (hi b h).not_unit <| he ▸ Multiset.dvd_prod h⟩
@@ -302,39 +302,39 @@ include pf
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
   ⟨by
     classical
-      refine'
-        RelHomClass.wellFounded
-          (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
-          (WithTop.wellFounded_lt Nat.lt_wfRel)
-      · intro a
-        by_cases h : a = 0; · exact ⊤
-        exact (Classical.choose (pf a h)).card
-      rintro a b ⟨ane0, ⟨c, hc, b_eq⟩⟩
-      rw [dif_neg ane0]
-      by_cases h : b = 0
-      · simp [h, lt_top_iff_ne_top]
-      rw [dif_neg h, WithTop.coe_lt_coe]
-      have cne0 : c ≠ 0 := by refine' mt (fun con => _) h; rw [b_eq, Con, MulZeroClass.mul_zero]
-      calc
-        Multiset.card (Classical.choose (pf a ane0)) <
-            _ + Multiset.card (Classical.choose (pf c cne0)) :=
-          lt_add_of_pos_right _
-            (multiset.card_pos.mpr fun con => hc (associated_one_iff_is_unit.mp _))
-        _ = Multiset.card (Classical.choose (pf a ane0) + Classical.choose (pf c cne0)) :=
-          (Multiset.card_add _ _).symm
-        _ = Multiset.card (Classical.choose (pf b h)) :=
-          Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
-        
-      · convert(Classical.choose_spec (pf c cne0)).2.symm
-        rw [Con, Multiset.prod_zero]
-      · intro x hadd
-        rw [Multiset.mem_add] at hadd 
-        cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
-      · rw [Multiset.prod_add]
-        trans a * c
-        · apply Associated.mul_mul <;> apply (Classical.choose_spec (pf _ _)).2
-        · rw [← b_eq]
-          apply (Classical.choose_spec (pf _ _)).2.symm⟩
+    refine'
+      RelHomClass.wellFounded
+        (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
+        (WithTop.wellFounded_lt Nat.lt_wfRel)
+    · intro a
+      by_cases h : a = 0; · exact ⊤
+      exact (Classical.choose (pf a h)).card
+    rintro a b ⟨ane0, ⟨c, hc, b_eq⟩⟩
+    rw [dif_neg ane0]
+    by_cases h : b = 0
+    · simp [h, lt_top_iff_ne_top]
+    rw [dif_neg h, WithTop.coe_lt_coe]
+    have cne0 : c ≠ 0 := by refine' mt (fun con => _) h; rw [b_eq, Con, MulZeroClass.mul_zero]
+    calc
+      Multiset.card (Classical.choose (pf a ane0)) <
+          _ + Multiset.card (Classical.choose (pf c cne0)) :=
+        lt_add_of_pos_right _
+          (multiset.card_pos.mpr fun con => hc (associated_one_iff_is_unit.mp _))
+      _ = Multiset.card (Classical.choose (pf a ane0) + Classical.choose (pf c cne0)) :=
+        (Multiset.card_add _ _).symm
+      _ = Multiset.card (Classical.choose (pf b h)) :=
+        Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
+      
+    · convert (Classical.choose_spec (pf c cne0)).2.symm
+      rw [Con, Multiset.prod_zero]
+    · intro x hadd
+      rw [Multiset.mem_add] at hadd 
+      cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
+    · rw [Multiset.prod_add]
+      trans a * c
+      · apply Associated.mul_mul <;> apply (Classical.choose_spec (pf _ _)).2
+      · rw [← b_eq]
+        apply (Classical.choose_spec (pf _ _)).2.symm⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
 
 theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p ↔ Prime p :=
@@ -370,7 +370,7 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
     UniqueFactorizationMonoid β :=
   by
   rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα ⊢; intro a ha
-  obtain ⟨w, hp, u, h⟩ := hα (e.symm a) fun h => ha <| by convert← map_zero e; simp [← h]
+  obtain ⟨w, hp, u, h⟩ := hα (e.symm a) fun h => ha <| by convert ← map_zero e; simp [← h]
   exact
     ⟨w.map e, fun b hb =>
       let ⟨c, hc, he⟩ := Multiset.mem_map.1 hb
@@ -585,7 +585,7 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
     [UniqueFactorizationMonoid M] [Unique Mˣ] (x : M) : factors x = normalizedFactors x :=
   by
   unfold normalized_factors
-  convert(Multiset.map_id (factors x)).symm
+  convert (Multiset.map_id (factors x)).symm
   ext p
   exact normalize_eq p
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
@@ -645,7 +645,8 @@ theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
   by
   intro p hp q hq hdvd
-  convert normalize_eq_normalize hdvd
+  convert
+        normalize_eq_normalize hdvd
           ((prime_of_normalized_factor _ hp).Irreducible.dvd_symm
             (prime_of_normalized_factor _ hq).Irreducible hdvd) <;>
       apply (normalize_normalized_factor _ _).symm <;>
@@ -1057,7 +1058,7 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   by_cases hx0 : x = 0
   · simp [hx0] at hlt ; contradiction
   rw [← PartENat.natCast_inj]
-  convert(multiplicity_eq_count_normalized_factors hp hx0).symm
+  convert (multiplicity_eq_count_normalized_factors hp hx0).symm
   · exact hnorm.symm
   exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm
 #align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eq
@@ -1083,12 +1084,12 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
     ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
   classical
-    let n := (normalized_factors a₀).count (normalize x)
-    obtain ⟨a, ha1, ha2⟩ :=
-      @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
-    simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
-    use n, a, ha2, ha1
-    use n, multiplicity_eq_count_normalized_factors hx h
+  let n := (normalized_factors a₀).count (normalize x)
+  obtain ⟨a, ha1, ha2⟩ :=
+    @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
+  simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
+  use n, a, ha2, ha1
+  use n, multiplicity_eq_count_normalized_factors hx h
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
 
 end multiplicity
@@ -1449,16 +1450,16 @@ theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
   Iff.intro
     (by
       classical
-        rintro ⟨c, eqc⟩
-        refine' Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx => _) _⟩
-        · obtain h | h := Multiset.mem_add.1 hx
-          · exact hp x h
-          · exact irreducible_of_factor _ h
-        · rw [eqc, Multiset.prod_add]
-          congr
-          refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
-          refine' not_irreducible_zero (hq _ _)
-          rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
+      rintro ⟨c, eqc⟩
+      refine' Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx => _) _⟩
+      · obtain h | h := Multiset.mem_add.1 hx
+        · exact hp x h
+        · exact irreducible_of_factor _ h
+      · rw [eqc, Multiset.prod_add]
+        congr
+        refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
+        refine' not_irreducible_zero (hq _ _)
+        rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
     prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 
@@ -1517,8 +1518,8 @@ theorem factors_0 : (0 : Associates α).factors = ⊤ :=
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
   classical
-    apply dif_neg
-    apply mt mk_eq_zero.1 h
+  apply dif_neg
+  apply mt mk_eq_zero.1 h
 #align associates.factors_mk Associates.factors_mk
 
 #print Associates.factors_prod /-
@@ -1569,8 +1570,8 @@ omit dec dec'
 
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
-    have : a.prod.factors = b.prod.factors := by rw [h]
-    rwa [prod_factors, prod_factors] at this 
+  have : a.prod.factors = b.prod.factors := by rw [h]
+  rwa [prod_factors, prod_factors] at this 
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 
 include dec dec' dec_irr
@@ -1641,11 +1642,11 @@ omit dec dec' dec_irr
 
 theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
   classical exact
-      Iff.intro
-        (fun h => by
-          have : a.prod.factors ≤ b.prod.factors := factors_mono h
-          rwa [prod_factors, prod_factors] at this )
-        prod_mono
+    Iff.intro
+      (fun h => by
+        have : a.prod.factors ≤ b.prod.factors := factors_mono h
+        rwa [prod_factors, prod_factors] at this )
+      prod_mono
 #align associates.prod_le Associates.prod_le
 
 include dec dec'
@@ -1989,18 +1990,18 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
     ∃ d : Associates α, a = d ^ k := by
   classical
-    by_cases hk0 : k = 0
-    · use 1
-      rw [hk0, pow_zero] at h ⊢
-      apply (mul_eq_one_iff.1 h).1
-    · refine' is_pow_of_dvd_count ha _
-      intro p hp
-      apply dvd_count_of_dvd_count_mul hb hp hab
-      rw [h]
-      apply dvd_count_pow _ hp
-      rintro rfl
-      rw [zero_pow' _ hk0] at h 
-      cases mul_eq_zero.mp h <;> contradiction
+  by_cases hk0 : k = 0
+  · use 1
+    rw [hk0, pow_zero] at h ⊢
+    apply (mul_eq_one_iff.1 h).1
+  · refine' is_pow_of_dvd_count ha _
+    intro p hp
+    apply dvd_count_of_dvd_count_mul hb hp hab
+    rw [h]
+    apply dvd_count_pow _ hp
+    rintro rfl
+    rw [zero_pow' _ hk0] at h 
+    cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
 /-- The only divisors of prime powers are prime powers. -/
Diff
@@ -71,7 +71,7 @@ theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoi
   ⟨by
     haveI := h
     refine' (Surjective.wellFounded_iff mk_surjective _).2 well_founded_dvd_not_unit
-    intros ; rw [mk_dvd_not_unit_mk_iff]⟩
+    intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associates
 
 variable [WfDvdMonoid α]
@@ -79,7 +79,7 @@ variable [WfDvdMonoid α]
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
   ⟨by
     refine' (Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
-    intros ; rw [mk_dvd_not_unit_mk_iff]⟩
+    intros; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
 
 theorem wellFounded_associates : WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
@@ -132,7 +132,7 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     classical
       refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
       · obtain rfl | ha := Multiset.mem_cons.1 ha
-        exacts[Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
+        exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
       · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
     fun ⟨f, hi, he, hne⟩ =>
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
@@ -177,7 +177,7 @@ of prime factors, use the definition `of_exists_prime_factors`
 
 -/
 class UniqueFactorizationMonoid (α : Type _) [CancelCommMonoidWithZero α] extends WfDvdMonoid α :
-  Prop where
+    Prop where
   irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
 #align unique_factorization_monoid UniqueFactorizationMonoid
 -/
@@ -215,7 +215,7 @@ theorem exists_prime_factors (a : α) : a ≠ 0 → ∃ f : Multiset α, (∀ b
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a :=
   by
-  simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime] at h₃
+  simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime] at h₃ 
   exact WfDvdMonoid.induction_on_irreducible a h₁ h₂ h₃
 #align unique_factorization_monoid.induction_on_prime UniqueFactorizationMonoid.induction_on_prime
 
@@ -328,7 +328,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
       · convert(Classical.choose_spec (pf c cne0)).2.symm
         rw [Con, Multiset.prod_zero]
       · intro x hadd
-        rw [Multiset.mem_add] at hadd
+        rw [Multiset.mem_add] at hadd 
         cases hadd <;> apply (Classical.choose_spec (pf _ _)).1 _ hadd
       · rw [Multiset.prod_add]
         trans a * c
@@ -369,7 +369,7 @@ variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero 
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β :=
   by
-  rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα⊢; intro a ha
+  rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα ⊢; intro a ha
   obtain ⟨w, hp, u, h⟩ := hα (e.symm a) fun h => ha <| by convert← map_zero e; simp [← h]
   exact
     ⟨w.map e, fun b hb =>
@@ -461,7 +461,7 @@ theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).Prod a :
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   by
   intro ha
-  rw [factors, dif_pos ha] at h
+  rw [factors, dif_pos ha] at h 
   exact Multiset.not_mem_zero _ h
 #align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factors
 
@@ -475,7 +475,7 @@ theorem dvd_of_mem_factors {p a : α} (h : p ∈ factors a) : p ∣ a :=
 theorem prime_of_factor {a : α} (x : α) (hx : x ∈ factors a) : Prime x :=
   by
   have ane0 := ne_zero_of_mem_factors hx
-  rw [factors, dif_neg ane0] at hx
+  rw [factors, dif_neg ane0] at hx 
   exact (Classical.choose_spec (UniqueFactorizationMonoid.exists_prime_factors a ane0)).1 x hx
 #align unique_factorization_monoid.prime_of_factor UniqueFactorizationMonoid.prime_of_factor
 -/
@@ -750,7 +750,7 @@ theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducib
     haveI := nontrivial_of_ne b 0 (ib b hb).NeZero
     rw [Multiset.prod_cons, Multiset.map_cons, normalized_factors_mul ia.ne_zero,
       normalized_factors_irreducible ia, ih]
-    exacts[rfl, ib, Multiset.prod_ne_zero fun h => (ib 0 h).NeZero rfl]
+    exacts [rfl, ib, Multiset.prod_ne_zero fun h => (ib 0 h).NeZero rfl]
 #align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eq
 
 theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
@@ -798,7 +798,7 @@ theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
   by
   use (normalized_factors r).card
   have := UniqueFactorizationMonoid.normalizedFactors_prod hr
-  rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this
+  rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this 
 #align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor
 
 #print UniqueFactorizationMonoid.normalizedFactors_prod_of_prime /-
@@ -905,7 +905,7 @@ variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
-  induction_on_prime d (by simp only [zero_dvd_iff]; intros ; contradiction) (fun x hx _ _ => hx)
+  induction_on_prime d (by simp only [zero_dvd_iff]; intros; contradiction) (fun x hx _ _ => hx)
     fun d q hp hq ih dvd_a dvd_b =>
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
 #align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
@@ -926,7 +926,7 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     apply units.dvd_mul_right.mp a_dvd_bx
   · intro c p hc hp ih no_factors a_dvd_bpc
     apply ih fun q dvd_a dvd_c hq => no_factors dvd_a (dvd_c.mul_left _) hq
-    rw [mul_left_comm] at a_dvd_bpc
+    rw [mul_left_comm] at a_dvd_bpc 
     refine' Or.resolve_left (hp.left_dvd_or_dvd_right_of_dvd_mul a_dvd_bpc) fun h => _
     exact no_factors h (dvd_mul_right p c) hp
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
@@ -948,7 +948,7 @@ theorem exists_reduced_factors :
   haveI := Classical.propDecidable
   intro a
   refine' induction_on_prime a _ _ _
-  · intros ; contradiction
+  · intros; contradiction
   · intro a a_unit a_ne_zero b
     use a, b, 1
     constructor
@@ -987,7 +987,7 @@ theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
   obtain ⟨p', hp', dvd'⟩ := WfDvdMonoid.exists_irreducible_factor ha1 ha0
   obtain ⟨p, mem, _⟩ := exists_mem_normalized_factors_of_dvd ha0 hp' dvd'
   have := congr_arg (fun x => Multiset.count p (normalized_factors x)) hij
-  simp only [normalized_factors_pow, Multiset.count_nsmul] at this
+  simp only [normalized_factors_pow, Multiset.count_nsmul] at this 
   exact mul_right_cancel₀ (multiset.count_ne_zero.mpr mem) this
 #align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injective
 
@@ -1015,7 +1015,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
   intro b hb
   constructor
   · rintro ⟨c, rfl⟩
-    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb
+    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, Decidable.not_or_iff_and_not] at hb 
     rw [pow_succ, mul_assoc, normalized_factors_mul hb.1 hb.2, replicate_succ,
       normalized_factors_irreducible ha, singleton_add, cons_le_cons_iff, ← ih hb.2]
     apply Dvd.intro _ rfl
@@ -1055,7 +1055,7 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
-  · simp [hx0] at hlt; contradiction
+  · simp [hx0] at hlt ; contradiction
   rw [← PartENat.natCast_inj]
   convert(multiplicity_eq_count_normalized_factors hp hx0).symm
   · exact hnorm.symm
@@ -1075,7 +1075,7 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   rcases hp with (rfl | hp)
   · cases n
     · exact count_eq_zero.2 (zero_not_mem_normalized_factors _)
-    · rw [zero_pow (Nat.succ_pos _)] at hle hlt
+    · rw [zero_pow (Nat.succ_pos _)] at hle hlt 
       exact absurd hle hlt
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
@@ -1086,7 +1086,7 @@ theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x
     let n := (normalized_factors a₀).count (normalize x)
     obtain ⟨a, ha1, ha2⟩ :=
       @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
-    simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1
+    simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1 
     use n, a, ha2, ha1
     use n, multiplicity_eq_count_normalized_factors hx h
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
@@ -1334,7 +1334,7 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod =
   · simp only [iff_self_iff, eq_self_iff_true, Associates.prod_top]
   simp only [prod_coe, WithTop.coe_ne_top, iff_false_iff, prod_eq_zero_iff, Multiset.mem_map]
   rintro ⟨⟨a, ha⟩, -, eq⟩
-  rw [Subtype.coe_mk] at eq
+  rw [Subtype.coe_mk] at eq 
   exact ha.ne_zero Eq
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
 
@@ -1409,7 +1409,7 @@ theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
 
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
     ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
-  rwa [dif_neg hp] at h
+  rwa [dif_neg hp] at h 
 #align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSet
 
 omit dec_irr
@@ -1480,7 +1480,7 @@ theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).m
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  · rw [associated_zero_iff_eq_zero] at h; rw [h]
+  · rw [associated_zero_iff_eq_zero] at h ; rw [h]
   have ha : a ≠ 0 := by
     contrapose! hb with ha
     rw [← associated_zero_iff_eq_zero, ← ha]
@@ -1503,7 +1503,7 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
   intro a b hab
   apply Function.hfunext
   · have : a ~ᵤ 0 ↔ b ~ᵤ 0 := Iff.intro (fun ha0 => hab.symm.trans ha0) fun hb0 => hab.trans hb0
-    simp only [associated_zero_iff_eq_zero] at this
+    simp only [associated_zero_iff_eq_zero] at this 
     simp only [quotient_mk_eq_mk, this, mk_eq_zero]
   exact fun ha hb eq => hEq_of_eq <| congr_arg some <| factors'_cong hab
 #align associates.factors Associates.factors
@@ -1561,7 +1561,7 @@ theorem factors_eq_some_iff_ne_zero {a : Associates α} :
 theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factors) : a = b :=
   by
   have : a.factors.Prod = b.factors.Prod := by rw [h]
-  rwa [factors_prod, factors_prod] at this
+  rwa [factors_prod, factors_prod] at this 
 #align associates.eq_of_factors_eq_factors Associates.eq_of_factors_eq_factors
 -/
 
@@ -1570,7 +1570,7 @@ omit dec dec'
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
     have : a.prod.factors = b.prod.factors := by rw [h]
-    rwa [prod_factors, prod_factors] at this
+    rwa [prod_factors, prod_factors] at this 
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 
 include dec dec' dec_irr
@@ -1581,7 +1581,7 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   by
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
-  rw [h_sa, h_sb] at h⊢
+  rw [h_sa, h_sb] at h ⊢
   rw [Option.some_inj]
   have h_count : ∀ (p : Associates α) (hp : Irreducible p), sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ :=
     by intro p hp; rw [← count_some, ← count_some, h p hp]
@@ -1602,8 +1602,8 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
   · simp_all
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
-  rw [h_sa, h_sb] at h⊢
-  rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h
+  rw [h_sa, h_sb] at h ⊢
+  rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h 
   exact Multiset.count_le_of_le _ h
 #align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_le
 
@@ -1626,7 +1626,7 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
   Iff.intro
     (fun h => by
       have : a.factors.Prod ≤ b.factors.Prod := prod_mono h
-      rwa [factors_prod, factors_prod] at this)
+      rwa [factors_prod, factors_prod] at this )
     factors_mono
 #align associates.factors_le Associates.factors_le
 
@@ -1644,7 +1644,7 @@ theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a 
       Iff.intro
         (fun h => by
           have : a.prod.factors ≤ b.prod.factors := factors_mono h
-          rwa [prod_factors, prod_factors] at this)
+          rwa [prod_factors, prod_factors] at this )
         prod_mono
 #align associates.prod_le Associates.prod_le
 
@@ -1685,7 +1685,7 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
   by_cases ha0 : a = 0; · rw [ha0]; exact dvd_zero p
   obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha0
   rw [← Associates.factors_prod a]
-  rw [← ha', factors_mk a0 nza] at hm⊢
+  rw [← ha', factors_mk a0 nza] at hm ⊢
   erw [prod_coe]
   apply Multiset.dvd_prod; apply multiset.mem_map.mpr
   exact ⟨⟨p, hp⟩, mem_factor_set_some.mp hm, rfl⟩
@@ -1746,9 +1746,9 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     change (factors (Associates.mk a) ⊓ factors (Associates.mk b)).Prod = 1
     rw [hf]
     exact Multiset.prod_zero
-  rw [factors_mk a ha, factors_mk b hb, ← WithTop.coe_inf] at hz
+  rw [factors_mk a ha, factors_mk b hb, ← WithTop.coe_inf] at hz 
   obtain ⟨⟨p0, p0_irr⟩, p0_mem⟩ := Multiset.exists_mem_of_ne_zero ((mt with_top.coe_eq_coe.mpr) hz)
-  rw [Multiset.inf_eq_inter] at p0_mem
+  rw [Multiset.inf_eq_inter] at p0_mem 
   obtain ⟨p, rfl⟩ : ∃ p, Associates.mk p = p0 := Quot.exists_rep p0
   refine' ⟨p, _, _, _⟩
   · rw [← irreducible_iff_prime, ← irreducible_mk]
@@ -1825,7 +1825,7 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · rw [← pow_one (Associates.mk p),
       Associates.prime_pow_dvd_iff_le (associates.mk_ne_zero.mpr ha0)
         ((Associates.irreducible_mk p).mpr hp)] at
-      h
+      h 
     exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 
@@ -1892,7 +1892,7 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
   by_cases ha : a = 0; · simpa [*] using habk
   cases' count_of_coprime ha hb hab hp with hz h
   · rw [hz]; exact dvd_zero k
-  · rw [count_mul ha hb hp, h] at habk; exact habk
+  · rw [count_mul ha hb hp, h] at habk ; exact habk
 #align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mul
 
 omit dec_irr
@@ -1933,7 +1933,7 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
     ∃ b : Associates α, a = b ^ k :=
   by
   obtain ⟨a0, hz, rfl⟩ := exists_non_zero_rep ha
-  rw [factors_mk a0 hz] at hk
+  rw [factors_mk a0 hz] at hk 
   have hk' : ∀ p, p ∈ factors' a0 → k ∣ (factors' a0).count p :=
     by
     rintro p -
@@ -1991,7 +1991,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
   classical
     by_cases hk0 : k = 0
     · use 1
-      rw [hk0, pow_zero] at h⊢
+      rw [hk0, pow_zero] at h ⊢
       apply (mul_eq_one_iff.1 h).1
     · refine' is_pow_of_dvd_count ha _
       intro p hp
@@ -1999,7 +1999,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
       rw [h]
       apply dvd_count_pow _ hp
       rintro rfl
-      rw [zero_pow' _ hk0] at h
+      rw [zero_pow' _ hk0] at h 
       cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
@@ -2119,7 +2119,7 @@ noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
       (normalized_factors_prod hy).dvd_iff_dvd_right]
     exact Multiset.prod_dvd_prod_of_le hs
   · rintro (h : x ∣ y)
-    have hx : x ≠ 0 := by refine' mt (fun hx => _) hy; rwa [hx, zero_dvd_iff] at h
+    have hx : x ≠ 0 := by refine' mt (fun hx => _) hy; rwa [hx, zero_dvd_iff] at h 
     obtain ⟨u, hu⟩ := normalized_factors_prod hx
     refine' ⟨⟨normalized_factors x, u⟩, _, (mul_comm _ _).trans hu⟩
     exact (dvd_iff_normalized_factors_le_normalized_factors hx hy).mp h
@@ -2182,7 +2182,7 @@ theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • fac
 theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
     (h : factorization a = factorization b) : Associated a b :=
   by
-  simp_rw [factorization, AddEquiv.apply_eq_iff_eq] at h
+  simp_rw [factorization, AddEquiv.apply_eq_iff_eq] at h 
   rwa [associated_iff_normalized_factors_eq_normalized_factors ha hb]
 #align associated_of_factorization_eq associated_of_factorization_eq
 
Diff
@@ -854,7 +854,7 @@ end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
 
-open Classical
+open scoped Classical
 
 open Multiset Associates
 
@@ -1099,7 +1099,7 @@ variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
 variable {β : Type _} [CancelCommMonoidWithZero β]
 
-open BigOperators
+open scoped BigOperators
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 #print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
Diff
@@ -67,12 +67,6 @@ variable [CommMonoidWithZero α]
 
 open Associates Nat
 
-/- warning: wf_dvd_monoid.of_wf_dvd_monoid_associates -> WfDvdMonoid.of_wfDvdMonoid_associates is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], (WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.commMonoidWithZero.{u1} α _inst_1)) -> (WfDvdMonoid.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], (WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α _inst_1)) -> (WfDvdMonoid.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associatesₓ'. -/
 theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
   ⟨by
     haveI := h
@@ -82,36 +76,18 @@ theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoi
 
 variable [WfDvdMonoid α]
 
-/- warning: wf_dvd_monoid.wf_dvd_monoid_associates -> WfDvdMonoid.wfDvdMonoid_associates is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.commMonoidWithZero.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associatesₓ'. -/
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
   ⟨by
     refine' (Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
     intros ; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
 
-/- warning: wf_dvd_monoid.well_founded_associates -> WfDvdMonoid.wellFounded_associates is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899)
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associatesₓ'. -/
 theorem wellFounded_associates : WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   Subrelation.wf (fun x y => dvdNotUnit_of_lt) wellFounded_dvdNotUnit
 #align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associates
 
 attribute [local elab_as_elim] WellFounded.fix
 
-/- warning: wf_dvd_monoid.exists_irreducible_factor -> WfDvdMonoid.exists_irreducible_factor is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {a : α}, (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} α (fun (i : α) => And (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))) i a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {a : α}, (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (i : α) => And (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))) i a)))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factorₓ'. -/
 theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     ∃ i, Irreducible i ∧ i ∣ a :=
   let ⟨b, hs, hr⟩ := wellFounded_dvdNotUnit.has_min { b | b ∣ a ∧ ¬IsUnit b } ⟨a, dvd_rfl, ha⟩
@@ -123,12 +99,6 @@ theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     hs.1⟩
 #align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factor
 
-/- warning: wf_dvd_monoid.induction_on_irreducible -> WfDvdMonoid.induction_on_irreducible is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (u : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) u) -> (P u)) -> (forall (a : α) (i : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))))) i a))) -> (P a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (forall (u : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) u) -> (P u)) -> (forall (a : α) (i : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))))) i a))) -> (P a)
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.induction_on_irreducible WfDvdMonoid.induction_on_irreducibleₓ'. -/
 @[elab_as_elim]
 theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀ u : α, IsUnit u → P u)
     (hi : ∀ a i : α, a ≠ 0 → Irreducible i → P a → P (i * a)) : P a :=
@@ -145,12 +115,6 @@ theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀
     a
 #align wf_dvd_monoid.induction_on_irreducible WfDvdMonoid.induction_on_irreducible
 
-/- warning: wf_dvd_monoid.exists_factors -> WfDvdMonoid.exists_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a)))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factorsₓ'. -/
 theorem exists_factors (a : α) :
     a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ Associated f.Prod a :=
   induction_on_irreducible a (fun h => (h rfl).elim)
@@ -160,12 +124,6 @@ theorem exists_factors (a : α) :
       rw [s.prod_cons i]; exact hs.2.mul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
 
-/- warning: wf_dvd_monoid.not_unit_iff_exists_factors_eq -> WfDvdMonoid.not_unit_iff_exists_factors_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Iff (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (And (Eq.{succ u1} α (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a) (Ne.{succ u1} (Multiset.{u1} α) f (EmptyCollection.emptyCollection.{u1} (Multiset.{u1} α) (Multiset.hasEmptyc.{u1} α)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Iff (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (And (Eq.{succ u1} α (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a) (Ne.{succ u1} (Multiset.{u1} α) f (EmptyCollection.emptyCollection.{u1} (Multiset.{u1} α) (Multiset.instEmptyCollectionMultiset.{u1} α)))))))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eqₓ'. -/
 theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     ¬IsUnit a ↔ ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod = a ∧ f ≠ ∅ :=
   ⟨fun hnu => by
@@ -183,23 +141,11 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
 
 end WfDvdMonoid
 
-/- warning: wf_dvd_monoid.of_well_founded_associates -> WfDvdMonoid.of_wellFounded_associates is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726)) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associatesₓ'. -/
 theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
     (h : WellFounded ((· < ·) : Associates α → Associates α → Prop)) : WfDvdMonoid α :=
   WfDvdMonoid.of_wfDvdMonoid_associates ⟨by convert h; ext; exact Associates.dvdNotUnit_iff_lt⟩
 #align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associates
 
-/- warning: wf_dvd_monoid.iff_well_founded_associates -> WfDvdMonoid.iff_wellFounded_associates is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.iff_well_founded_associates WfDvdMonoid.iff_wellFounded_associatesₓ'. -/
 theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
     WfDvdMonoid α ↔ WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   ⟨by apply WfDvdMonoid.wellFounded_associates, WfDvdMonoid.of_wellFounded_associates⟩
@@ -245,12 +191,6 @@ theorem ufm_of_gcd_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α]
 #align ufm_of_gcd_of_wf_dvd_monoid ufm_of_gcd_of_wfDvdMonoid
 -/
 
-/- warning: associates.ufm -> Associates.ufm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1], UniqueFactorizationMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.cancelCommMonoidWithZero.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1], UniqueFactorizationMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCancelCommMonoidWithZeroAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align associates.ufm Associates.ufmₓ'. -/
 instance Associates.ufm [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
     UniqueFactorizationMonoid (Associates α) :=
   { (WfDvdMonoid.wfDvdMonoid_associates : WfDvdMonoid (Associates α)) with
@@ -265,24 +205,12 @@ namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
-/- warning: unique_factorization_monoid.exists_prime_factors -> UniqueFactorizationMonoid.exists_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factorsₓ'. -/
 theorem exists_prime_factors (a : α) : a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
   by
   simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime]
   apply WfDvdMonoid.exists_factors a
 #align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factors
 
-/- warning: unique_factorization_monoid.induction_on_prime -> UniqueFactorizationMonoid.induction_on_prime is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (x : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x) -> (P x)) -> (forall (a : α) (p : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a))) -> (P a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (x : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x) -> (P x)) -> (forall (a : α) (p : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a))) -> (P a)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_prime UniqueFactorizationMonoid.induction_on_primeₓ'. -/
 @[elab_as_elim]
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a :=
@@ -371,12 +299,6 @@ variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime
 
 include pf
 
-/- warning: wf_dvd_monoid.of_exists_prime_factors -> WfDvdMonoid.of_exists_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factorsₓ'. -/
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
   ⟨by
     classical
@@ -415,12 +337,6 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
           apply (Classical.choose_spec (pf _ _)).2.symm⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
 
-/- warning: irreducible_iff_prime_of_exists_prime_factors -> irreducible_iff_prime_of_exists_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall {p : α}, Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall {p : α}, Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
-Case conversion may be inaccurate. Consider using '#align irreducible_iff_prime_of_exists_prime_factors irreducible_iff_prime_of_exists_prime_factorsₓ'. -/
 theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p ↔ Prime p :=
   by
   by_cases hp0 : p = 0
@@ -432,12 +348,6 @@ theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p 
   exact hf.1 q (Multiset.mem_singleton_self _)
 #align irreducible_iff_prime_of_exists_prime_factors irreducible_iff_prime_of_exists_prime_factors
 
-/- warning: unique_factorization_monoid.of_exists_prime_factors -> UniqueFactorizationMonoid.of_exists_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.of_exists_prime_factors UniqueFactorizationMonoid.of_exists_prime_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.of_exists_prime_factors : UniqueFactorizationMonoid α :=
   { WfDvdMonoid.of_exists_prime_factors pf with
     irreducible_iff_prime := fun _ => irreducible_iff_prime_of_exists_prime_factors pf }
@@ -445,12 +355,6 @@ theorem UniqueFactorizationMonoid.of_exists_prime_factors : UniqueFactorizationM
 
 end ExistsPrimeFactors
 
-/- warning: unique_factorization_monoid.iff_exists_prime_factors -> UniqueFactorizationMonoid.iff_exists_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.iff_exists_prime_factors UniqueFactorizationMonoid.iff_exists_prime_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.iff_exists_prime_factors [CancelCommMonoidWithZero α] :
     UniqueFactorizationMonoid α ↔
       ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
@@ -462,12 +366,6 @@ section
 
 variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero β]
 
-/- warning: mul_equiv.unique_factorization_monoid -> MulEquiv.uniqueFactorizationMonoid is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : CancelCommMonoidWithZero.{u2} β], (MulEquiv.{u1, u2} α β (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_2)))))) -> (UniqueFactorizationMonoid.{u1} α _inst_1) -> (UniqueFactorizationMonoid.{u2} β _inst_2)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u2} α] [_inst_2 : CancelCommMonoidWithZero.{u1} β], (MulEquiv.{u2, u1} α β (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_1))))) (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_2)))))) -> (UniqueFactorizationMonoid.{u2} α _inst_1) -> (UniqueFactorizationMonoid.{u1} β _inst_2)
-Case conversion may be inaccurate. Consider using '#align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoidₓ'. -/
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β :=
   by
@@ -480,12 +378,6 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
       Units.map e.to_monoid_hom u, by erw [Multiset.prod_hom, ← e.map_mul, h]; simp⟩
 #align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoid
 
-/- warning: mul_equiv.unique_factorization_monoid_iff -> MulEquiv.uniqueFactorizationMonoid_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : CancelCommMonoidWithZero.{u2} β], (MulEquiv.{u1, u2} α β (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_2)))))) -> (Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (UniqueFactorizationMonoid.{u2} β _inst_2))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u2} α] [_inst_2 : CancelCommMonoidWithZero.{u1} β], (MulEquiv.{u2, u1} α β (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_1))))) (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_2)))))) -> (Iff (UniqueFactorizationMonoid.{u2} α _inst_1) (UniqueFactorizationMonoid.{u1} β _inst_2))
-Case conversion may be inaccurate. Consider using '#align mul_equiv.unique_factorization_monoid_iff MulEquiv.uniqueFactorizationMonoid_iffₓ'. -/
 theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
     UniqueFactorizationMonoid α ↔ UniqueFactorizationMonoid β :=
   ⟨e.UniqueFactorizationMonoid, e.symm.UniqueFactorizationMonoid⟩
@@ -493,12 +385,6 @@ theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
 
 end
 
-/- warning: irreducible_iff_prime_of_exists_unique_irreducible_factors -> irreducible_iff_prime_of_exists_unique_irreducible_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (forall (p : α), Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (forall (p : α), Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
-Case conversion may be inaccurate. Consider using '#align irreducible_iff_prime_of_exists_unique_irreducible_factors irreducible_iff_prime_of_exists_unique_irreducible_factorsₓ'. -/
 theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -540,12 +426,6 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
     Prime.irreducible⟩
 #align irreducible_iff_prime_of_exists_unique_irreducible_factors irreducible_iff_prime_of_exists_unique_irreducible_factors
 
-/- warning: unique_factorization_monoid.of_exists_unique_irreducible_factors -> UniqueFactorizationMonoid.of_exists_unique_irreducible_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.of_exists_unique_irreducible_factors UniqueFactorizationMonoid.of_exists_unique_irreducible_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -572,24 +452,12 @@ noncomputable def factors (a : α) : Multiset α :=
 #align unique_factorization_monoid.factors UniqueFactorizationMonoid.factors
 -/
 
-/- warning: unique_factorization_monoid.factors_prod -> UniqueFactorizationMonoid.factors_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) a)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prodₓ'. -/
 theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).Prod a :=
   by
   rw [factors, dif_neg ane0]
   exact (Classical.choose_spec (exists_prime_factors a ane0)).2
 #align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prod
 
-/- warning: unique_factorization_monoid.ne_zero_of_mem_factors -> UniqueFactorizationMonoid.ne_zero_of_mem_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {a : α}, (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {a : α}, (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factorsₓ'. -/
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   by
   intro ha
@@ -618,22 +486,10 @@ theorem irreducible_of_factor {a : α} : ∀ x : α, x ∈ factors a → Irreduc
 #align unique_factorization_monoid.irreducible_of_factor UniqueFactorizationMonoid.irreducible_of_factor
 -/
 
-/- warning: unique_factorization_monoid.factors_zero -> UniqueFactorizationMonoid.factors_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zeroₓ'. -/
 @[simp]
 theorem factors_zero : factors (0 : α) = 0 := by simp [factors]
 #align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zero
 
-/- warning: unique_factorization_monoid.factors_one -> UniqueFactorizationMonoid.factors_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_one UniqueFactorizationMonoid.factors_oneₓ'. -/
 @[simp]
 theorem factors_one : factors (1 : α) = 0 :=
   by
@@ -644,12 +500,6 @@ theorem factors_one : factors (1 : α) = 0 :=
   exact factors_prod one_ne_zero
 #align unique_factorization_monoid.factors_one UniqueFactorizationMonoid.factors_one
 
-/- warning: unique_factorization_monoid.exists_mem_factors_of_dvd -> UniqueFactorizationMonoid.exists_mem_factors_of_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) (fun (H : Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => And (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvdₓ'. -/
 theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ factors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -667,12 +517,6 @@ theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvd
 
-/- warning: unique_factorization_monoid.exists_mem_factors -> UniqueFactorizationMonoid.exists_mem_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factorsₓ'. -/
 theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p ∈ factors x :=
   by
   obtain ⟨p', hp', hp'x⟩ := WfDvdMonoid.exists_irreducible_factor h hx
@@ -680,12 +524,6 @@ theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p 
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factors
 
-/- warning: unique_factorization_monoid.factors_mul -> UniqueFactorizationMonoid.factors_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.hasAdd.{u1} α)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.instAddMultiset.{u1} α)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_mul UniqueFactorizationMonoid.factors_mulₓ'. -/
 theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     Multiset.Rel Associated (factors (x * y)) (factors x + factors y) :=
   by
@@ -698,12 +536,6 @@ theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
   exact (Associated.mul_mul (factors_prod hx) (factors_prod hy)).symm
 #align unique_factorization_monoid.factors_mul UniqueFactorizationMonoid.factors_mul
 
-/- warning: unique_factorization_monoid.factors_pow -> UniqueFactorizationMonoid.factors_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (SMul.smul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.orderedCancelAddCommMonoid.{u1} α)))))) n (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (HSMul.hSMul.{0, u1, u1} Nat (Multiset.{u1} α) (Multiset.{u1} α) (instHSMul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} α))))))) n (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_pow UniqueFactorizationMonoid.factors_powₓ'. -/
 theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n)) (n • factors x) :=
   by
   induction' n with n ih
@@ -716,12 +548,6 @@ theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n
   exact Multiset.rel_refl_of_refl_on fun y hy => Associated.refl _
 #align unique_factorization_monoid.factors_pow UniqueFactorizationMonoid.factors_pow
 
-/- warning: unique_factorization_monoid.factors_pos -> UniqueFactorizationMonoid.factors_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_posₓ'. -/
 @[simp]
 theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x :=
   by
@@ -765,12 +591,6 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
 -/
 
-/- warning: unique_factorization_monoid.normalized_factors_prod -> UniqueFactorizationMonoid.normalizedFactors_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) a)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_prod UniqueFactorizationMonoid.normalizedFactors_prodₓ'. -/
 theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalizedFactors a).Prod a :=
   by
   rw [normalized_factors, factors, dif_neg ane0]
@@ -800,12 +620,6 @@ theorem irreducible_of_normalized_factor {a : α} :
 #align unique_factorization_monoid.irreducible_of_normalized_factor UniqueFactorizationMonoid.irreducible_of_normalized_factor
 -/
 
-/- warning: unique_factorization_monoid.normalize_normalized_factor -> UniqueFactorizationMonoid.normalize_normalized_factor is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) x) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) x) x)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factorₓ'. -/
 theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → normalize x = x :=
   by
   rw [normalized_factors, factors]
@@ -815,12 +629,6 @@ theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFacto
   apply normalize_idem
 #align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factor
 
-/- warning: unique_factorization_monoid.normalized_factors_irreducible -> UniqueFactorizationMonoid.normalizedFactors_irreducible is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} α (Multiset.{u1} α) (Multiset.hasSingleton.{u1} α) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) a) (Multiset.{u1} α) (Multiset.instSingletonMultiset.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) a)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducibleₓ'. -/
 theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
     normalizedFactors a = {normalize a} :=
   by
@@ -845,12 +653,6 @@ theorem normalizedFactors_eq_of_dvd (a : α) :
 #align unique_factorization_monoid.normalized_factors_eq_of_dvd UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd
 -/
 
-/- warning: unique_factorization_monoid.exists_mem_normalized_factors_of_dvd -> UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) (fun (H : Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => And (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvdₓ'. -/
 theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ normalizedFactors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -869,12 +671,6 @@ theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irr
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
 
-/- warning: unique_factorization_monoid.exists_mem_normalized_factors -> UniqueFactorizationMonoid.exists_mem_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_normalized_factors UniqueFactorizationMonoid.exists_mem_normalizedFactorsₓ'. -/
 theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
     ∃ p, p ∈ normalizedFactors x :=
   by
@@ -883,23 +679,11 @@ theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_normalized_factors UniqueFactorizationMonoid.exists_mem_normalizedFactors
 
-/- warning: unique_factorization_monoid.normalized_factors_zero -> UniqueFactorizationMonoid.normalizedFactors_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_zero UniqueFactorizationMonoid.normalizedFactors_zeroₓ'. -/
 @[simp]
 theorem normalizedFactors_zero : normalizedFactors (0 : α) = 0 := by
   simp [normalized_factors, factors]
 #align unique_factorization_monoid.normalized_factors_zero UniqueFactorizationMonoid.normalizedFactors_zero
 
-/- warning: unique_factorization_monoid.normalized_factors_one -> UniqueFactorizationMonoid.normalizedFactors_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_one UniqueFactorizationMonoid.normalizedFactors_oneₓ'. -/
 @[simp]
 theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   by
@@ -913,12 +697,6 @@ theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   infer_instance
 #align unique_factorization_monoid.normalized_factors_one UniqueFactorizationMonoid.normalizedFactors_one
 
-/- warning: unique_factorization_monoid.normalized_factors_mul -> UniqueFactorizationMonoid.normalizedFactors_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.hasAdd.{u1} α)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.instAddMultiset.{u1} α)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_mul UniqueFactorizationMonoid.normalizedFactors_mulₓ'. -/
 @[simp]
 theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     normalizedFactors (x * y) = normalizedFactors x + normalizedFactors y :=
@@ -942,12 +720,6 @@ theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
         (normalized_factors_prod (mul_ne_zero hx hy)).symm
 #align unique_factorization_monoid.normalized_factors_mul UniqueFactorizationMonoid.normalizedFactors_mul
 
-/- warning: unique_factorization_monoid.normalized_factors_pow -> UniqueFactorizationMonoid.normalizedFactors_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (SMul.smul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.orderedCancelAddCommMonoid.{u1} α)))))) n (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (HSMul.hSMul.{0, u1, u1} Nat (Multiset.{u1} α) (Multiset.{u1} α) (instHSMul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} α))))))) n (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_powₓ'. -/
 @[simp]
 theorem normalizedFactors_pow {x : α} (n : ℕ) :
     normalizedFactors (x ^ n) = n • normalizedFactors x :=
@@ -959,23 +731,11 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   rw [pow_succ, succ_nsmul, normalized_factors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
 
-/- warning: irreducible.normalized_factors_pow -> Irreducible.normalizedFactors_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
-Case conversion may be inaccurate. Consider using '#align irreducible.normalized_factors_pow Irreducible.normalizedFactors_powₓ'. -/
 theorem Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align irreducible.normalized_factors_pow Irreducible.normalizedFactors_pow
 
-/- warning: unique_factorization_monoid.normalized_factors_prod_eq -> UniqueFactorizationMonoid.normalizedFactors_prod_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3)) s))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eqₓ'. -/
 theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducible a) :
     normalizedFactors s.Prod = s.map normalize :=
   by
@@ -993,12 +753,6 @@ theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducib
     exacts[rfl, ib, Multiset.prod_ne_zero fun h => (ib 0 h).NeZero rfl]
 #align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eq
 
-/- warning: unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors -> UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toHasLe.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toLE.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactorsₓ'. -/
 theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ∣ y ↔ normalizedFactors x ≤ normalizedFactors y :=
   by
@@ -1010,12 +764,6 @@ theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0)
     apply Multiset.prod_dvd_prod_of_le
 #align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
 
-/- warning: unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors -> UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x y) (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x y) (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactorsₓ'. -/
 theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ~ᵤ y ↔ normalizedFactors x = normalizedFactors y :=
   by
@@ -1026,23 +774,11 @@ theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x
   all_goals simp [*, h.dvd, h.symm.dvd]
 #align unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors
 
-/- warning: unique_factorization_monoid.normalized_factors_of_irreducible_pow -> UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_powₓ'. -/
 theorem normalizedFactors_of_irreducible_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow
 
-/- warning: unique_factorization_monoid.zero_not_mem_normalized_factors -> UniqueFactorizationMonoid.zero_not_mem_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), Not (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), Not (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.zero_not_mem_normalized_factors UniqueFactorizationMonoid.zero_not_mem_normalizedFactorsₓ'. -/
 theorem zero_not_mem_normalizedFactors (x : α) : (0 : α) ∉ normalizedFactors x := fun h =>
   Prime.ne_zero (prime_of_normalized_factor _ h) rfl
 #align unique_factorization_monoid.zero_not_mem_normalized_factors UniqueFactorizationMonoid.zero_not_mem_normalizedFactors
@@ -1057,12 +793,6 @@ theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a)
 #align unique_factorization_monoid.dvd_of_mem_normalized_factors UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
 -/
 
-/- warning: unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor -> UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {r : α}, (forall {m : α}, (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) m (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 r)) -> (Eq.{succ u1} α m p)) -> (Ne.{succ u1} α r (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{1} Nat (fun (i : Nat) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p i) r))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {r : α}, (forall {m : α}, (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) m (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 r)) -> (Eq.{succ u1} α m p)) -> (Ne.{succ u1} α r (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{1} Nat (fun (i : Nat) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p i) r))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factorₓ'. -/
 theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
     (h : ∀ {m}, m ∈ normalizedFactors r → m = p) (hr : r ≠ 0) : ∃ i : ℕ, Associated (p ^ i) r :=
   by
@@ -1090,12 +820,6 @@ theorem mem_normalizedFactors_eq_of_associated {a b c : α} (ha : a ∈ normaliz
 #align unique_factorization_monoid.mem_normalized_factors_eq_of_associated UniqueFactorizationMonoid.mem_normalizedFactors_eq_of_associated
 -/
 
-/- warning: unique_factorization_monoid.normalized_factors_pos -> UniqueFactorizationMonoid.normalizedFactors_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_posₓ'. -/
 @[simp]
 theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x ↔ ¬IsUnit x :=
   by
@@ -1112,12 +836,6 @@ theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x
         (mt multiset.eq_zero_iff_forall_not_mem.mp (not_forall.mpr ⟨p, not_not.mpr hp⟩))
 #align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_pos
 
-/- warning: unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors -> UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactorsₓ'. -/
 theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     DvdNotUnit x y ↔ normalizedFactors x < normalizedFactors y :=
   by
@@ -1185,12 +903,6 @@ namespace UniqueFactorizationMonoid
 
 variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
-/- warning: unique_factorization_monoid.no_factors_of_no_prime_factors -> UniqueFactorizationMonoid.no_factors_of_no_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factorsₓ'. -/
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
   induction_on_prime d (by simp only [zero_dvd_iff]; intros ; contradiction) (fun x hx _ _ => hx)
@@ -1198,12 +910,6 @@ theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
 #align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
 
-/- warning: unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors -> UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d c) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a b)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d c) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factorsₓ'. -/
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `c` have no common prime factors, `a ∣ b`.
 Compare `is_coprime.dvd_of_dvd_mul_left`. -/
 theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
@@ -1225,12 +931,6 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     exact no_factors h (dvd_mul_right p c) hp
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
 
-/- warning: unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors -> UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a c)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a c)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factorsₓ'. -/
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `b` have no common prime factors, `a ∣ c`.
 Compare `is_coprime.dvd_of_dvd_mul_right`. -/
 theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
@@ -1238,12 +938,6 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
   simpa [mul_comm b c] using dvd_of_dvd_mul_left_of_no_prime_factors ha @no_factors
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 
-/- warning: unique_factorization_monoid.exists_reduced_factors -> UniqueFactorizationMonoid.exists_reduced_factors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R), (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall (b : R), Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R), (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall (b : R), Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factorsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
@@ -1277,24 +971,12 @@ theorem exists_reduced_factors :
       exact coprime q_dvd_a' q_dvd_b'
 #align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factors
 
-/- warning: unique_factorization_monoid.exists_reduced_factors' -> UniqueFactorizationMonoid.exists_reduced_factors' is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R) (b : R), (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R) (b : R), (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'ₓ'. -/
 theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
     ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b :=
   let ⟨b', a', c', no_factor, hb, ha⟩ := exists_reduced_factors b hb a
   ⟨a', b', c', fun _ hpb hpa => no_factor hpa hpb, ha, hb⟩
 #align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'
 
-/- warning: unique_factorization_monoid.pow_right_injective -> UniqueFactorizationMonoid.pow_right_injective is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10633 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10635 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10633 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10635) a))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injectiveₓ'. -/
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
     Function.Injective ((· ^ ·) a : ℕ → R) :=
   by
@@ -1309,12 +991,6 @@ theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
   exact mul_right_cancel₀ (multiset.count_ne_zero.mpr mem) this
 #align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injective
 
-/- warning: unique_factorization_monoid.pow_eq_pow_iff -> UniqueFactorizationMonoid.pow_eq_pow_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (forall {i : Nat} {j : Nat}, Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a i) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a j)) (Eq.{1} Nat i j))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (forall {i : Nat} {j : Nat}, Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a i) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a j)) (Eq.{1} Nat i j))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_eq_pow_iff UniqueFactorizationMonoid.pow_eq_pow_iffₓ'. -/
 theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} : a ^ i = a ^ j ↔ i = j :=
   (pow_right_injective ha0 ha1).eq_iff
 #align unique_factorization_monoid.pow_eq_pow_iff UniqueFactorizationMonoid.pow_eq_pow_iff
@@ -1329,9 +1005,6 @@ open multiplicity Multiset
 
 include dec_dvd
 
-/- warning: unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors -> UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
 theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
     (ha : Irreducible a) (hb : b ≠ 0) :
     ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b :=
@@ -1352,9 +1025,6 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
     exact (Associated.pow_pow <| associated_normalize a).Dvd.trans (Dvd.intro u.prod rfl)
 #align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors
 
-/- warning: unique_factorization_monoid.multiplicity_eq_count_normalized_factors -> UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
 
@@ -1374,12 +1044,6 @@ theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha :
 
 omit dec_dvd
 
-/- warning: unique_factorization_monoid.count_normalized_factors_eq -> UniqueFactorizationMonoid.count_normalizedFactors_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eqₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`.
 
@@ -1398,12 +1062,6 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm
 #align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eq
 
-/- warning: unique_factorization_monoid.count_normalized_factors_eq' -> UniqueFactorizationMonoid.count_normalizedFactors_eq' is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'ₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`. This is a slightly more general version of
 `unique_factorization_monoid.count_normalized_factors_eq` that allows `p = 0`.
@@ -1422,12 +1080,6 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
 
-/- warning: unique_factorization_monoid.max_power_factor -> UniqueFactorizationMonoid.max_power_factor is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] {a₀ : R} {x : R}, (Ne.{succ u1} R a₀ (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) x) -> (Exists.{1} Nat (fun (n : Nat) => Exists.{succ u1} R (fun (a : R) => And (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x a)) (Eq.{succ u1} R a₀ (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x n) a)))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [a₀ : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {x : R} {h : R}, (Ne.{succ u1} R x (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) h) -> (Exists.{1} Nat (fun (n : Nat) => Exists.{succ u1} R (fun (a : R) => And (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) h a)) (Eq.{succ u1} R x (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) h n) a)))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factorₓ'. -/
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
     ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
   classical
@@ -1470,12 +1122,6 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 -/
 
-/- warning: unique_factorization_monoid.induction_on_prime_power -> UniqueFactorizationMonoid.induction_on_prime_power is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (s : Finset.{u1} α) (i : α -> Nat), (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (forall (q : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) q s) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (s : Finset.{u1} α) (i : α -> Nat), (forall (p : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) p s) -> (forall (q : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) q s) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p))))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_prime_power UniqueFactorizationMonoid.induction_on_prime_powerₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
@@ -1497,12 +1143,6 @@ theorem induction_on_prime_power {P : α → Prop} (s : Finset α) (i : α → 
         IsCoprime _ (Finset.mem_insert_of_mem hq) _ (Finset.mem_insert_of_mem hq'))
 #align unique_factorization_monoid.induction_on_prime_power UniqueFactorizationMonoid.induction_on_prime_power
 
-/- warning: unique_factorization_monoid.induction_on_coprime -> UniqueFactorizationMonoid.induction_on_coprime is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))))))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P a)
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprimeₓ'. -/
 /-- If `P` holds for `0`, units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on all `a : α`. -/
@@ -1526,9 +1166,6 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
   · apply normalized_factors_eq_of_dvd
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 
-/- warning: unique_factorization_monoid.multiplicative_prime_power -> UniqueFactorizationMonoid.multiplicative_prime_power is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_powerₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
@@ -1554,12 +1191,6 @@ theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α →
     mul_assoc, mul_left_comm (f p ^ j p), mul_assoc]
 #align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_power
 
-/- warning: unique_factorization_monoid.multiplicative_of_coprime -> UniqueFactorizationMonoid.multiplicative_of_coprime is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] (f : α -> β) (a : α) (b : α), (Eq.{succ u2} β (f (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))))))) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))))))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) a b)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f a) (f b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] (f : α -> β) (a : α) (b : α), (Eq.{succ u2} β (f (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (CommMonoidWithZero.toZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) a b)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f a) (f b)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicative_of_coprime UniqueFactorizationMonoid.multiplicative_of_coprimeₓ'. -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative everywhere. -/
 theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
@@ -1644,16 +1275,10 @@ def FactorSet.{u} (α : Type u) [CancelCommMonoidWithZero α] : Type u :=
 
 attribute [local instance] Associated.setoid
 
-/- warning: associates.factor_set.coe_add -> Associates.FactorSet.coe_add is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factor_set.coe_add Associates.FactorSet.coe_addₓ'. -/
 theorem FactorSet.coe_add {a b : Multiset { a : Associates α // Irreducible a }} :
     (↑(a + b) : FactorSet α) = a + b := by norm_cast
 #align associates.factor_set.coe_add Associates.FactorSet.coe_add
 
-/- warning: associates.factor_set.sup_add_inf_eq_add -> Associates.FactorSet.sup_add_inf_eq_add is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factor_set.sup_add_inf_eq_add Associates.FactorSet.sup_add_inf_eq_addₓ'. -/
 theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
     ∀ a b : FactorSet α, a ⊔ b + a ⊓ b = a + b
   | none, b => show ⊤ ⊔ b + ⊤ ⊓ b = ⊤ + b by simp
@@ -1675,32 +1300,17 @@ def FactorSet.prod : FactorSet α → Associates α
 #align associates.factor_set.prod Associates.FactorSet.prod
 -/
 
-/- warning: associates.prod_top -> Associates.prod_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align associates.prod_top Associates.prod_topₓ'. -/
 @[simp]
 theorem prod_top : (⊤ : FactorSet α).Prod = 0 :=
   rfl
 #align associates.prod_top Associates.prod_top
 
-/- warning: associates.prod_coe -> Associates.prod_coe is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.prod_coe Associates.prod_coeₓ'. -/
 @[simp]
 theorem prod_coe {s : Multiset { a : Associates α // Irreducible a }} :
     (s : FactorSet α).Prod = (s.map coe).Prod :=
   rfl
 #align associates.prod_coe Associates.prod_coe
 
-/- warning: associates.prod_add -> Associates.prod_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
-Case conversion may be inaccurate. Consider using '#align associates.prod_add Associates.prod_addₓ'. -/
 @[simp]
 theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
   | none, b => show (⊤ + b).Prod = (⊤ : FactorSet α).Prod * b.Prod by simp
@@ -1710,12 +1320,6 @@ theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
       rw [← factor_set.coe_add, prod_coe, prod_coe, prod_coe, Multiset.map_add, Multiset.prod_add]
 #align associates.prod_add Associates.prod_add
 
-/- warning: associates.prod_mono -> Associates.prod_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
-Case conversion may be inaccurate. Consider using '#align associates.prod_mono Associates.prod_monoₓ'. -/
 theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | none, b, h => by
     have : b = ⊤ := top_unique h
@@ -1724,12 +1328,6 @@ theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | some a, some b, h => prod_le_prod <| Multiset.map_le_map <| WithTop.coe_le_coe.1 <| h
 #align associates.prod_mono Associates.prod_mono
 
-/- warning: associates.factor_set.prod_eq_zero_iff -> Associates.FactorSet.prod_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α] (p : Associates.FactorSet.{u1} α _inst_1), Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 p) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α] (p : Associates.FactorSet.{u1} α _inst_1), Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 p) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
-Case conversion may be inaccurate. Consider using '#align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iffₓ'. -/
 theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod = 0 ↔ p = ⊤ :=
   by
   induction p using WithTop.recTopCoe
@@ -1740,12 +1338,6 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod =
   exact ha.ne_zero Eq
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
 
-/- warning: associates.bcount -> Associates.bcount is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
-Case conversion may be inaccurate. Consider using '#align associates.bcount Associates.bcountₓ'. -/
 /-- `bcount p s` is the multiplicity of `p` in the factor_set `s` (with bundled `p`)-/
 def bcount [DecidableEq (Associates α)] (p : { a : Associates α // Irreducible a }) :
     FactorSet α → ℕ
@@ -1757,12 +1349,6 @@ variable [dec_irr : ∀ p : Associates α, Decidable (Irreducible p)]
 
 include dec_irr
 
-/- warning: associates.count -> Associates.count is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
-Case conversion may be inaccurate. Consider using '#align associates.count Associates.countₓ'. -/
 /-- `count p s` is the multiplicity of the irreducible `p` in the factor_set `s`.
 
 If `p` is not irreducible, `count p s` is defined to be `0`. -/
@@ -1770,28 +1356,16 @@ def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → 
   if hp : Irreducible p then bcount ⟨p, hp⟩ else 0
 #align associates.count Associates.count
 
-/- warning: associates.count_some -> Associates.count_some is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_some Associates.count_someₓ'. -/
 @[simp]
 theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
     (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ := by dsimp only [count]; split_ifs; rfl
 #align associates.count_some Associates.count_some
 
-/- warning: associates.count_zero -> Associates.count_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_zero Associates.count_zeroₓ'. -/
 @[simp]
 theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
     count p (0 : FactorSet α) = 0 := by dsimp only [count]; split_ifs; rfl
 #align associates.count_zero Associates.count_zero
 
-/- warning: associates.count_reducible -> Associates.count_reducible is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (OfNat.mk.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.zero.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (ᾰ : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => Nat.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15730 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
-Case conversion may be inaccurate. Consider using '#align associates.count_reducible Associates.count_reducibleₓ'. -/
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
   dif_neg hp
@@ -1799,12 +1373,6 @@ theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp :
 
 omit dec_irr
 
-/- warning: associates.bfactor_set_mem -> Associates.BfactorSetMem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
-Case conversion may be inaccurate. Consider using '#align associates.bfactor_set_mem Associates.BfactorSetMemₓ'. -/
 /-- membership in a factor_set (bundled version) -/
 def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α → Prop
   | _, ⊤ => True
@@ -1813,12 +1381,6 @@ def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α →
 
 include dec_irr
 
-/- warning: associates.factor_set_mem -> Associates.FactorSetMem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
-Case conversion may be inaccurate. Consider using '#align associates.factor_set_mem Associates.FactorSetMemₓ'. -/
 /-- `factor_set_mem p s` is the predicate that the irreducible `p` is a member of
 `s : factor_set α`.
 
@@ -1830,42 +1392,21 @@ def FactorSetMem (p : Associates α) (s : FactorSet α) : Prop :=
 instance : Membership (Associates α) (FactorSet α) :=
   ⟨FactorSetMem⟩
 
-/- warning: associates.factor_set_mem_eq_mem -> Associates.factorSetMem_eq_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (s : Associates.FactorSet.{u1} α _inst_1), Eq.{1} Prop (Associates.FactorSetMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) p s) (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (s : Associates.FactorSet.{u1} α _inst_1), Eq.{1} Prop (Associates.FactorSetMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) p s) (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s)
-Case conversion may be inaccurate. Consider using '#align associates.factor_set_mem_eq_mem Associates.factorSetMem_eq_memₓ'. -/
 @[simp]
 theorem factorSetMem_eq_mem (p : Associates α) (s : FactorSet α) : FactorSetMem p s = (p ∈ s) :=
   rfl
 #align associates.factor_set_mem_eq_mem Associates.factorSetMem_eq_mem
 
-/- warning: associates.mem_factor_set_top -> Associates.mem_factorSet_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
-Case conversion may be inaccurate. Consider using '#align associates.mem_factor_set_top Associates.mem_factorSet_topₓ'. -/
 theorem mem_factorSet_top {p : Associates α} {hp : Irreducible p} : p ∈ (⊤ : FactorSet α) := by
   dsimp only [Membership.Mem]; dsimp only [factor_set_mem]; split_ifs; exact trivial
 #align associates.mem_factor_set_top Associates.mem_factorSet_top
 
-/- warning: associates.mem_factor_set_some -> Associates.mem_factorSet_some is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.mem_factor_set_some Associates.mem_factorSet_someₓ'. -/
 theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
     {l : Multiset { a : Associates α // Irreducible a }} :
     p ∈ (l : FactorSet α) ↔ Subtype.mk p hp ∈ l := by dsimp only [Membership.Mem];
   dsimp only [factor_set_mem]; split_ifs; rfl
 #align associates.mem_factor_set_some Associates.mem_factorSet_some
 
-/- warning: associates.reducible_not_mem_factor_set -> Associates.reducible_not_mem_factorSet is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (forall (s : Associates.FactorSet.{u1} α _inst_1), Not (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (forall (s : Associates.FactorSet.{u1} α _inst_1), Not (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s))
-Case conversion may be inaccurate. Consider using '#align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSetₓ'. -/
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
     ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
   rwa [dif_neg hp] at h
@@ -1875,12 +1416,6 @@ omit dec_irr
 
 variable [UniqueFactorizationMonoid α]
 
-/- warning: associates.unique' -> Associates.unique' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) -> (Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p q)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) -> (Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p q)
-Case conversion may be inaccurate. Consider using '#align associates.unique' Associates.unique'ₓ'. -/
 theorem unique' {p q : Multiset (Associates α)} :
     (∀ a ∈ p, Irreducible a) → (∀ a ∈ q, Irreducible a) → p.Prod = q.Prod → p = q :=
   by
@@ -1909,9 +1444,6 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 #align associates.factor_set.unique Associates.FactorSet.unique
 -/
 
-/- warning: associates.prod_le_prod_iff_le -> Associates.prod_le_prod_iff_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_leₓ'. -/
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
   Iff.intro
@@ -1934,32 +1466,17 @@ variable [dec : DecidableEq α] [dec' : DecidableEq (Associates α)]
 
 include dec
 
-/- warning: associates.factors' -> Associates.factors' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α], α -> (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α], α -> (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))
-Case conversion may be inaccurate. Consider using '#align associates.factors' Associates.factors'ₓ'. -/
 /-- This returns the multiset of irreducible factors as a `factor_set`,
   a multiset of irreducible associates `with_top`. -/
 noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducible a } :=
   (factors a).pmap (fun a ha => ⟨Associates.mk a, (irreducible_mk _).2 ha⟩) irreducible_of_factor
 #align associates.factors' Associates.factors'
 
-/- warning: associates.map_subtype_coe_factors' -> Associates.map_subtype_coe_factors' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'ₓ'. -/
 @[simp]
 theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).map Associates.mk :=
   by simp [factors', Multiset.map_pmap, Multiset.pmap_eq_map]
 #align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'
 
-/- warning: associates.factors'_cong -> Associates.factors'_cong is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {b : α}, (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b) -> (Eq.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {b : α}, (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b) -> (Eq.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) b))
-Case conversion may be inaccurate. Consider using '#align associates.factors'_cong Associates.factors'_congₓ'. -/
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -1992,23 +1509,11 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
 #align associates.factors Associates.factors
 -/
 
-/- warning: associates.factors_0 -> Associates.factors_0 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
-Case conversion may be inaccurate. Consider using '#align associates.factors_0 Associates.factors_0ₓ'. -/
 @[simp]
 theorem factors_0 : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
 #align associates.factors_0 Associates.factors_0
 
-/- warning: associates.factors_mk -> Associates.factors_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
-Case conversion may be inaccurate. Consider using '#align associates.factors_mk Associates.factors_mkₓ'. -/
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
   classical
@@ -2034,23 +1539,11 @@ theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.Prod.factors = s :=
 #align associates.prod_factors Associates.prod_factors
 -/
 
-/- warning: associates.factors_subsingleton -> Associates.factors_subsingleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Subsingleton.{succ u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Subsingleton.{succ u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))
-Case conversion may be inaccurate. Consider using '#align associates.factors_subsingleton Associates.factors_subsingletonₓ'. -/
 @[nontriviality]
 theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = Option.none := by
   convert factors_0 <;> infer_instance
 #align associates.factors_subsingleton Associates.factors_subsingleton
 
-/- warning: associates.factors_eq_none_iff_zero -> Associates.factors_eq_none_iff_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zeroₓ'. -/
 theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 :=
   by
   nontriviality α
@@ -2058,9 +1551,6 @@ theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none 
     ⟨fun h => by rwa [← factors_prod a, factor_set.prod_eq_zero_iff], fun h => h.symm ▸ factors_0⟩
 #align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
 
-/- warning: associates.factors_eq_some_iff_ne_zero -> Associates.factors_eq_some_iff_ne_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zeroₓ'. -/
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
     (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
   rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne.def, Ne.def,
@@ -2077,12 +1567,6 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 
 omit dec dec'
 
-/- warning: associates.eq_of_prod_eq_prod -> Associates.eq_of_prod_eq_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : DecidableEq.{succ u1} α] [a : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [b : Nontrivial.{u1} α] {h : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 h) (Associates.FactorSet.prod.{u1} α _inst_1 b)) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) h b)
-Case conversion may be inaccurate. Consider using '#align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prodₓ'. -/
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
     have : a.prod.factors = b.prod.factors := by rw [h]
@@ -2091,9 +1575,6 @@ theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.
 
 include dec dec' dec_irr
 
-/- warning: associates.eq_factors_of_eq_counts -> Associates.eq_factors_of_eq_counts is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_countsₓ'. -/
 theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ (p : Associates α) (hp : Irreducible p), p.count a.factors = p.count b.factors) :
     a.factors = b.factors :=
@@ -2109,17 +1590,11 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
 
-/- warning: associates.eq_of_eq_counts -> Associates.eq_of_eq_counts is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.eq_of_eq_counts Associates.eq_of_eq_countsₓ'. -/
 theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
   eq_of_factors_eq_factors (eq_factors_of_eq_counts ha hb h)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
 
-/- warning: associates.count_le_count_of_factors_le -> Associates.count_le_count_of_factors_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_leₓ'. -/
 theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
     (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors :=
   by
@@ -2134,9 +1609,6 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
 
 omit dec_irr
 
-/- warning: associates.factors_mul -> Associates.factors_mul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_mul Associates.factors_mulₓ'. -/
 @[simp]
 theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors :=
   by
@@ -2146,16 +1618,10 @@ theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.fact
   rw [prod_add, factors_prod, factors_prod, factors_prod]
 #align associates.factors_mul Associates.factors_mul
 
-/- warning: associates.factors_mono -> Associates.factors_mono is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_mono Associates.factors_monoₓ'. -/
 theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
   | s, t, ⟨d, rfl⟩ => by rw [factors_mul] <;> exact le_add_of_nonneg_right bot_le
 #align associates.factors_mono Associates.factors_mono
 
-/- warning: associates.factors_le -> Associates.factors_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_le Associates.factors_leₓ'. -/
 theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :=
   Iff.intro
     (fun h => by
@@ -2166,9 +1632,6 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
 
 include dec_irr
 
-/- warning: associates.count_le_count_of_le -> Associates.count_le_count_of_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_le Associates.count_le_count_of_leₓ'. -/
 theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
   count_le_count_of_factors_le hb hp <| factors_mono h
@@ -2176,12 +1639,6 @@ theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irredu
 
 omit dec dec' dec_irr
 
-/- warning: associates.prod_le -> Associates.prod_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : DecidableEq.{succ u1} α] [a : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [b : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
-Case conversion may be inaccurate. Consider using '#align associates.prod_le Associates.prod_leₓ'. -/
 theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
   classical exact
       Iff.intro
@@ -2213,12 +1670,6 @@ noncomputable instance : Lattice (Associates α) :=
     inf_le_left := fun a b => le_trans (prod_mono inf_le_left) (le_of_eq (factors_prod a))
     inf_le_right := fun a b => le_trans (prod_mono inf_le_right) (le_of_eq (factors_prod b)) }
 
-/- warning: associates.sup_mul_inf -> Associates.sup_mul_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Sup.sup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasSup.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Sup.sup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instSupAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
-Case conversion may be inaccurate. Consider using '#align associates.sup_mul_inf Associates.sup_mul_infₓ'. -/
 theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
   show (a.factors ⊔ b.factors).Prod * (a.factors ⊓ b.factors).Prod = a * b
     by
@@ -2229,12 +1680,6 @@ theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
 
 include dec_irr
 
-/- warning: associates.dvd_of_mem_factors -> Associates.dvd_of_mem_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a)
-Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors Associates.dvd_of_mem_factorsₓ'. -/
 theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) : p ∣ a :=
   by
   by_cases ha0 : a = 0; · rw [ha0]; exact dvd_zero p
@@ -2248,9 +1693,6 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
 
 omit dec'
 
-/- warning: associates.dvd_of_mem_factors' -> Associates.dvd_of_mem_factors' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'ₓ'. -/
 theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {hz : a ≠ 0}
     (h_mem : Subtype.mk p hp ∈ factors' a) : p ∣ Associates.mk a :=
   by
@@ -2262,9 +1704,6 @@ theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {h
 
 omit dec_irr
 
-/- warning: associates.mem_factors'_of_dvd -> Associates.mem_factors'_of_dvd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_of_dvd Associates.mem_factors'_of_dvdₓ'. -/
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a :=
   by
@@ -2275,9 +1714,6 @@ theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd
 
 include dec_irr
 
-/- warning: associates.mem_factors'_iff_dvd -> Associates.mem_factors'_iff_dvd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_iff_dvd Associates.mem_factors'_iff_dvdₓ'. -/
 theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a :=
   by
@@ -2288,23 +1724,11 @@ theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
 
 include dec'
 
-/- warning: associates.mem_factors_of_dvd -> Associates.mem_factors_of_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)))
-Case conversion may be inaccurate. Consider using '#align associates.mem_factors_of_dvd Associates.mem_factors_of_dvdₓ'. -/
 theorem mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Associates.mk p ∈ factors (Associates.mk a) := by rw [factors_mk _ ha0];
   exact mem_factor_set_some.mpr (mem_factors'_of_dvd ha0 hp hd)
 #align associates.mem_factors_of_dvd Associates.mem_factors_of_dvd
 
-/- warning: associates.mem_factors_iff_dvd -> Associates.mem_factors_iff_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
-Case conversion may be inaccurate. Consider using '#align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvdₓ'. -/
 theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Associates.mk p ∈ factors (Associates.mk a) ↔ p ∣ a :=
   by
@@ -2313,12 +1737,6 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
 
-/- warning: associates.exists_prime_dvd_of_not_inf_one -> Associates.exists_prime_dvd_of_not_inf_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} α (fun (p : α) => And (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) (And (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Exists.{succ u1} α (fun (p : α) => And (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) (And (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p b))))
-Case conversion may be inaccurate. Consider using '#align associates.exists_prime_dvd_of_not_inf_one Associates.exists_prime_dvd_of_not_inf_oneₓ'. -/
 theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b :=
   by
@@ -2343,12 +1761,6 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     apply hb
 #align associates.exists_prime_dvd_of_not_inf_one Associates.exists_prime_dvd_of_not_inf_one
 
-/- warning: associates.coprime_iff_inf_one -> Associates.coprime_iff_inf_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (forall {d : α}, (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d a) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d b) -> (Not (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) d))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (forall {d : α}, (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d a) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d b) -> (Not (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) d))))
-Case conversion may be inaccurate. Consider using '#align associates.coprime_iff_inf_one Associates.coprime_iff_inf_oneₓ'. -/
 theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
     Associates.mk a ⊓ Associates.mk b = 1 ↔ ∀ {d : α}, d ∣ a → d ∣ b → ¬Prime d :=
   by
@@ -2365,18 +1777,12 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
 
 omit dec_irr
 
-/- warning: associates.factors_self -> Associates.factors_self is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_self Associates.factors_selfₓ'. -/
 theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
     p.factors = some {⟨p, hp⟩} :=
   eq_of_prod_eq_prod
     (by rw [factors_prod, factor_set.prod, map_singleton, prod_singleton, Subtype.coe_mk])
 #align associates.factors_self Associates.factors_self
 
-/- warning: associates.factors_prime_pow -> Associates.factors_prime_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.factors_prime_pow Associates.factors_prime_powₓ'. -/
 theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible p) (k : ℕ) :
     factors (p ^ k) = some (Multiset.replicate k ⟨p, hp⟩) :=
   eq_of_prod_eq_prod
@@ -2387,9 +1793,6 @@ theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible
 
 include dec_irr
 
-/- warning: associates.prime_pow_dvd_iff_le -> Associates.prime_pow_dvd_iff_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_leₓ'. -/
 theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p)
     {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors :=
   by
@@ -2399,12 +1802,6 @@ theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠
   exact WithTop.coe_le_coe
 #align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_le
 
-/- warning: associates.le_of_count_ne_zero -> Associates.le_of_count_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
-Case conversion may be inaccurate. Consider using '#align associates.le_of_count_ne_zero Associates.le_of_count_ne_zeroₓ'. -/
 theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) :
     count p m.factors ≠ 0 → p ≤ m := by
   nontriviality α
@@ -2415,12 +1812,6 @@ theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducib
   simpa only
 #align associates.le_of_count_ne_zero Associates.le_of_count_ne_zero
 
-/- warning: associates.count_ne_zero_iff_dvd -> Associates.count_ne_zero_iff_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
-Case conversion may be inaccurate. Consider using '#align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvdₓ'. -/
 theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a :=
   by
@@ -2438,22 +1829,10 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 
-/- warning: associates.count_self -> Associates.count_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p)) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))
-Case conversion may be inaccurate. Consider using '#align associates.count_self Associates.count_selfₓ'. -/
 theorem count_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) : p.count p.factors = 1 :=
   by simp [factors_self hp, Associates.count_some hp]
 #align associates.count_self Associates.count_self
 
-/- warning: associates.count_eq_zero_of_ne -> Associates.count_eq_zero_of_ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {q : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) q) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p q) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) q)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {q : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) q) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p q) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) q)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
-Case conversion may be inaccurate. Consider using '#align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_neₓ'. -/
 theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irreducible q)
     (h : p ≠ q) : p.count q.factors = 0 :=
   not_ne_iff.mp fun h' =>
@@ -2462,9 +1841,6 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
         hp.associated_of_dvd hq <| by nontriviality α; exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
-/- warning: associates.count_mul -> Associates.count_mul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_mul Associates.count_mulₓ'. -/
 theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) : count p (factors (a * b)) = count p a.factors + count p b.factors :=
   by
@@ -2475,9 +1851,6 @@ theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b
     Multiset.count_add, count_some hp, count_some hp]
 #align associates.count_mul Associates.count_mul
 
-/- warning: associates.count_of_coprime -> Associates.count_of_coprime is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_of_coprime Associates.count_of_coprimeₓ'. -/
 theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
     count p a.factors = 0 ∨ count p b.factors = 0 :=
@@ -2489,9 +1862,6 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
     ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb, irreducible_iff_prime.mp hp⟩
 #align associates.count_of_coprime Associates.count_of_coprime
 
-/- warning: associates.count_mul_of_coprime -> Associates.count_mul_of_coprime is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime Associates.count_mul_of_coprimeₓ'. -/
 theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p a.factors = 0 ∨ count p a.factors = count p (a * b).factors :=
@@ -2503,9 +1873,6 @@ theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠
   rw [count_mul ha hb hp, hb0, add_zero]
 #align associates.count_mul_of_coprime Associates.count_mul_of_coprime
 
-/- warning: associates.count_mul_of_coprime' -> Associates.count_mul_of_coprime' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'ₓ'. -/
 theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Irreducible p)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p (a * b).factors = count p a.factors ∨ count p (a * b).factors = count p b.factors :=
@@ -2518,9 +1885,6 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
   · apply Or.intro_left; rw [hb0, add_zero]
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
 
-/- warning: associates.dvd_count_of_dvd_count_mul -> Associates.dvd_count_of_dvd_count_mul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mulₓ'. -/
 theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
     (habk : k ∣ count p (a * b).factors) : k ∣ count p a.factors :=
@@ -2533,12 +1897,6 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
 
 omit dec_irr
 
-/- warning: associates.factors_one -> Associates.factors_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (OfNat.mk.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.zero.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasZero.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.toOfNat0.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instZeroMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
-Case conversion may be inaccurate. Consider using '#align associates.factors_one Associates.factors_oneₓ'. -/
 @[simp]
 theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   by
@@ -2547,9 +1905,6 @@ theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   exact Multiset.prod_zero
 #align associates.factors_one Associates.factors_one
 
-/- warning: associates.pow_factors -> Associates.pow_factors is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.pow_factors Associates.pow_factorsₓ'. -/
 @[simp]
 theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
   by
@@ -2560,9 +1915,6 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).fact
 
 include dec_irr
 
-/- warning: associates.count_pow -> Associates.count_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_pow Associates.count_powₓ'. -/
 theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors :=
   by
@@ -2571,17 +1923,11 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
   · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]; ring
 #align associates.count_pow Associates.count_pow
 
-/- warning: associates.dvd_count_pow -> Associates.dvd_count_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.dvd_count_pow Associates.dvd_count_powₓ'. -/
 theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors := by rw [count_pow ha hp];
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
-/- warning: associates.is_pow_of_dvd_count -> Associates.is_pow_of_dvd_count is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_countₓ'. -/
 theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
     (hk : ∀ (p : Associates α) (hp : Irreducible p), k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k :=
@@ -2600,9 +1946,6 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
   exact WithBot.coe_nsmul u k
 #align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_count
 
-/- warning: associates.eq_pow_count_factors_of_dvd_pow -> Associates.eq_pow_count_factors_of_dvd_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. See `eq_pow_find_of_dvd_irreducible_pow`
 for an explicit expression as a p-power (without using `count`). -/
 theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible p) {n : ℕ}
@@ -2623,9 +1966,6 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
   · rw [count_eq_zero_of_ne hq hp h, MulZeroClass.mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
-/- warning: associates.count_factors_eq_find_of_dvd_pow -> Associates.count_factors_eq_find_of_dvd_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_powₓ'. -/
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
     Nat.find ⟨n, h⟩ = p.count a.factors :=
@@ -2645,9 +1985,6 @@ omit dec_irr
 
 omit dec'
 
-/- warning: associates.eq_pow_of_mul_eq_pow -> Associates.eq_pow_of_mul_eq_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_powₓ'. -/
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
     ∃ d : Associates α, a = d ^ k := by
@@ -2666,9 +2003,6 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
       cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
-/- warning: associates.eq_pow_find_of_dvd_irreducible_pow -> Associates.eq_pow_find_of_dvd_irreducible_pow is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) : a = p ^ Nat.find ⟨n, h⟩ := by
@@ -2754,12 +2088,6 @@ end
 
 namespace UniqueFactorizationMonoid
 
-/- warning: unique_factorization_monoid.fintype_subtype_dvd -> UniqueFactorizationMonoid.fintypeSubtypeDvd is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} M] [_inst_2 : UniqueFactorizationMonoid.{u1} M _inst_1] [_inst_3 : Fintype.{u1} (Units.{u1} M (MonoidWithZero.toMonoid.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))] (y : M), (Ne.{succ u1} M y (OfNat.ofNat.{u1} M 0 (OfNat.mk.{u1} M 0 (Zero.zero.{u1} M (MulZeroClass.toHasZero.{u1} M (MulZeroOneClass.toMulZeroClass.{u1} M (MonoidWithZero.toMulZeroOneClass.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))))))) -> (Fintype.{u1} (Subtype.{succ u1} M (fun (x : M) => Dvd.Dvd.{u1} M (semigroupDvd.{u1} M (SemigroupWithZero.toSemigroup.{u1} M (MonoidWithZero.toSemigroupWithZero.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) x y)))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} M] [_inst_2 : UniqueFactorizationMonoid.{u1} M _inst_1] [_inst_3 : Fintype.{u1} (Units.{u1} M (MonoidWithZero.toMonoid.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))] (y : M), (Ne.{succ u1} M y (OfNat.ofNat.{u1} M 0 (Zero.toOfNat0.{u1} M (CommMonoidWithZero.toZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) -> (Fintype.{u1} (Subtype.{succ u1} M (fun (x : M) => Dvd.dvd.{u1} M (semigroupDvd.{u1} M (SemigroupWithZero.toSemigroup.{u1} M (MonoidWithZero.toSemigroupWithZero.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) x y)))
-Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.fintype_subtype_dvd UniqueFactorizationMonoid.fintypeSubtypeDvdₓ'. -/
 /-- If `y` is a nonzero element of a unique factorization monoid with finitely
 many units (e.g. `ℤ`, `ideal (ring_of_integers K)`), it has finitely many divisors. -/
 noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
@@ -2820,22 +2148,10 @@ theorem factorization_eq_count {n p : α} :
 #align factorization_eq_count factorization_eq_count
 -/
 
-/- warning: factorization_zero -> factorization_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (OfNat.mk.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (Zero.zero.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.zero.{u1, 0} α Nat Nat.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) 0 (Zero.toOfNat0.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.zero.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))
-Case conversion may be inaccurate. Consider using '#align factorization_zero factorization_zeroₓ'. -/
 @[simp]
 theorem factorization_zero : factorization (0 : α) = 0 := by simp [factorization]
 #align factorization_zero factorization_zero
 
-/- warning: factorization_one -> factorization_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (OfNat.mk.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (Zero.zero.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.zero.{u1, 0} α Nat Nat.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) 0 (Zero.toOfNat0.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.zero.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))
-Case conversion may be inaccurate. Consider using '#align factorization_one factorization_oneₓ'. -/
 @[simp]
 theorem factorization_one : factorization (1 : α) = 0 := by simp [factorization]
 #align factorization_one factorization_one
@@ -2849,12 +2165,6 @@ theorem support_factorization {n : α} :
 #align support_factorization support_factorization
 -/
 
-/- warning: factorization_mul -> factorization_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.{u1, 0} α Nat Nat.hasZero) (instHAdd.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.add.{u1, 0} α Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid))) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (instHAdd.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.add.{u1, 0} α Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid))) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)))
-Case conversion may be inaccurate. Consider using '#align factorization_mul factorization_mulₓ'. -/
 /-- For nonzero `a` and `b`, the power of `p` in `a * b` is the sum of the powers in `a` and `b` -/
 @[simp]
 theorem factorization_mul {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) :
@@ -2869,12 +2179,6 @@ theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • fac
 #align factorization_pow factorization_pow
 -/
 
-/- warning: associated_of_factorization_eq -> associated_of_factorization_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] (a : α) (b : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] (a : α) (b : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align associated_of_factorization_eq associated_of_factorization_eqₓ'. -/
 theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
     (h : factorization a = factorization b) : Associated a b :=
   by
Diff
@@ -156,10 +156,8 @@ theorem exists_factors (a : α) :
   induction_on_irreducible a (fun h => (h rfl).elim)
     (fun u hu _ => ⟨0, fun _ h => h.elim, hu.Unit, one_mul _⟩) fun a i ha0 hi ih _ =>
     let ⟨s, hs⟩ := ih ha0
-    ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b),
-      by
-      rw [s.prod_cons i]
-      exact hs.2.mul_left i⟩
+    ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b), by
+      rw [s.prod_cons i]; exact hs.2.mul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
 
 /- warning: wf_dvd_monoid.not_unit_iff_exists_factors_eq -> WfDvdMonoid.not_unit_iff_exists_factors_eq is a dubious translation:
@@ -193,11 +191,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associatesₓ'. -/
 theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
     (h : WellFounded ((· < ·) : Associates α → Associates α → Prop)) : WfDvdMonoid α :=
-  WfDvdMonoid.of_wfDvdMonoid_associates
-    ⟨by
-      convert h
-      ext
-      exact Associates.dvdNotUnit_iff_lt⟩
+  WfDvdMonoid.of_wfDvdMonoid_associates ⟨by convert h; ext; exact Associates.dvdNotUnit_iff_lt⟩
 #align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associates
 
 /- warning: wf_dvd_monoid.iff_well_founded_associates -> WfDvdMonoid.iff_wellFounded_associates is a dubious translation:
@@ -391,17 +385,14 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
           (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
           (WithTop.wellFounded_lt Nat.lt_wfRel)
       · intro a
-        by_cases h : a = 0
-        · exact ⊤
+        by_cases h : a = 0; · exact ⊤
         exact (Classical.choose (pf a h)).card
       rintro a b ⟨ane0, ⟨c, hc, b_eq⟩⟩
       rw [dif_neg ane0]
       by_cases h : b = 0
       · simp [h, lt_top_iff_ne_top]
       rw [dif_neg h, WithTop.coe_lt_coe]
-      have cne0 : c ≠ 0 := by
-        refine' mt (fun con => _) h
-        rw [b_eq, Con, MulZeroClass.mul_zero]
+      have cne0 : c ≠ 0 := by refine' mt (fun con => _) h; rw [b_eq, Con, MulZeroClass.mul_zero]
       calc
         Multiset.card (Classical.choose (pf a ane0)) <
             _ + Multiset.card (Classical.choose (pf c cne0)) :=
@@ -481,19 +472,12 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
     UniqueFactorizationMonoid β :=
   by
   rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα⊢; intro a ha
-  obtain ⟨w, hp, u, h⟩ :=
-    hα (e.symm a) fun h =>
-      ha <| by
-        convert← map_zero e
-        simp [← h]
+  obtain ⟨w, hp, u, h⟩ := hα (e.symm a) fun h => ha <| by convert← map_zero e; simp [← h]
   exact
     ⟨w.map e, fun b hb =>
       let ⟨c, hc, he⟩ := Multiset.mem_map.1 hb
       he ▸ e.prime_iff.1 (hp c hc),
-      Units.map e.to_monoid_hom u,
-      by
-      erw [Multiset.prod_hom, ← e.map_mul, h]
-      simp⟩
+      Units.map e.to_monoid_hom u, by erw [Multiset.prod_hom, ← e.map_mul, h]; simp⟩
 #align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoid
 
 /- warning: mul_equiv.unique_factorization_monoid_iff -> MulEquiv.uniqueFactorizationMonoid_iff is a dubious translation:
@@ -842,9 +826,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
   by
   obtain ⟨p, a_assoc, hp⟩ :=
     prime_factors_irreducible ha ⟨prime_of_normalized_factor, normalized_factors_prod ha.ne_zero⟩
-  have p_mem : p ∈ normalized_factors a := by
-    rw [hp]
-    exact Multiset.mem_singleton_self _
+  have p_mem : p ∈ normalized_factors a := by rw [hp]; exact Multiset.mem_singleton_self _
   convert hp
   rwa [← normalize_normalized_factor p p_mem, normalize_eq_normalize_iff, dvd_dvd_iff_associated]
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
@@ -941,9 +923,7 @@ Case conversion may be inaccurate. Consider using '#align unique_factorization_m
 theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     normalizedFactors (x * y) = normalizedFactors x + normalizedFactors y :=
   by
-  have h : (normalize : α → α) = Associates.out ∘ Associates.mk :=
-    by
-    ext
+  have h : (normalize : α → α) = Associates.out ∘ Associates.mk := by ext;
     rw [Function.comp_apply, Associates.out_mk]
   rw [← Multiset.map_id' (normalized_factors (x * y)), ← Multiset.map_id' (normalized_factors x), ←
     Multiset.map_id' (normalized_factors y), ← Multiset.map_congr rfl normalize_normalized_factor, ←
@@ -1175,16 +1155,13 @@ protected def normalizationMonoid : NormalizationMonoid α :=
               (Classical.choose mk_surjective.HasRightInverse : Associates α → α)).Prod
       map_one' := by simp
       map_mul' := fun x y => by
-        by_cases hx : x = 0
-        · simp [hx]
-        by_cases hy : y = 0
-        · simp [hy]
+        by_cases hx : x = 0; · simp [hx]
+        by_cases hy : y = 0; · simp [hy]
         simp [hx, hy] }
     (by
       intro x
       dsimp
-      by_cases hx : x = 0
-      · simp [hx]
+      by_cases hx : x = 0; · simp [hx]
       have h :
         Associates.mkMonoidHom ∘ Classical.choose mk_surjective.has_right_inverse =
           (id : Associates α → Associates α) :=
@@ -1216,12 +1193,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factorsₓ'. -/
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
-  induction_on_prime d
-    (by
-      simp only [zero_dvd_iff]
-      intros
-      contradiction)
-    (fun x hx _ _ => hx) fun d q hp hq ih dvd_a dvd_b =>
+  induction_on_prime d (by simp only [zero_dvd_iff]; intros ; contradiction) (fun x hx _ _ => hx)
+    fun d q hp hq ih dvd_a dvd_b =>
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
 #align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
 
@@ -1281,8 +1254,7 @@ theorem exists_reduced_factors :
   haveI := Classical.propDecidable
   intro a
   refine' induction_on_prime a _ _ _
-  · intros
-    contradiction
+  · intros ; contradiction
   · intro a a_unit a_ne_zero b
     use a, b, 1
     constructor
@@ -1419,8 +1391,7 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
   by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
-  · simp [hx0] at hlt
-    contradiction
+  · simp [hx0] at hlt; contradiction
   rw [← PartENat.natCast_inj]
   convert(multiplicity_eq_count_normalized_factors hp hx0).symm
   · exact hnorm.symm
@@ -1545,8 +1516,7 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
     by
     rintro x y ⟨u, rfl⟩ hx
     exact hcp (fun p _ hpx => isUnit_of_dvd_unit hpx u.is_unit) hx (h1 u.is_unit)
-  by_cases ha0 : a = 0
-  · rwa [ha0]
+  by_cases ha0 : a = 0; · rwa [ha0]
   haveI : Nontrivial α := ⟨⟨_, _, ha0⟩⟩
   letI : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid
   refine' P_of_associated (normalized_factors_prod ha0) _
@@ -1598,10 +1568,8 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
     (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y) :
     f (a * b) = f a * f b := by
   letI := Classical.decEq α
-  by_cases ha0 : a = 0
-  · rw [ha0, MulZeroClass.zero_mul, h0, MulZeroClass.zero_mul]
-  by_cases hb0 : b = 0
-  · rw [hb0, MulZeroClass.mul_zero, h0, MulZeroClass.mul_zero]
+  by_cases ha0 : a = 0; · rw [ha0, MulZeroClass.zero_mul, h0, MulZeroClass.zero_mul]
+  by_cases hb0 : b = 0; · rw [hb0, MulZeroClass.mul_zero, h0, MulZeroClass.mul_zero]
   by_cases hf1 : f 1 = 0
   ·
     calc
@@ -1636,10 +1604,8 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
       Finset.prod_mul_distrib]
     simp_rw [id.def, ← pow_add, this]
     all_goals simp only [Multiset.mem_toFinset]
-    · intro p hpab hpb
-      simp [hpb]
-    · intro p hpab hpa
-      simp [hpa]
+    · intro p hpab hpb; simp [hpb]
+    · intro p hpab hpa; simp [hpa]
   refine' multiplicative_prime_power _ _ _ _ _ @h1 @hpr @hcp
   all_goals simp only [Multiset.mem_toFinset, Finset.mem_union]
   · rintro p (hpa | hpb) <;> apply prime_of_normalized_factor <;> assumption
@@ -1809,11 +1775,7 @@ def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → 
 Case conversion may be inaccurate. Consider using '#align associates.count_some Associates.count_someₓ'. -/
 @[simp]
 theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
-    (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ :=
-  by
-  dsimp only [count]
-  split_ifs
-  rfl
+    (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ := by dsimp only [count]; split_ifs; rfl
 #align associates.count_some Associates.count_some
 
 /- warning: associates.count_zero -> Associates.count_zero is a dubious translation:
@@ -1821,10 +1783,7 @@ theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
 Case conversion may be inaccurate. Consider using '#align associates.count_zero Associates.count_zeroₓ'. -/
 @[simp]
 theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
-    count p (0 : FactorSet α) = 0 := by
-  dsimp only [count]
-  split_ifs
-  rfl
+    count p (0 : FactorSet α) = 0 := by dsimp only [count]; split_ifs; rfl
 #align associates.count_zero Associates.count_zero
 
 /- warning: associates.count_reducible -> Associates.count_reducible is a dubious translation:
@@ -2004,8 +1963,7 @@ Case conversion may be inaccurate. Consider using '#align associates.factors'_co
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  · rw [associated_zero_iff_eq_zero] at h
-    rw [h]
+  · rw [associated_zero_iff_eq_zero] at h; rw [h]
   have ha : a ≠ 0 := by
     contrapose! hb with ha
     rw [← associated_zero_iff_eq_zero, ← ha]
@@ -2145,9 +2103,7 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   rw [h_sa, h_sb] at h⊢
   rw [Option.some_inj]
   have h_count : ∀ (p : Associates α) (hp : Irreducible p), sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ :=
-    by
-    intro p hp
-    rw [← count_some, ← count_some, h p hp]
+    by intro p hp; rw [← count_some, ← count_some, h p hp]
   apply multiset.to_finsupp.injective
   ext ⟨p, hp⟩
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
@@ -2281,9 +2237,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors Associates.dvd_of_mem_factorsₓ'. -/
 theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) : p ∣ a :=
   by
-  by_cases ha0 : a = 0;
-  · rw [ha0]
-    exact dvd_zero p
+  by_cases ha0 : a = 0; · rw [ha0]; exact dvd_zero p
   obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha0
   rw [← Associates.factors_prod a]
   rw [← ha', factors_mk a0 nza] at hm⊢
@@ -2328,9 +2282,7 @@ theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a :=
   by
   constructor
-  · rw [← mk_dvd_mk]
-    apply dvd_of_mem_factors'
-    apply ha0
+  · rw [← mk_dvd_mk]; apply dvd_of_mem_factors'; apply ha0
   · apply mem_factors'_of_dvd ha0
 #align associates.mem_factors'_iff_dvd Associates.mem_factors'_iff_dvd
 
@@ -2357,9 +2309,7 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Associates.mk p ∈ factors (Associates.mk a) ↔ p ∣ a :=
   by
   constructor
-  · rw [← mk_dvd_mk]
-    apply dvd_of_mem_factors
-    exact (irreducible_mk p).mpr hp
+  · rw [← mk_dvd_mk]; apply dvd_of_mem_factors; exact (irreducible_mk p).mpr hp
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
 
@@ -2509,9 +2459,7 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
   not_ne_iff.mp fun h' =>
     h <|
       associated_iff_eq.mp <|
-        hp.associated_of_dvd hq <| by
-          nontriviality α
-          exact le_of_count_ne_zero hq.ne_zero hp h'
+        hp.associated_of_dvd hq <| by nontriviality α; exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
 /- warning: associates.count_mul -> Associates.count_mul is a dubious translation:
@@ -2566,10 +2514,8 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
   by_cases hb : b = 0; · simp [hb]
   rw [count_mul ha hb hp]
   cases' count_of_coprime ha hb hab hp with ha0 hb0
-  · apply Or.intro_right
-    rw [ha0, zero_add]
-  · apply Or.intro_left
-    rw [hb0, add_zero]
+  · apply Or.intro_right; rw [ha0, zero_add]
+  · apply Or.intro_left; rw [hb0, add_zero]
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
 
 /- warning: associates.dvd_count_of_dvd_count_mul -> Associates.dvd_count_of_dvd_count_mul is a dubious translation:
@@ -2581,10 +2527,8 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
   by
   by_cases ha : a = 0; · simpa [*] using habk
   cases' count_of_coprime ha hb hab hp with hz h
-  · rw [hz]
-    exact dvd_zero k
-  · rw [count_mul ha hb hp, h] at habk
-    exact habk
+  · rw [hz]; exact dvd_zero k
+  · rw [count_mul ha hb hp, h] at habk; exact habk
 #align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mul
 
 omit dec_irr
@@ -2610,8 +2554,7 @@ Case conversion may be inaccurate. Consider using '#align associates.pow_factors
 theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
   by
   induction' k with n h
-  · rw [zero_nsmul, pow_zero]
-    exact factors_one
+  · rw [zero_nsmul, pow_zero]; exact factors_one
   · rw [pow_succ, succ_nsmul, factors_mul, h]
 #align associates.pow_factors Associates.pow_factors
 
@@ -2625,17 +2568,14 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
   by
   induction' k with n h
   · rw [pow_zero, factors_one, MulZeroClass.zero_mul, count_zero hp]
-  · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]
-    ring
+  · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]; ring
 #align associates.count_pow Associates.count_pow
 
 /- warning: associates.dvd_count_pow -> Associates.dvd_count_pow is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align associates.dvd_count_pow Associates.dvd_count_powₓ'. -/
 theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
-    (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors :=
-  by
-  rw [count_pow ha hp]
+    (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors := by rw [count_pow ha hp];
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
@@ -2652,8 +2592,7 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
     by
     rintro p -
     have pp : p = ⟨p.val, p.2⟩ := by simp only [Subtype.coe_eta, Subtype.val_eq_coe]
-    rw [pp, ← count_some p.2]
-    exact hk p.val p.2
+    rw [pp, ← count_some p.2]; exact hk p.val p.2
   obtain ⟨u, hu⟩ := Multiset.exists_smul_of_dvd_count _ hk'
   use (u : factor_set α).Prod
   apply eq_of_factors_eq_factors
@@ -2675,8 +2614,7 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
   apply eq_of_eq_counts ha (pow_ne_zero _ hp.ne_zero)
   have eq_zero_of_ne : ∀ q : Associates α, Irreducible q → q ≠ p → _ = 0 := fun q hq h' =>
     Nat.eq_zero_of_le_zero <| by
-      convert count_le_count_of_le hph hq h
-      symm
+      convert count_le_count_of_le hph hq h; symm
       rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', MulZeroClass.mul_zero]
   intro q hq
   rw [count_pow hp.ne_zero hq]
@@ -2693,10 +2631,7 @@ theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible
     Nat.find ⟨n, h⟩ = p.count a.factors :=
   by
   apply le_antisymm
-  · refine' Nat.find_le ⟨1, _⟩
-    rw [mul_one]
-    symm
-    exact eq_pow_count_factors_of_dvd_pow hp h
+  · refine' Nat.find_le ⟨1, _⟩; rw [mul_one]; symm; exact eq_pow_count_factors_of_dvd_pow hp h
   · have hph := pow_ne_zero (Nat.find ⟨n, h⟩) hp.ne_zero
     cases' subsingleton_or_nontrivial α with hα hα
     · simpa using hph
@@ -2856,9 +2791,7 @@ noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
       (normalized_factors_prod hy).dvd_iff_dvd_right]
     exact Multiset.prod_dvd_prod_of_le hs
   · rintro (h : x ∣ y)
-    have hx : x ≠ 0 := by
-      refine' mt (fun hx => _) hy
-      rwa [hx, zero_dvd_iff] at h
+    have hx : x ≠ 0 := by refine' mt (fun hx => _) hy; rwa [hx, zero_dvd_iff] at h
     obtain ⟨u, hu⟩ := normalized_factors_prod hx
     refine' ⟨⟨normalized_factors x, u⟩, _, (mul_comm _ _).trans hu⟩
     exact (dvd_iff_normalized_factors_le_normalized_factors hx hy).mp h
@@ -2931,9 +2864,7 @@ theorem factorization_mul {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) :
 
 #print factorization_pow /-
 /-- For any `p`, the power of `p` in `x^n` is `n` times the power in `x` -/
-theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • factorization x :=
-  by
-  ext
+theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • factorization x := by ext;
   simp [factorization]
 #align factorization_pow factorization_pow
 -/
Diff
@@ -1358,10 +1358,7 @@ open multiplicity Multiset
 include dec_dvd
 
 /- warning: unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors -> UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toHasLe.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
 theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
     (ha : Irreducible a) (hb : b ≠ 0) :
@@ -1384,10 +1381,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
 #align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors
 
 /- warning: unique_factorization_monoid.multiplicity_eq_count_normalized_factors -> UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
@@ -1563,10 +1557,7 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 
 /- warning: unique_factorization_monoid.multiplicative_prime_power -> UniqueFactorizationMonoid.multiplicative_prime_power is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] {f : α -> β} (s : Finset.{u1} α) (i : α -> Nat) (j : α -> Nat), (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (forall (q : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) q s) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (i p) (j p))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p)))) (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (j p))))))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_3 : CancelCommMonoidWithZero.{u2} α] [_inst_4 : UniqueFactorizationMonoid.{u2} α _inst_3] {β : Type.{u1}} [_inst_5 : CancelCommMonoidWithZero.{u1} β] {f : α -> β} (s : Finset.{u2} α) (i : α -> Nat) (j : α -> Nat), (forall (p : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) p s) -> (Prime.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3) p)) -> (forall (p : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) p s) -> (forall (q : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) q s) -> (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p q) -> (Eq.{succ u2} α p q))) -> (forall {x : α} {y : α}, (IsUnit.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))) y) -> (Eq.{succ u1} β (f (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)))))) x y)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3) p) -> (Eq.{succ u1} β (f (HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p i)) (HPow.hPow.{u1, 0, u1} β Nat β (instHPow.{u1, 0} β Nat (Monoid.Pow.{u1} β (MonoidWithZero.toMonoid.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p x) -> (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p y) -> (IsUnit.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))) p)) -> (Eq.{succ u1} β (f (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)))))) x y)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u1} β (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (i p) (j p))))) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (i p)))) (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (j p))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_powerₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
@@ -1688,20 +1679,14 @@ def FactorSet.{u} (α : Type u) [CancelCommMonoidWithZero α] : Type u :=
 attribute [local instance] Associated.setoid
 
 /- warning: associates.factor_set.coe_add -> Associates.FactorSet.coe_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))} {b : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (instHAdd.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))} {b : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (instHAdd.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) a b)) (HAdd.hAdd.{u1, u1, u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (instHAdd.{u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) a) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factor_set.coe_add Associates.FactorSet.coe_addₓ'. -/
 theorem FactorSet.coe_add {a b : Multiset { a : Associates α // Irreducible a }} :
     (↑(a + b) : FactorSet α) = a + b := by norm_cast
 #align associates.factor_set.coe_add Associates.FactorSet.coe_add
 
 /- warning: associates.factor_set.sup_add_inf_eq_add -> Associates.FactorSet.sup_add_inf_eq_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Sup.sup.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeSup.toHasSup.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.lattice.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b) (Inf.inf.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeInf.toHasInf.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeInf.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeInf.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.lattice.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Sup.sup.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeSup.toSup.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instLatticeMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b) (Inf.inf.{u1} (Associates.FactorSet.{u1} α _inst_1) (Lattice.toInf.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.lattice.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instLatticeMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factor_set.sup_add_inf_eq_add Associates.FactorSet.sup_add_inf_eq_addₓ'. -/
 theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
     ∀ a b : FactorSet α, a ⊔ b + a ⊓ b = a + b
@@ -1736,10 +1721,7 @@ theorem prod_top : (⊤ : FactorSet α).Prod = 0 :=
 #align associates.prod_top Associates.prod_top
 
 /- warning: associates.prod_coe -> Associates.prod_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) s)) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeSubtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Subtype.val.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) s))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.prod_coe Associates.prod_coeₓ'. -/
 @[simp]
 theorem prod_coe {s : Multiset { a : Associates α // Irreducible a }} :
@@ -1823,10 +1805,7 @@ def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → 
 #align associates.count Associates.count
 
 /- warning: associates.count_some -> Associates.count_some is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.count.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.count.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp) s)
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_some Associates.count_someₓ'. -/
 @[simp]
 theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
@@ -1838,10 +1817,7 @@ theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
 #align associates.count_some Associates.count_some
 
 /- warning: associates.count_zero -> Associates.count_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (OfNat.mk.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.zero.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasZero.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.toOfNat0.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instZeroMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_zero Associates.count_zeroₓ'. -/
 @[simp]
 theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
@@ -1917,10 +1893,7 @@ theorem mem_factorSet_top {p : Associates α} {hp : Irreducible p} : p ∈ (⊤
 #align associates.mem_factor_set_top Associates.mem_factorSet_top
 
 /- warning: associates.mem_factor_set_some -> Associates.mem_factorSet_some is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {l : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Iff (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) l)) (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) p hp) l)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {l : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Iff (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) l)) (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p hp) l)
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.mem_factor_set_some Associates.mem_factorSet_someₓ'. -/
 theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
     {l : Multiset { a : Associates α // Irreducible a }} :
@@ -1978,10 +1951,7 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 -/
 
 /- warning: associates.prod_le_prod_iff_le -> Associates.prod_le_prod_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toHasLe.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.partialOrder.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toLE.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instPartialOrderMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_leₓ'. -/
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
@@ -2018,10 +1988,7 @@ noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducibl
 #align associates.factors' Associates.factors'
 
 /- warning: associates.map_subtype_coe_factors' -> Associates.map_subtype_coe_factors' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α}, Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeSubtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Multiset.map.{u1, u1} α (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => dec a b) _inst_2 a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α}, Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Subtype.val.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Multiset.map.{u1, u1} α (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => dec a b) _inst_2 a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'ₓ'. -/
 @[simp]
 theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).map Associates.mk :=
@@ -2134,10 +2101,7 @@ theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none 
 #align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
 
 /- warning: associates.factors_eq_some_iff_ne_zero -> Associates.factors_eq_some_iff_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Exists.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) (fun (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) => Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s))) (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Exists.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) (fun (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) => Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s))) (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zeroₓ'. -/
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
     (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
@@ -2170,10 +2134,7 @@ theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.
 include dec dec' dec_irr
 
 /- warning: associates.eq_factors_of_eq_counts -> Associates.eq_factors_of_eq_counts is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_countsₓ'. -/
 theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ (p : Associates α) (hp : Irreducible p), p.count a.factors = p.count b.factors) :
@@ -2193,10 +2154,7 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
 
 /- warning: associates.eq_of_eq_counts -> Associates.eq_of_eq_counts is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.eq_of_eq_counts Associates.eq_of_eq_countsₓ'. -/
 theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
@@ -2204,10 +2162,7 @@ theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
 
 /- warning: associates.count_le_count_of_factors_le -> Associates.count_le_count_of_factors_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_leₓ'. -/
 theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
     (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors :=
@@ -2224,10 +2179,7 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
 omit dec_irr
 
 /- warning: associates.factors_mul -> Associates.factors_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_mul Associates.factors_mulₓ'. -/
 @[simp]
 theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors :=
@@ -2239,20 +2191,14 @@ theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.fact
 #align associates.factors_mul Associates.factors_mul
 
 /- warning: associates.factors_mono -> Associates.factors_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_mono Associates.factors_monoₓ'. -/
 theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
   | s, t, ⟨d, rfl⟩ => by rw [factors_mul] <;> exact le_add_of_nonneg_right bot_le
 #align associates.factors_mono Associates.factors_mono
 
 /- warning: associates.factors_le -> Associates.factors_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_le Associates.factors_leₓ'. -/
 theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :=
   Iff.intro
@@ -2265,10 +2211,7 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
 include dec_irr
 
 /- warning: associates.count_le_count_of_le -> Associates.count_le_count_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_le Associates.count_le_count_of_leₓ'. -/
 theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
@@ -2352,10 +2295,7 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
 omit dec'
 
 /- warning: associates.dvd_of_mem_factors' -> Associates.dvd_of_mem_factors' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {hz : Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))}, (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) p hp) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {hz : Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p hp) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'ₓ'. -/
 theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {hz : a ≠ 0}
     (h_mem : Subtype.mk p hp ∈ factors' a) : p ∣ Associates.mk a :=
@@ -2369,10 +2309,7 @@ theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {h
 omit dec_irr
 
 /- warning: associates.mem_factors'_of_dvd -> Associates.mem_factors'_of_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_of_dvd Associates.mem_factors'_of_dvdₓ'. -/
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a :=
@@ -2385,10 +2322,7 @@ theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd
 include dec_irr
 
 /- warning: associates.mem_factors'_iff_dvd -> Associates.mem_factors'_iff_dvd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), Iff (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), Iff (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_iff_dvd Associates.mem_factors'_iff_dvdₓ'. -/
 theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a :=
@@ -2482,10 +2416,7 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
 omit dec_irr
 
 /- warning: associates.factors_self -> Associates.factors_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Singleton.singleton.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasSingleton.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Singleton.singleton.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instSingletonMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_self Associates.factors_selfₓ'. -/
 theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
     p.factors = some {⟨p, hp⟩} :=
@@ -2494,10 +2425,7 @@ theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
 #align associates.factors_self Associates.factors_self
 
 /- warning: associates.factors_prime_pow -> Associates.factors_prime_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (k : Nat), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k)) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.replicate.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) k (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (k : Nat), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k)) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.replicate.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) k (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.factors_prime_pow Associates.factors_prime_powₓ'. -/
 theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible p) (k : ℕ) :
     factors (p ^ k) = some (Multiset.replicate k ⟨p, hp⟩) :=
@@ -2510,10 +2438,7 @@ theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible
 include dec_irr
 
 /- warning: associates.prime_pow_dvd_iff_le -> Associates.prime_pow_dvd_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat Nat.hasLe k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat instLENat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_leₓ'. -/
 theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p)
     {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors :=
@@ -2590,10 +2515,7 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
 /- warning: associates.count_mul -> Associates.count_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_mul Associates.count_mulₓ'. -/
 theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) : count p (factors (a * b)) = count p a.factors + count p b.factors :=
@@ -2606,10 +2528,7 @@ theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b
 #align associates.count_mul Associates.count_mul
 
 /- warning: associates.count_of_coprime -> Associates.count_of_coprime is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_of_coprime Associates.count_of_coprimeₓ'. -/
 theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
@@ -2623,10 +2542,7 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
 #align associates.count_of_coprime Associates.count_of_coprime
 
 /- warning: associates.count_mul_of_coprime -> Associates.count_mul_of_coprime is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime Associates.count_mul_of_coprimeₓ'. -/
 theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
@@ -2640,10 +2556,7 @@ theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠
 #align associates.count_mul_of_coprime Associates.count_mul_of_coprime
 
 /- warning: associates.count_mul_of_coprime' -> Associates.count_mul_of_coprime' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'ₓ'. -/
 theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Irreducible p)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
@@ -2660,10 +2573,7 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
 
 /- warning: associates.dvd_count_of_dvd_count_mul -> Associates.dvd_count_of_dvd_count_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)))) -> (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)))) -> (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mulₓ'. -/
 theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
@@ -2694,10 +2604,7 @@ theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
 #align associates.factors_one Associates.factors_one
 
 /- warning: associates.pow_factors -> Associates.pow_factors is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {k : Nat}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)) (SMul.smul.{0, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (AddMonoid.SMul.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.addMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.orderedCancelAddCommMonoid.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))))) k (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {k : Nat}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)) (HSMul.hSMul.{0, u1, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHSMul.{0, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (AddMonoid.SMul.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.addMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))))) k (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.pow_factors Associates.pow_factorsₓ'. -/
 @[simp]
 theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
@@ -2711,10 +2618,7 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).fact
 include dec_irr
 
 /- warning: associates.count_pow -> Associates.count_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_pow Associates.count_powₓ'. -/
 theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors :=
@@ -2726,10 +2630,7 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
 #align associates.count_pow Associates.count_pow
 
 /- warning: associates.dvd_count_pow -> Associates.dvd_count_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.dvd_count_pow Associates.dvd_count_powₓ'. -/
 theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors :=
@@ -2739,10 +2640,7 @@ theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : As
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
 /- warning: associates.is_pow_of_dvd_count -> Associates.is_pow_of_dvd_count is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {k : Nat}, (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) b k))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {k : Nat}, (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) b k))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_countₓ'. -/
 theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
     (hk : ∀ (p : Associates α) (hp : Irreducible p), k ∣ count p a.factors) :
@@ -2764,10 +2662,7 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
 #align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_count
 
 /- warning: associates.eq_pow_count_factors_of_dvd_pow -> Associates.eq_pow_count_factors_of_dvd_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. See `eq_pow_find_of_dvd_irreducible_pow`
 for an explicit expression as a p-power (without using `count`). -/
@@ -2791,10 +2686,7 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
 /- warning: associates.count_factors_eq_find_of_dvd_pow -> Associates.count_factors_eq_find_of_dvd_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{1} Nat (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{1} Nat (Nat.find (fun (n : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => (fun (n : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n) n h)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_powₓ'. -/
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
@@ -2819,10 +2711,7 @@ omit dec_irr
 omit dec'
 
 /- warning: associates.eq_pow_of_mul_eq_pow -> Associates.eq_pow_of_mul_eq_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {c : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) c k)) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d k))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] [a : DecidableEq.{succ u1} α] [b : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [c : Nontrivial.{u1} α] {ha : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hb : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hab : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) hb (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d ha) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d hb) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha hb) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) hab k)) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d k))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_powₓ'. -/
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
@@ -2843,10 +2732,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
 /- warning: associates.eq_pow_find_of_dvd_irreducible_pow -> Associates.eq_pow_find_of_dvd_irreducible_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24801 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24801 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
Diff
@@ -820,7 +820,7 @@ theorem irreducible_of_normalized_factor {a : α} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) x) x)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) x) x)
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) x) x)
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factorₓ'. -/
 theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → normalize x = x :=
   by
@@ -835,7 +835,7 @@ theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFacto
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} α (Multiset.{u1} α) (Multiset.hasSingleton.{u1} α) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) a) (Multiset.{u1} α) (Multiset.instSingletonMultiset.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) a)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) a) (Multiset.{u1} α) (Multiset.instSingletonMultiset.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) a)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducibleₓ'. -/
 theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
     normalizedFactors a = {normalize a} :=
@@ -983,7 +983,7 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
 Case conversion may be inaccurate. Consider using '#align irreducible.normalized_factors_pow Irreducible.normalizedFactors_powₓ'. -/
 theorem Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
@@ -994,7 +994,7 @@ theorem Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3)) s))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3)) s))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eqₓ'. -/
 theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducible a) :
     normalizedFactors s.Prod = s.map normalize :=
@@ -1050,7 +1050,7 @@ theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_powₓ'. -/
 theorem normalizedFactors_of_irreducible_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
@@ -1361,7 +1361,7 @@ include dec_dvd
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toHasLe.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
 theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
     (ha : Irreducible a) (hb : b ≠ 0) :
@@ -1387,7 +1387,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
@@ -1412,7 +1412,7 @@ omit dec_dvd
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eqₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`.
@@ -1437,7 +1437,7 @@ theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'ₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`. This is a slightly more general version of
Diff
@@ -96,7 +96,7 @@ instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
 
 /- warning: wf_dvd_monoid.well_founded_associates -> WfDvdMonoid.wellFounded_associates is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899)
 Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associatesₓ'. -/
@@ -187,7 +187,7 @@ end WfDvdMonoid
 
 /- warning: wf_dvd_monoid.of_well_founded_associates -> WfDvdMonoid.of_wellFounded_associates is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726)) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associatesₓ'. -/
@@ -202,7 +202,7 @@ theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
 
 /- warning: wf_dvd_monoid.iff_well_founded_associates -> WfDvdMonoid.iff_wellFounded_associates is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843))
 Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.iff_well_founded_associates WfDvdMonoid.iff_wellFounded_associatesₓ'. -/
@@ -734,7 +734,7 @@ theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n
 
 /- warning: unique_factorization_monoid.factors_pos -> UniqueFactorizationMonoid.factors_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_posₓ'. -/
@@ -1015,7 +1015,7 @@ theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducib
 
 /- warning: unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors -> UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toLE.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toHasLe.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toLE.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactorsₓ'. -/
@@ -1112,7 +1112,7 @@ theorem mem_normalizedFactors_eq_of_associated {a b c : α} (ha : a ∈ normaliz
 
 /- warning: unique_factorization_monoid.normalized_factors_pos -> UniqueFactorizationMonoid.normalizedFactors_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_posₓ'. -/
@@ -1134,7 +1134,7 @@ theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x
 
 /- warning: unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors -> UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toHasLt.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactorsₓ'. -/
@@ -1359,7 +1359,7 @@ include dec_dvd
 
 /- warning: unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors -> UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toLE.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toHasLe.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
@@ -1764,7 +1764,7 @@ theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
 
 /- warning: associates.prod_mono -> Associates.prod_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
 Case conversion may be inaccurate. Consider using '#align associates.prod_mono Associates.prod_monoₓ'. -/
@@ -1979,7 +1979,7 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
 
 /- warning: associates.prod_le_prod_iff_le -> Associates.prod_le_prod_iff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toLE.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.partialOrder.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toHasLe.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.partialOrder.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toLE.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instPartialOrderMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
 Case conversion may be inaccurate. Consider using '#align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_leₓ'. -/
@@ -2205,7 +2205,7 @@ theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
 
 /- warning: associates.count_le_count_of_factors_le -> Associates.count_le_count_of_factors_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
 Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_leₓ'. -/
@@ -2240,7 +2240,7 @@ theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.fact
 
 /- warning: associates.factors_mono -> Associates.factors_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
 Case conversion may be inaccurate. Consider using '#align associates.factors_mono Associates.factors_monoₓ'. -/
@@ -2250,7 +2250,7 @@ theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.fa
 
 /- warning: associates.factors_le -> Associates.factors_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
 Case conversion may be inaccurate. Consider using '#align associates.factors_le Associates.factors_leₓ'. -/
@@ -2266,7 +2266,7 @@ include dec_irr
 
 /- warning: associates.count_le_count_of_le -> Associates.count_le_count_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
 Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_le Associates.count_le_count_of_leₓ'. -/
@@ -2279,7 +2279,7 @@ omit dec dec' dec_irr
 
 /- warning: associates.prod_le -> Associates.prod_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : DecidableEq.{succ u1} α] [a : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [b : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
 Case conversion may be inaccurate. Consider using '#align associates.prod_le Associates.prod_leₓ'. -/
@@ -2511,7 +2511,7 @@ include dec_irr
 
 /- warning: associates.prime_pow_dvd_iff_le -> Associates.prime_pow_dvd_iff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat Nat.hasLe k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat Nat.hasLe k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat instLENat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
 Case conversion may be inaccurate. Consider using '#align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_leₓ'. -/
@@ -2526,7 +2526,7 @@ theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠
 
 /- warning: associates.le_of_count_ne_zero -> Associates.le_of_count_ne_zero is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toHasLe.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
 Case conversion may be inaccurate. Consider using '#align associates.le_of_count_ne_zero Associates.le_of_count_ne_zeroₓ'. -/
Diff
@@ -1361,7 +1361,7 @@ include dec_dvd
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toLE.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableEq.{succ u1} R] [_inst_5 : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => _inst_5 a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => dec_dvd a b) _inst_4 _inst_2 b)))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
 theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
     (ha : Irreducible a) (hb : b ≠ 0) :
@@ -1387,7 +1387,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableEq.{succ u1} R] [_inst_5 : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => _inst_5 a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => dec_dvd a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => dec_dvd a b) _inst_4 _inst_2 b))))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
@@ -1457,6 +1457,12 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
 
+/- warning: unique_factorization_monoid.max_power_factor -> UniqueFactorizationMonoid.max_power_factor is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] {a₀ : R} {x : R}, (Ne.{succ u1} R a₀ (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) x) -> (Exists.{1} Nat (fun (n : Nat) => Exists.{succ u1} R (fun (a : R) => And (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x a)) (Eq.{succ u1} R a₀ (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x n) a)))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [a₀ : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {x : R} {h : R}, (Ne.{succ u1} R x (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) h) -> (Exists.{1} Nat (fun (n : Nat) => Exists.{succ u1} R (fun (a : R) => And (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) h a)) (Eq.{succ u1} R x (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) h n) a)))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factorₓ'. -/
 theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
     ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
   classical
@@ -1849,7 +1855,7 @@ theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (OfNat.mk.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.zero.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (ᾰ : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => Nat.hasZero))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15474 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15730 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
 Case conversion may be inaccurate. Consider using '#align associates.count_reducible Associates.count_reducibleₓ'. -/
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
@@ -2840,7 +2846,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24545 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24545 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24801 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24801 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
 
 ! This file was ported from Lean 3 source module ring_theory.unique_factorization_domain
-! leanprover-community/mathlib commit c085f3044fe585c575e322bfab45b3633c48d820
+! leanprover-community/mathlib commit 570e9f4877079b3a923135b3027ac3be8695ab8c
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1349,7 +1349,7 @@ theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} :
 
 section multiplicity
 
-variable [Nontrivial R] [NormalizationMonoid R] [DecidableEq R]
+variable [Nontrivial R] [NormalizationMonoid R]
 
 variable [dec_dvd : DecidableRel (Dvd.Dvd : R → R → Prop)]
 
@@ -1359,12 +1359,13 @@ include dec_dvd
 
 /- warning: unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors -> UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toLE.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toLE.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableEq.{succ u1} R] [_inst_5 : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => _inst_5 a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => dec_dvd a b) _inst_4 _inst_2 b)))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
-theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (ha : Irreducible a)
-    (hb : b ≠ 0) : ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b :=
+theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
+    (ha : Irreducible a) (hb : b ≠ 0) :
+    ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b :=
   by
   rw [← pow_dvd_iff_le_multiplicity]
   revert b
@@ -1384,9 +1385,9 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (
 
 /- warning: unique_factorization_monoid.multiplicity_eq_count_normalized_factors -> UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] [_inst_5 : DecidableEq.{succ u1} R] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [dec_dvd : DecidableEq.{succ u1} R] [_inst_5 : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => _inst_5 a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => dec_dvd a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => dec_dvd a b) _inst_4 _inst_2 b))))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
@@ -1394,8 +1395,8 @@ the normalized factor occurs in the `normalized_factors`.
 See also `count_normalized_factors_eq` which expands the definition of `multiplicity`
 to produce a specification for `count (normalized_factors _) _`..
 -/
-theorem multiplicity_eq_count_normalizedFactors {a b : R} (ha : Irreducible a) (hb : b ≠ 0) :
-    multiplicity a b = (normalizedFactors b).count (normalize a) :=
+theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha : Irreducible a)
+    (hb : b ≠ 0) : multiplicity a b = (normalizedFactors b).count (normalize a) :=
   by
   apply le_antisymm
   · apply PartENat.le_of_lt_add_one
@@ -1418,8 +1419,9 @@ the number of times it divides `x`.
 
 See also `multiplicity_eq_count_normalized_factors` if `n` is given by `multiplicity p x`.
 -/
-theorem count_normalizedFactors_eq {p x : R} (hp : Irreducible p) (hnorm : normalize p = p) {n : ℕ}
-    (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) : (normalizedFactors x).count p = n :=
+theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p)
+    (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+    (normalizedFactors x).count p = n :=
   by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
@@ -1443,8 +1445,9 @@ the number of times it divides `x`. This is a slightly more general version of
 
 See also `multiplicity_eq_count_normalized_factors` if `n` is given by `multiplicity p x`.
 -/
-theorem count_normalizedFactors_eq' {p x : R} (hp : p = 0 ∨ Irreducible p) (hnorm : normalize p = p)
-    {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) : (normalizedFactors x).count p = n :=
+theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Irreducible p)
+    (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+    (normalizedFactors x).count p = n :=
   by
   rcases hp with (rfl | hp)
   · cases n
@@ -1454,6 +1457,17 @@ theorem count_normalizedFactors_eq' {p x : R} (hp : p = 0 ∨ Irreducible p) (hn
   · exact count_normalized_factors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
 
+theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
+    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
+  classical
+    let n := (normalized_factors a₀).count (normalize x)
+    obtain ⟨a, ha1, ha2⟩ :=
+      @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (part_enat.ne_top_iff.mpr _))
+    simp_rw [← (multiplicity_eq_count_normalized_factors hx h).symm] at ha1
+    use n, a, ha2, ha1
+    use n, multiplicity_eq_count_normalized_factors hx h
+#align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
+
 end multiplicity
 
 section Multiplicative
Diff
@@ -1321,7 +1321,7 @@ theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10641 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10641) a))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10633 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10635 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10633 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10635) a))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injectiveₓ'. -/
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
     Function.Injective ((· ^ ·) a : ℕ → R) :=
@@ -1835,7 +1835,7 @@ theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (OfNat.mk.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.zero.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (ᾰ : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => Nat.hasZero))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15482 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15474 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
 Case conversion may be inaccurate. Consider using '#align associates.count_reducible Associates.count_reducibleₓ'. -/
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
@@ -2826,7 +2826,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24553 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24553 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24545 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24545 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
Diff
@@ -1321,7 +1321,7 @@ theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10637 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10637 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639) a))
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10641 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10641) a))
 Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injectiveₓ'. -/
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
     Function.Injective ((· ^ ·) a : ℕ → R) :=
@@ -1835,7 +1835,7 @@ theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (OfNat.mk.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.zero.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (ᾰ : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => Nat.hasZero))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15480 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15482 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
 Case conversion may be inaccurate. Consider using '#align associates.count_reducible Associates.count_reducibleₓ'. -/
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
@@ -2826,7 +2826,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24551 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24551 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24553 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24553 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
 Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
 
 ! This file was ported from Lean 3 source module ring_theory.unique_factorization_domain
-! leanprover-community/mathlib commit f694c7dead66f5d4c80f446c796a5aad14707f0e
+! leanprover-community/mathlib commit c085f3044fe585c575e322bfab45b3633c48d820
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -18,6 +18,9 @@ import Mathbin.RingTheory.Multiplicity
 
 # Unique factorization
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 ## Main Definitions
 * `wf_dvd_monoid` holds for `monoid`s for which a strict divisibility relation is
   well-founded.
Diff
@@ -35,6 +35,7 @@ variable {α : Type _}
 -- mathport name: «expr ~ᵤ »
 local infixl:50 " ~ᵤ " => Associated
 
+#print WfDvdMonoid /-
 /-- Well-foundedness of the strict version of |, which is equivalent to the descending chain
 condition on divisibility and to the ascending chain condition on
 principal ideals in an integral domain.
@@ -42,9 +43,11 @@ principal ideals in an integral domain.
 class WfDvdMonoid (α : Type _) [CommMonoidWithZero α] : Prop where
   wellFounded_dvdNotUnit : WellFounded (@DvdNotUnit α _)
 #align wf_dvd_monoid WfDvdMonoid
+-/
 
 export WfDvdMonoid (wellFounded_dvdNotUnit)
 
+#print IsNoetherianRing.wfDvdMonoid /-
 -- see Note [lower instance priority]
 instance (priority := 100) IsNoetherianRing.wfDvdMonoid [CommRing α] [IsDomain α]
     [IsNoetherianRing α] : WfDvdMonoid α :=
@@ -53,6 +56,7 @@ instance (priority := 100) IsNoetherianRing.wfDvdMonoid [CommRing α] [IsDomain
     ext
     exact ideal.span_singleton_lt_span_singleton.symm⟩
 #align is_noetherian_ring.wf_dvd_monoid IsNoetherianRing.wfDvdMonoid
+-/
 
 namespace WfDvdMonoid
 
@@ -60,6 +64,12 @@ variable [CommMonoidWithZero α]
 
 open Associates Nat
 
+/- warning: wf_dvd_monoid.of_wf_dvd_monoid_associates -> WfDvdMonoid.of_wfDvdMonoid_associates is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], (WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.commMonoidWithZero.{u1} α _inst_1)) -> (WfDvdMonoid.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], (WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α _inst_1)) -> (WfDvdMonoid.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associatesₓ'. -/
 theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
   ⟨by
     haveI := h
@@ -69,18 +79,36 @@ theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoi
 
 variable [WfDvdMonoid α]
 
+/- warning: wf_dvd_monoid.wf_dvd_monoid_associates -> WfDvdMonoid.wfDvdMonoid_associates is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.commMonoidWithZero.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WfDvdMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associatesₓ'. -/
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
   ⟨by
     refine' (Surjective.wellFounded_iff mk_surjective _).1 well_founded_dvd_not_unit
     intros ; rw [mk_dvd_not_unit_mk_iff]⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
 
+/- warning: wf_dvd_monoid.well_founded_associates -> WfDvdMonoid.wellFounded_associates is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1], WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.897 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.899)
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associatesₓ'. -/
 theorem wellFounded_associates : WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   Subrelation.wf (fun x y => dvdNotUnit_of_lt) wellFounded_dvdNotUnit
 #align wf_dvd_monoid.well_founded_associates WfDvdMonoid.wellFounded_associates
 
 attribute [local elab_as_elim] WellFounded.fix
 
+/- warning: wf_dvd_monoid.exists_irreducible_factor -> WfDvdMonoid.exists_irreducible_factor is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {a : α}, (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} α (fun (i : α) => And (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))) i a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {a : α}, (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (i : α) => And (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))) i a)))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factorₓ'. -/
 theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     ∃ i, Irreducible i ∧ i ∣ a :=
   let ⟨b, hs, hr⟩ := wellFounded_dvdNotUnit.has_min { b | b ∣ a ∧ ¬IsUnit b } ⟨a, dvd_rfl, ha⟩
@@ -92,6 +120,12 @@ theorem exists_irreducible_factor {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) :
     hs.1⟩
 #align wf_dvd_monoid.exists_irreducible_factor WfDvdMonoid.exists_irreducible_factor
 
+/- warning: wf_dvd_monoid.induction_on_irreducible -> WfDvdMonoid.induction_on_irreducible is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (u : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) u) -> (P u)) -> (forall (a : α) (i : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))))) i a))) -> (P a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (forall (u : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) u) -> (P u)) -> (forall (a : α) (i : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) i) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))))) i a))) -> (P a)
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.induction_on_irreducible WfDvdMonoid.induction_on_irreducibleₓ'. -/
 @[elab_as_elim]
 theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀ u : α, IsUnit u → P u)
     (hi : ∀ a i : α, a ≠ 0 → Irreducible i → P a → P (i * a)) : P a :=
@@ -108,6 +142,12 @@ theorem induction_on_irreducible {P : α → Prop} (a : α) (h0 : P 0) (hu : ∀
     a
 #align wf_dvd_monoid.induction_on_irreducible WfDvdMonoid.induction_on_irreducible
 
+/- warning: wf_dvd_monoid.exists_factors -> WfDvdMonoid.exists_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a)))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factorsₓ'. -/
 theorem exists_factors (a : α) :
     a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ Associated f.Prod a :=
   induction_on_irreducible a (fun h => (h rfl).elim)
@@ -119,6 +159,12 @@ theorem exists_factors (a : α) :
       exact hs.2.mul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
 
+/- warning: wf_dvd_monoid.not_unit_iff_exists_factors_eq -> WfDvdMonoid.not_unit_iff_exists_factors_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Iff (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (And (Eq.{succ u1} α (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a) (Ne.{succ u1} (Multiset.{u1} α) f (EmptyCollection.emptyCollection.{u1} (Multiset.{u1} α) (Multiset.hasEmptyc.{u1} α)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α] [_inst_2 : WfDvdMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α _inst_1)))) -> (Iff (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) a)) (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) b)) (And (Eq.{succ u1} α (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α _inst_1) f) a) (Ne.{succ u1} (Multiset.{u1} α) f (EmptyCollection.emptyCollection.{u1} (Multiset.{u1} α) (Multiset.instEmptyCollectionMultiset.{u1} α)))))))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eqₓ'. -/
 theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     ¬IsUnit a ↔ ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod = a ∧ f ≠ ∅ :=
   ⟨fun hnu => by
@@ -136,6 +182,12 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
 
 end WfDvdMonoid
 
+/- warning: wf_dvd_monoid.of_well_founded_associates -> WfDvdMonoid.of_wellFounded_associates is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1724 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1726)) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associatesₓ'. -/
 theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
     (h : WellFounded ((· < ·) : Associates α → Associates α → Prop)) : WfDvdMonoid α :=
   WfDvdMonoid.of_wfDvdMonoid_associates
@@ -145,6 +197,12 @@ theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
       exact Associates.dvdNotUnit_iff_lt⟩
 #align wf_dvd_monoid.of_well_founded_associates WfDvdMonoid.of_wellFounded_associates
 
+/- warning: wf_dvd_monoid.iff_well_founded_associates -> WfDvdMonoid.iff_wellFounded_associates is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (WellFounded.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => LT.lt.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLT.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1841 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.1843))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.iff_well_founded_associates WfDvdMonoid.iff_wellFounded_associatesₓ'. -/
 theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
     WfDvdMonoid α ↔ WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
   ⟨by apply WfDvdMonoid.wellFounded_associates, WfDvdMonoid.of_wellFounded_associates⟩
@@ -155,6 +213,7 @@ section Prio
 /- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option default_priority -/
 set_option default_priority 100
 
+#print UniqueFactorizationMonoid /-
 -- see Note [default priority]
 /-- unique factorization monoids.
 
@@ -178,14 +237,23 @@ class UniqueFactorizationMonoid (α : Type _) [CancelCommMonoidWithZero α] exte
   Prop where
   irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
 #align unique_factorization_monoid UniqueFactorizationMonoid
+-/
 
+#print ufm_of_gcd_of_wfDvdMonoid /-
 /-- Can't be an instance because it would cause a loop `ufm → wf_dvd_monoid → ufm → ...`. -/
 @[reducible]
 theorem ufm_of_gcd_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α] [GCDMonoid α] :
     UniqueFactorizationMonoid α :=
   { ‹WfDvdMonoid α› with irreducible_iff_prime := fun _ => GCDMonoid.irreducible_iff_prime }
 #align ufm_of_gcd_of_wf_dvd_monoid ufm_of_gcd_of_wfDvdMonoid
+-/
 
+/- warning: associates.ufm -> Associates.ufm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1], UniqueFactorizationMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.cancelCommMonoidWithZero.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1], UniqueFactorizationMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCancelCommMonoidWithZeroAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align associates.ufm Associates.ufmₓ'. -/
 instance Associates.ufm [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
     UniqueFactorizationMonoid (Associates α) :=
   { (WfDvdMonoid.wfDvdMonoid_associates : WfDvdMonoid (Associates α)) with
@@ -200,12 +268,24 @@ namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
+/- warning: unique_factorization_monoid.exists_prime_factors -> UniqueFactorizationMonoid.exists_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factorsₓ'. -/
 theorem exists_prime_factors (a : α) : a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
   by
   simp_rw [← UniqueFactorizationMonoid.irreducible_iff_prime]
   apply WfDvdMonoid.exists_factors a
 #align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factors
 
+/- warning: unique_factorization_monoid.induction_on_prime -> UniqueFactorizationMonoid.induction_on_prime is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (x : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x) -> (P x)) -> (forall (a : α) (p : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a))) -> (P a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (x : α), (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x) -> (P x)) -> (forall (a : α) (p : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) -> (P a) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a))) -> (P a)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_prime UniqueFactorizationMonoid.induction_on_primeₓ'. -/
 @[elab_as_elim]
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a :=
@@ -216,6 +296,7 @@ theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x
 
 end UniqueFactorizationMonoid
 
+#print prime_factors_unique /-
 theorem prime_factors_unique [CancelCommMonoidWithZero α] :
     ∀ {f g : Multiset α},
       (∀ x ∈ f, Prime x) → (∀ x ∈ g, Prime x) → f.Prod ~ᵤ g.Prod → Multiset.Rel Associated f g :=
@@ -242,19 +323,23 @@ theorem prime_factors_unique [CancelCommMonoidWithZero α] :
             (by rwa [← Multiset.prod_cons, ← Multiset.prod_cons, Multiset.cons_erase hbg]) hb
             (hf p (by simp)).NeZero))
 #align prime_factors_unique prime_factors_unique
+-/
 
 namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
+#print UniqueFactorizationMonoid.factors_unique /-
 theorem factors_unique {f g : Multiset α} (hf : ∀ x ∈ f, Irreducible x)
     (hg : ∀ x ∈ g, Irreducible x) (h : f.Prod ~ᵤ g.Prod) : Multiset.Rel Associated f g :=
   prime_factors_unique (fun x hx => irreducible_iff_prime.mp (hf x hx))
     (fun x hx => irreducible_iff_prime.mp (hg x hx)) h
 #align unique_factorization_monoid.factors_unique UniqueFactorizationMonoid.factors_unique
+-/
 
 end UniqueFactorizationMonoid
 
+#print prime_factors_irreducible /-
 /-- If an irreducible has a prime factorization,
   then it is an associate of one of its prime factors. -/
 theorem prime_factors_irreducible [CancelCommMonoidWithZero α] {a : α} {f : Multiset α}
@@ -279,6 +364,7 @@ theorem prime_factors_irreducible [CancelCommMonoidWithZero α] {a : α} {f : Mu
   simp only [mul_one, Multiset.prod_cons, Multiset.prod_zero, hs0] at *
   exact ⟨Associated.symm ⟨u, hu⟩, rfl⟩
 #align prime_factors_irreducible prime_factors_irreducible
+-/
 
 section ExistsPrimeFactors
 
@@ -288,6 +374,12 @@ variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime
 
 include pf
 
+/- warning: wf_dvd_monoid.of_exists_prime_factors -> WfDvdMonoid.of_exists_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (WfDvdMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factorsₓ'. -/
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
   ⟨by
     classical
@@ -329,6 +421,12 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
           apply (Classical.choose_spec (pf _ _)).2.symm⟩
 #align wf_dvd_monoid.of_exists_prime_factors WfDvdMonoid.of_exists_prime_factors
 
+/- warning: irreducible_iff_prime_of_exists_prime_factors -> irreducible_iff_prime_of_exists_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall {p : α}, Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall {p : α}, Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
+Case conversion may be inaccurate. Consider using '#align irreducible_iff_prime_of_exists_prime_factors irreducible_iff_prime_of_exists_prime_factorsₓ'. -/
 theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p ↔ Prime p :=
   by
   by_cases hp0 : p = 0
@@ -340,6 +438,12 @@ theorem irreducible_iff_prime_of_exists_prime_factors {p : α} : Irreducible p 
   exact hf.1 q (Multiset.mem_singleton_self _)
 #align irreducible_iff_prime_of_exists_prime_factors irreducible_iff_prime_of_exists_prime_factors
 
+/- warning: unique_factorization_monoid.of_exists_prime_factors -> UniqueFactorizationMonoid.of_exists_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.of_exists_prime_factors UniqueFactorizationMonoid.of_exists_prime_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.of_exists_prime_factors : UniqueFactorizationMonoid α :=
   { WfDvdMonoid.of_exists_prime_factors pf with
     irreducible_iff_prime := fun _ => irreducible_iff_prime_of_exists_prime_factors pf }
@@ -347,6 +451,12 @@ theorem UniqueFactorizationMonoid.of_exists_prime_factors : UniqueFactorizationM
 
 end ExistsPrimeFactors
 
+/- warning: unique_factorization_monoid.iff_exists_prime_factors -> UniqueFactorizationMonoid.iff_exists_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.iff_exists_prime_factors UniqueFactorizationMonoid.iff_exists_prime_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.iff_exists_prime_factors [CancelCommMonoidWithZero α] :
     UniqueFactorizationMonoid α ↔
       ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.Prod ~ᵤ a :=
@@ -358,6 +468,12 @@ section
 
 variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero β]
 
+/- warning: mul_equiv.unique_factorization_monoid -> MulEquiv.uniqueFactorizationMonoid is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : CancelCommMonoidWithZero.{u2} β], (MulEquiv.{u1, u2} α β (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_2)))))) -> (UniqueFactorizationMonoid.{u1} α _inst_1) -> (UniqueFactorizationMonoid.{u2} β _inst_2)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u2} α] [_inst_2 : CancelCommMonoidWithZero.{u1} β], (MulEquiv.{u2, u1} α β (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_1))))) (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_2)))))) -> (UniqueFactorizationMonoid.{u2} α _inst_1) -> (UniqueFactorizationMonoid.{u1} β _inst_2)
+Case conversion may be inaccurate. Consider using '#align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoidₓ'. -/
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β :=
   by
@@ -377,6 +493,12 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
       simp⟩
 #align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoid
 
+/- warning: mul_equiv.unique_factorization_monoid_iff -> MulEquiv.uniqueFactorizationMonoid_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : CancelCommMonoidWithZero.{u2} β], (MulEquiv.{u1, u2} α β (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_2)))))) -> (Iff (UniqueFactorizationMonoid.{u1} α _inst_1) (UniqueFactorizationMonoid.{u2} β _inst_2))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u2} α] [_inst_2 : CancelCommMonoidWithZero.{u1} β], (MulEquiv.{u2, u1} α β (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_1))))) (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_2)))))) -> (Iff (UniqueFactorizationMonoid.{u2} α _inst_1) (UniqueFactorizationMonoid.{u1} β _inst_2))
+Case conversion may be inaccurate. Consider using '#align mul_equiv.unique_factorization_monoid_iff MulEquiv.uniqueFactorizationMonoid_iffₓ'. -/
 theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
     UniqueFactorizationMonoid α ↔ UniqueFactorizationMonoid β :=
   ⟨e.UniqueFactorizationMonoid, e.symm.UniqueFactorizationMonoid⟩
@@ -384,6 +506,12 @@ theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
 
 end
 
+/- warning: irreducible_iff_prime_of_exists_unique_irreducible_factors -> irreducible_iff_prime_of_exists_unique_irreducible_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (forall (p : α), Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (forall (p : α), Iff (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p))
+Case conversion may be inaccurate. Consider using '#align irreducible_iff_prime_of_exists_unique_irreducible_factors irreducible_iff_prime_of_exists_unique_irreducible_factorsₓ'. -/
 theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -425,6 +553,12 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
     Prime.irreducible⟩
 #align irreducible_iff_prime_of_exists_unique_irreducible_factors irreducible_iff_prime_of_exists_unique_irreducible_factors
 
+/- warning: unique_factorization_monoid.of_exists_unique_irreducible_factors -> UniqueFactorizationMonoid.of_exists_unique_irreducible_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (forall (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{succ u1} (Multiset.{u1} α) (fun (f : Multiset.{u1} α) => And (forall (b : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) b f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) a)))) -> (forall (f : Multiset.{u1} α) (g : Multiset.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x f) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (forall (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x g) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) f) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) g)) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) f g)) -> (UniqueFactorizationMonoid.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.of_exists_unique_irreducible_factors UniqueFactorizationMonoid.of_exists_unique_irreducible_factorsₓ'. -/
 theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCommMonoidWithZero α]
     (eif : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Irreducible b) ∧ f.Prod ~ᵤ a)
     (uif :
@@ -444,17 +578,31 @@ variable [CancelCommMonoidWithZero α] [DecidableEq α]
 
 variable [UniqueFactorizationMonoid α]
 
+#print UniqueFactorizationMonoid.factors /-
 /-- Noncomputably determines the multiset of prime factors. -/
 noncomputable def factors (a : α) : Multiset α :=
   if h : a = 0 then 0 else Classical.choose (UniqueFactorizationMonoid.exists_prime_factors a h)
 #align unique_factorization_monoid.factors UniqueFactorizationMonoid.factors
+-/
 
+/- warning: unique_factorization_monoid.factors_prod -> UniqueFactorizationMonoid.factors_prod is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) a)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prodₓ'. -/
 theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).Prod a :=
   by
   rw [factors, dif_neg ane0]
   exact (Classical.choose_spec (exists_prime_factors a ane0)).2
 #align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prod
 
+/- warning: unique_factorization_monoid.ne_zero_of_mem_factors -> UniqueFactorizationMonoid.ne_zero_of_mem_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {a : α}, (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {a : α}, (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factorsₓ'. -/
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   by
   intro ha
@@ -462,25 +610,43 @@ theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 :=
   exact Multiset.not_mem_zero _ h
 #align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factors
 
+#print UniqueFactorizationMonoid.dvd_of_mem_factors /-
 theorem dvd_of_mem_factors {p a : α} (h : p ∈ factors a) : p ∣ a :=
   dvd_trans (Multiset.dvd_prod h) (Associated.dvd (factors_prod (ne_zero_of_mem_factors h)))
 #align unique_factorization_monoid.dvd_of_mem_factors UniqueFactorizationMonoid.dvd_of_mem_factors
+-/
 
+#print UniqueFactorizationMonoid.prime_of_factor /-
 theorem prime_of_factor {a : α} (x : α) (hx : x ∈ factors a) : Prime x :=
   by
   have ane0 := ne_zero_of_mem_factors hx
   rw [factors, dif_neg ane0] at hx
   exact (Classical.choose_spec (UniqueFactorizationMonoid.exists_prime_factors a ane0)).1 x hx
 #align unique_factorization_monoid.prime_of_factor UniqueFactorizationMonoid.prime_of_factor
+-/
 
+#print UniqueFactorizationMonoid.irreducible_of_factor /-
 theorem irreducible_of_factor {a : α} : ∀ x : α, x ∈ factors a → Irreducible x := fun x h =>
   (prime_of_factor x h).Irreducible
 #align unique_factorization_monoid.irreducible_of_factor UniqueFactorizationMonoid.irreducible_of_factor
+-/
 
+/- warning: unique_factorization_monoid.factors_zero -> UniqueFactorizationMonoid.factors_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zeroₓ'. -/
 @[simp]
 theorem factors_zero : factors (0 : α) = 0 := by simp [factors]
 #align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zero
 
+/- warning: unique_factorization_monoid.factors_one -> UniqueFactorizationMonoid.factors_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_one UniqueFactorizationMonoid.factors_oneₓ'. -/
 @[simp]
 theorem factors_one : factors (1 : α) = 0 :=
   by
@@ -491,6 +657,12 @@ theorem factors_one : factors (1 : α) = 0 :=
   exact factors_prod one_ne_zero
 #align unique_factorization_monoid.factors_one UniqueFactorizationMonoid.factors_one
 
+/- warning: unique_factorization_monoid.exists_mem_factors_of_dvd -> UniqueFactorizationMonoid.exists_mem_factors_of_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) (fun (H : Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => And (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) q (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 a)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvdₓ'. -/
 theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ factors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -508,6 +680,12 @@ theorem exists_mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_factors_of_dvd UniqueFactorizationMonoid.exists_mem_factors_of_dvd
 
+/- warning: unique_factorization_monoid.exists_mem_factors -> UniqueFactorizationMonoid.exists_mem_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factorsₓ'. -/
 theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p ∈ factors x :=
   by
   obtain ⟨p', hp', hp'x⟩ := WfDvdMonoid.exists_irreducible_factor h hx
@@ -515,6 +693,12 @@ theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p 
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factors
 
+/- warning: unique_factorization_monoid.factors_mul -> UniqueFactorizationMonoid.factors_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.hasAdd.{u1} α)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.instAddMultiset.{u1} α)) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_mul UniqueFactorizationMonoid.factors_mulₓ'. -/
 theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     Multiset.Rel Associated (factors (x * y)) (factors x + factors y) :=
   by
@@ -527,6 +711,12 @@ theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
   exact (Associated.mul_mul (factors_prod hx) (factors_prod hy)).symm
 #align unique_factorization_monoid.factors_mul UniqueFactorizationMonoid.factors_mul
 
+/- warning: unique_factorization_monoid.factors_pow -> UniqueFactorizationMonoid.factors_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (SMul.smul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.orderedCancelAddCommMonoid.{u1} α)))))) n (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Multiset.Rel.{u1, u1} α α (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (HSMul.hSMul.{0, u1, u1} Nat (Multiset.{u1} α) (Multiset.{u1} α) (instHSMul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} α))))))) n (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_pow UniqueFactorizationMonoid.factors_powₓ'. -/
 theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n)) (n • factors x) :=
   by
   induction' n with n ih
@@ -539,6 +729,12 @@ theorem factors_pow {x : α} (n : ℕ) : Multiset.Rel Associated (factors (x ^ n
   exact Multiset.rel_refl_of_refl_on fun y hy => Associated.refl _
 #align unique_factorization_monoid.factors_pow UniqueFactorizationMonoid.factors_pow
 
+/- warning: unique_factorization_monoid.factors_pos -> UniqueFactorizationMonoid.factors_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_posₓ'. -/
 @[simp]
 theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x :=
   by
@@ -561,11 +757,14 @@ variable [CancelCommMonoidWithZero α] [DecidableEq α] [NormalizationMonoid α]
 
 variable [UniqueFactorizationMonoid α]
 
+#print UniqueFactorizationMonoid.normalizedFactors /-
 /-- Noncomputably determines the multiset of prime factors. -/
 noncomputable def normalizedFactors (a : α) : Multiset α :=
   Multiset.map normalize <| factors a
 #align unique_factorization_monoid.normalized_factors UniqueFactorizationMonoid.normalizedFactors
+-/
 
+#print UniqueFactorizationMonoid.factors_eq_normalizedFactors /-
 /-- An arbitrary choice of factors of `x : M` is exactly the (unique) normalized set of factors,
 if `M` has a trivial group of units. -/
 @[simp]
@@ -577,7 +776,14 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
   ext p
   exact normalize_eq p
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
+-/
 
+/- warning: unique_factorization_monoid.normalized_factors_prod -> UniqueFactorizationMonoid.normalizedFactors_prod is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) a)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_prod UniqueFactorizationMonoid.normalizedFactors_prodₓ'. -/
 theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalizedFactors a).Prod a :=
   by
   rw [normalized_factors, factors, dif_neg ane0]
@@ -589,6 +795,7 @@ theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalize
   rw [Function.comp_apply, Associates.mk_normalize]
 #align unique_factorization_monoid.normalized_factors_prod UniqueFactorizationMonoid.normalizedFactors_prod
 
+#print UniqueFactorizationMonoid.prime_of_normalized_factor /-
 theorem prime_of_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → Prime x :=
   by
   rw [normalized_factors, factors]
@@ -597,12 +804,21 @@ theorem prime_of_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactor
   rw [(normalize_associated _).prime_iff]
   exact (Classical.choose_spec (UniqueFactorizationMonoid.exists_prime_factors a ane0)).1 y hy
 #align unique_factorization_monoid.prime_of_normalized_factor UniqueFactorizationMonoid.prime_of_normalized_factor
+-/
 
+#print UniqueFactorizationMonoid.irreducible_of_normalized_factor /-
 theorem irreducible_of_normalized_factor {a : α} :
     ∀ x : α, x ∈ normalizedFactors a → Irreducible x := fun x h =>
   (prime_of_normalized_factor x h).Irreducible
 #align unique_factorization_monoid.irreducible_of_normalized_factor UniqueFactorizationMonoid.irreducible_of_normalized_factor
+-/
 
+/- warning: unique_factorization_monoid.normalize_normalized_factor -> UniqueFactorizationMonoid.normalize_normalized_factor is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) x) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} (x : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) x) x)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factorₓ'. -/
 theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → normalize x = x :=
   by
   rw [normalized_factors, factors]
@@ -612,6 +828,12 @@ theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFacto
   apply normalize_idem
 #align unique_factorization_monoid.normalize_normalized_factor UniqueFactorizationMonoid.normalize_normalized_factor
 
+/- warning: unique_factorization_monoid.normalized_factors_irreducible -> UniqueFactorizationMonoid.normalizedFactors_irreducible is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} α (Multiset.{u1} α) (Multiset.hasSingleton.{u1} α) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a) (Singleton.singleton.{u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) a) (Multiset.{u1} α) (Multiset.instSingletonMultiset.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) a)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducibleₓ'. -/
 theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
     normalizedFactors a = {normalize a} :=
   by
@@ -625,6 +847,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+#print UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd /-
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
   by
@@ -635,7 +858,14 @@ theorem normalizedFactors_eq_of_dvd (a : α) :
       apply (normalize_normalized_factor _ _).symm <;>
     assumption
 #align unique_factorization_monoid.normalized_factors_eq_of_dvd UniqueFactorizationMonoid.normalizedFactors_eq_of_dvd
+-/
 
+/- warning: unique_factorization_monoid.exists_mem_normalized_factors_of_dvd -> UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) (fun (H : Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Exists.{succ u1} α (fun (q : α) => And (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) q (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 a)) (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p q)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvdₓ'. -/
 theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     p ∣ a → ∃ q ∈ normalizedFactors a, p ~ᵤ q := fun ⟨b, hb⟩ =>
   have hb0 : b ≠ 0 := fun hb0 => by simp_all
@@ -654,6 +884,12 @@ theorem exists_mem_normalizedFactors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irr
   Multiset.exists_mem_of_rel_of_mem this (by simp)
 #align unique_factorization_monoid.exists_mem_normalized_factors_of_dvd UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
 
+/- warning: unique_factorization_monoid.exists_mem_normalized_factors -> UniqueFactorizationMonoid.exists_mem_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) p (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)) -> (Exists.{succ u1} α (fun (p : α) => Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) p (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_mem_normalized_factors UniqueFactorizationMonoid.exists_mem_normalizedFactorsₓ'. -/
 theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
     ∃ p, p ∈ normalizedFactors x :=
   by
@@ -662,11 +898,23 @@ theorem exists_mem_normalizedFactors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) :
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_normalized_factors UniqueFactorizationMonoid.exists_mem_normalizedFactors
 
+/- warning: unique_factorization_monoid.normalized_factors_zero -> UniqueFactorizationMonoid.normalizedFactors_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_zero UniqueFactorizationMonoid.normalizedFactors_zeroₓ'. -/
 @[simp]
 theorem normalizedFactors_zero : normalizedFactors (0 : α) = 0 := by
   simp [normalized_factors, factors]
 #align unique_factorization_monoid.normalized_factors_zero UniqueFactorizationMonoid.normalizedFactors_zero
 
+/- warning: unique_factorization_monoid.normalized_factors_one -> UniqueFactorizationMonoid.normalizedFactors_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1], Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_one UniqueFactorizationMonoid.normalizedFactors_oneₓ'. -/
 @[simp]
 theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   by
@@ -680,6 +928,12 @@ theorem normalizedFactors_one : normalizedFactors (1 : α) = 0 :=
   infer_instance
 #align unique_factorization_monoid.normalized_factors_one UniqueFactorizationMonoid.normalizedFactors_one
 
+/- warning: unique_factorization_monoid.normalized_factors_mul -> UniqueFactorizationMonoid.normalizedFactors_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.hasAdd.{u1} α)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} α) (Multiset.{u1} α) (Multiset.{u1} α) (instHAdd.{u1} (Multiset.{u1} α) (Multiset.instAddMultiset.{u1} α)) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_mul UniqueFactorizationMonoid.normalizedFactors_mulₓ'. -/
 @[simp]
 theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     normalizedFactors (x * y) = normalizedFactors x + normalizedFactors y :=
@@ -705,6 +959,12 @@ theorem normalizedFactors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
         (normalized_factors_prod (mul_ne_zero hx hy)).symm
 #align unique_factorization_monoid.normalized_factors_mul UniqueFactorizationMonoid.normalizedFactors_mul
 
+/- warning: unique_factorization_monoid.normalized_factors_pow -> UniqueFactorizationMonoid.normalizedFactors_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (SMul.smul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.orderedCancelAddCommMonoid.{u1} α)))))) n (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} (n : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x n)) (HSMul.hSMul.{0, u1, u1} Nat (Multiset.{u1} α) (Multiset.{u1} α) (instHSMul.{0, u1} Nat (Multiset.{u1} α) (AddMonoid.SMul.{u1} (Multiset.{u1} α) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} α) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} α) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} α) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} α) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} α))))))) n (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_powₓ'. -/
 @[simp]
 theorem normalizedFactors_pow {x : α} (n : ℕ) :
     normalizedFactors (x ^ n) = n • normalizedFactors x :=
@@ -716,11 +976,23 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   rw [pow_succ, succ_nsmul, normalized_factors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
 
+/- warning: irreducible.normalized_factors_pow -> Irreducible.normalizedFactors_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
+Case conversion may be inaccurate. Consider using '#align irreducible.normalized_factors_pow Irreducible.normalizedFactors_powₓ'. -/
 theorem Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align irreducible.normalized_factors_pow Irreducible.normalizedFactors_pow
 
+/- warning: unique_factorization_monoid.normalized_factors_prod_eq -> UniqueFactorizationMonoid.normalizedFactors_prod_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3)) s))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (s : Multiset.{u1} α), (forall (a : α), (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) a s) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) -> (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (Multiset.prod.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) s)) (Multiset.map.{u1, u1} α α (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3)) s))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eqₓ'. -/
 theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducible a) :
     normalizedFactors s.Prod = s.map normalize :=
   by
@@ -738,6 +1010,12 @@ theorem normalizedFactors_prod_eq (s : Multiset α) (hs : ∀ a ∈ s, Irreducib
     exacts[rfl, ib, Multiset.prod_ne_zero fun h => (ib 0 h).NeZero rfl]
 #align unique_factorization_monoid.normalized_factors_prod_eq UniqueFactorizationMonoid.normalizedFactors_prod_eq
 
+/- warning: unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors -> UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toLE.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) x y) (LE.le.{u1} (Multiset.{u1} α) (Preorder.toLE.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactorsₓ'. -/
 theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ∣ y ↔ normalizedFactors x ≤ normalizedFactors y :=
   by
@@ -749,6 +1027,12 @@ theorem dvd_iff_normalizedFactors_le_normalizedFactors {x y : α} (hx : x ≠ 0)
     apply Multiset.prod_dvd_prod_of_le
 #align unique_factorization_monoid.dvd_iff_normalized_factors_le_normalized_factors UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
 
+/- warning: unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors -> UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x y) (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x y) (Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactorsₓ'. -/
 theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     x ~ᵤ y ↔ normalizedFactors x = normalizedFactors y :=
   by
@@ -759,15 +1043,28 @@ theorem associated_iff_normalizedFactors_eq_normalizedFactors {x y : α} (hx : x
   all_goals simp [*, h.dvd, h.symm.dvd]
 #align unique_factorization_monoid.associated_iff_normalized_factors_eq_normalized_factors UniqueFactorizationMonoid.associated_iff_normalizedFactors_eq_normalizedFactors
 
+/- warning: unique_factorization_monoid.normalized_factors_of_irreducible_pow -> UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} α k (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => α -> α) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (normalize.{u1} α _inst_1 _inst_3) p)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α}, (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (forall (k : Nat), Eq.{succ u1} (Multiset.{u1} α) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p k)) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) p) k (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α (fun (_x : α) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : α) => α) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MulOneClass.toMul.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (normalize.{u1} α _inst_1 _inst_3) p)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_powₓ'. -/
 theorem normalizedFactors_of_irreducible_pow {p : α} (hp : Irreducible p) (k : ℕ) :
     normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) := by
   rw [normalized_factors_pow, normalized_factors_irreducible hp, Multiset.nsmul_singleton]
 #align unique_factorization_monoid.normalized_factors_of_irreducible_pow UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow
 
+/- warning: unique_factorization_monoid.zero_not_mem_normalized_factors -> UniqueFactorizationMonoid.zero_not_mem_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), Not (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), Not (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.zero_not_mem_normalized_factors UniqueFactorizationMonoid.zero_not_mem_normalizedFactorsₓ'. -/
 theorem zero_not_mem_normalizedFactors (x : α) : (0 : α) ∉ normalizedFactors x := fun h =>
   Prime.ne_zero (prime_of_normalized_factor _ h) rfl
 #align unique_factorization_monoid.zero_not_mem_normalized_factors UniqueFactorizationMonoid.zero_not_mem_normalizedFactors
 
+#print UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors /-
 theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a) : p ∣ a :=
   by
   by_cases hcases : a = 0
@@ -775,7 +1072,14 @@ theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a)
     exact dvd_zero p
   · exact dvd_trans (Multiset.dvd_prod H) (Associated.dvd (normalized_factors_prod hcases))
 #align unique_factorization_monoid.dvd_of_mem_normalized_factors UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
+-/
 
+/- warning: unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor -> UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {r : α}, (forall {m : α}, (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) m (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 r)) -> (Eq.{succ u1} α m p)) -> (Ne.{succ u1} α r (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Exists.{1} Nat (fun (i : Nat) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p i) r))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : α} {r : α}, (forall {m : α}, (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) m (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 r)) -> (Eq.{succ u1} α m p)) -> (Ne.{succ u1} α r (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Exists.{1} Nat (fun (i : Nat) => Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p i) r))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factorₓ'. -/
 theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
     (h : ∀ {m}, m ∈ normalizedFactors r → m = p) (hr : r ≠ 0) : ∃ i : ℕ, Associated (p ^ i) r :=
   by
@@ -784,13 +1088,16 @@ theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
   rwa [Multiset.eq_replicate_of_mem fun b => h, Multiset.prod_replicate] at this
 #align unique_factorization_monoid.exists_associated_prime_pow_of_unique_normalized_factor UniqueFactorizationMonoid.exists_associated_prime_pow_of_unique_normalized_factor
 
+#print UniqueFactorizationMonoid.normalizedFactors_prod_of_prime /-
 theorem normalizedFactors_prod_of_prime [Nontrivial α] [Unique αˣ] {m : Multiset α}
     (h : ∀ p ∈ m, Prime p) : normalizedFactors m.Prod = m := by
   simpa only [← Multiset.rel_eq, ← associated_eq_eq] using
     prime_factors_unique prime_of_normalized_factor h
       (normalized_factors_prod (m.prod_ne_zero_of_prime h))
 #align unique_factorization_monoid.normalized_factors_prod_of_prime UniqueFactorizationMonoid.normalizedFactors_prod_of_prime
+-/
 
+#print UniqueFactorizationMonoid.mem_normalizedFactors_eq_of_associated /-
 theorem mem_normalizedFactors_eq_of_associated {a b c : α} (ha : a ∈ normalizedFactors c)
     (hb : b ∈ normalizedFactors c) (h : Associated a b) : a = b :=
   by
@@ -798,7 +1105,14 @@ theorem mem_normalizedFactors_eq_of_associated {a b c : α} (ha : a ∈ normaliz
     normalize_eq_normalize_iff]
   apply Associated.dvd_dvd h
 #align unique_factorization_monoid.mem_normalized_factors_eq_of_associated UniqueFactorizationMonoid.mem_normalizedFactors_eq_of_associated
+-/
 
+/- warning: unique_factorization_monoid.normalized_factors_pos -> UniqueFactorizationMonoid.normalizedFactors_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (OfNat.mk.{u1} (Multiset.{u1} α) 0 (Zero.zero.{u1} (Multiset.{u1} α) (Multiset.hasZero.{u1} α)))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] (x : α), (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (OfNat.ofNat.{u1} (Multiset.{u1} α) 0 (Zero.toOfNat0.{u1} (Multiset.{u1} α) (Multiset.instZeroMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x)) (Not (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) x)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_posₓ'. -/
 @[simp]
 theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x ↔ ¬IsUnit x :=
   by
@@ -815,6 +1129,12 @@ theorem normalizedFactors_pos (x : α) (hx : x ≠ 0) : 0 < normalizedFactors x
         (mt multiset.eq_zero_iff_forall_not_mem.mp (not_forall.mpr ⟨p, not_not.mpr hp⟩))
 #align unique_factorization_monoid.normalized_factors_pos UniqueFactorizationMonoid.normalizedFactors_pos
 
+/- warning: unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors -> UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.partialOrder.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_1] {x : α} {y : α}, (Ne.{succ u1} α x (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α y (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (DvdNotUnit.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) x y) (LT.lt.{u1} (Multiset.{u1} α) (Preorder.toLT.{u1} (Multiset.{u1} α) (PartialOrder.toPreorder.{u1} (Multiset.{u1} α) (Multiset.instPartialOrderMultiset.{u1} α))) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 x) (UniqueFactorizationMonoid.normalizedFactors.{u1} α _inst_1 (fun (a : α) (b : α) => _inst_2 a b) _inst_3 _inst_4 y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactorsₓ'. -/
 theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     DvdNotUnit x y ↔ normalizedFactors x < normalizedFactors y :=
   by
@@ -841,6 +1161,7 @@ noncomputable section
 
 variable [CancelCommMonoidWithZero α] [Nontrivial α] [UniqueFactorizationMonoid α]
 
+#print UniqueFactorizationMonoid.normalizationMonoid /-
 /-- Noncomputably defines a `normalization_monoid` structure on a `unique_factorization_monoid`. -/
 protected def normalizationMonoid : NormalizationMonoid α :=
   normalizationMonoidOfMonoidHomRightInverse
@@ -873,6 +1194,7 @@ protected def normalizationMonoid : NormalizationMonoid α :=
         associated_iff_eq]
       apply normalized_factors_prod hx)
 #align unique_factorization_monoid.normalization_monoid UniqueFactorizationMonoid.normalizationMonoid
+-/
 
 instance : Inhabited (NormalizationMonoid α) :=
   ⟨UniqueFactorizationMonoid.normalizationMonoid⟩
@@ -883,6 +1205,12 @@ namespace UniqueFactorizationMonoid
 
 variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
+/- warning: unique_factorization_monoid.no_factors_of_no_prime_factors -> UniqueFactorizationMonoid.no_factors_of_no_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factorsₓ'. -/
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun d =>
   induction_on_prime d
@@ -894,6 +1222,12 @@ theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
 #align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
 
+/- warning: unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors -> UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d c) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a b)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d c) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a b)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factorsₓ'. -/
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `c` have no common prime factors, `a ∣ b`.
 Compare `is_coprime.dvd_of_dvd_mul_left`. -/
 theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
@@ -915,6 +1249,12 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     exact no_factors h (dvd_mul_right p c) hp
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
 
+/- warning: unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors -> UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a c)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R} {b : R} {c : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b) -> (Not (Prime.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1) d))) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) b c)) -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a c)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factorsₓ'. -/
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `b` have no common prime factors, `a ∣ c`.
 Compare `is_coprime.dvd_of_dvd_mul_right`. -/
 theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
@@ -922,6 +1262,12 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
   simpa [mul_comm b c] using dvd_of_dvd_mul_left_of_no_prime_factors ha @no_factors
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 
+/- warning: unique_factorization_monoid.exists_reduced_factors -> UniqueFactorizationMonoid.exists_reduced_factors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R), (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (forall (b : R), Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R), (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (forall (b : R), Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factorsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
@@ -956,12 +1302,24 @@ theorem exists_reduced_factors :
       exact coprime q_dvd_a' q_dvd_b'
 #align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factors
 
+/- warning: unique_factorization_monoid.exists_reduced_factors' -> UniqueFactorizationMonoid.exists_reduced_factors' is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R) (b : R), (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toHasMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] (a : R) (b : R), (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Exists.{succ u1} R (fun (a' : R) => Exists.{succ u1} R (fun (b' : R) => Exists.{succ u1} R (fun (c' : R) => And (forall {d : R}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d a') -> (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) d b') -> (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) d)) (And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' a') a) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulZeroClass.toMul.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))))) c' b') b))))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'ₓ'. -/
 theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
     ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b :=
   let ⟨b', a', c', no_factor, hb, ha⟩ := exists_reduced_factors b hb a
   ⟨a', b', c', fun _ hpb hpa => no_factor hpa hpb, ha, hb⟩
 #align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'
 
+/- warning: unique_factorization_monoid.pow_right_injective -> UniqueFactorizationMonoid.pow_right_injective is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (Function.Injective.{1, succ u1} Nat R ((fun (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10637 : R) (x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639 : Nat) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10637 x._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.10639) a))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injectiveₓ'. -/
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
     Function.Injective ((· ^ ·) a : ℕ → R) :=
   by
@@ -976,6 +1334,12 @@ theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
   exact mul_right_cancel₀ (multiset.count_ne_zero.mpr mem) this
 #align unique_factorization_monoid.pow_right_injective UniqueFactorizationMonoid.pow_right_injective
 
+/- warning: unique_factorization_monoid.pow_eq_pow_iff -> UniqueFactorizationMonoid.pow_eq_pow_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (forall {i : Nat} {j : Nat}, Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a i) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a j)) (Eq.{1} Nat i j))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] {a : R}, (Ne.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Not (IsUnit.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a)) -> (forall {i : Nat} {j : Nat}, Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a i) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) a j)) (Eq.{1} Nat i j))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.pow_eq_pow_iff UniqueFactorizationMonoid.pow_eq_pow_iffₓ'. -/
 theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} : a ^ i = a ^ j ↔ i = j :=
   (pow_right_injective ha0 ha1).eq_iff
 #align unique_factorization_monoid.pow_eq_pow_iff UniqueFactorizationMonoid.pow_eq_pow_iff
@@ -990,6 +1354,12 @@ open multiplicity Multiset
 
 include dec_dvd
 
+/- warning: unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors -> UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Iff (LE.le.{0} PartENat PartENat.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} R) (Preorder.toLE.{u1} (Multiset.{u1} R) (PartialOrder.toPreorder.{u1} (Multiset.{u1} R) (Multiset.partialOrder.{u1} R))) (Multiset.replicate.{u1} R n (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R} {n : Nat}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Iff (LE.le.{0} PartENat PartENat.instLEPartENat (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) n) (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b)) (LE.le.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Preorder.toLE.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (PartialOrder.toPreorder.{u1} (Multiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)) (Multiset.instPartialOrderMultiset.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a)))) (Multiset.replicate.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) n (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a)) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactorsₓ'. -/
 theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (ha : Irreducible a)
     (hb : b ≠ 0) : ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b :=
   by
@@ -1009,6 +1379,12 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (
     exact (Associated.pow_pow <| associated_normalize a).Dvd.trans (Dvd.intro u.prod rfl)
 #align unique_factorization_monoid.le_multiplicity_iff_replicate_le_normalized_factors UniqueFactorizationMonoid.le_multiplicity_iff_replicate_le_normalizedFactors
 
+/- warning: unique_factorization_monoid.multiplicity_eq_count_normalized_factors -> UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat PartENat (HasLiftT.mk.{1, 1} Nat PartENat (CoeTCₓ.coe.{1, 1} Nat PartENat (Nat.castCoe.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.addCommMonoidWithOne))))) (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] [dec_dvd : DecidableRel.{succ u1} R (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))] {a : R} {b : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) a) -> (Ne.{succ u1} R b (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} PartENat (multiplicity.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (fun (a : R) (b : R) => dec_dvd a b) a b) (Nat.cast.{0} PartENat (AddMonoidWithOne.toNatCast.{0} PartENat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} PartENat PartENat.instAddCommMonoidWithOnePartENat)) (Multiset.count.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (fun (a : R) (b : R) => _inst_5 a b) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) a) (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 b))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactorsₓ'. -/
 /-- The multiplicity of an irreducible factor of a nonzero element is exactly the number of times
 the normalized factor occurs in the `normalized_factors`.
 
@@ -1028,6 +1404,12 @@ theorem multiplicity_eq_count_normalizedFactors {a b : R} (ha : Irreducible a) (
 
 omit dec_dvd
 
+/- warning: unique_factorization_monoid.count_normalized_factors_eq -> UniqueFactorizationMonoid.count_normalizedFactors_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eqₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`.
 
@@ -1046,6 +1428,12 @@ theorem count_normalizedFactors_eq {p x : R} (hp : Irreducible p) (hnorm : norma
   exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm
 #align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eq
 
+/- warning: unique_factorization_monoid.count_normalized_factors_eq' -> UniqueFactorizationMonoid.count_normalizedFactors_eq' is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (MulZeroOneClass.toMulZeroClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (fun (_x : MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) => R -> R) (MonoidWithZeroHom.hasCoeToFun.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} R] [_inst_2 : UniqueFactorizationMonoid.{u1} R _inst_1] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : NormalizationMonoid.{u1} R _inst_1] [_inst_5 : DecidableEq.{succ u1} R] {p : R} {x : R}, (Or (Eq.{succ u1} R p (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (Irreducible.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) p)) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) p) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) (MonoidWithZeroHomClass.toMonoidHomClass.{u1, u1, u1} (MonoidWithZeroHom.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1)))) R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZeroHom.monoidWithZeroHomClass.{u1, u1} R R (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))))) (normalize.{u1} R _inst_1 _inst_4) p) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p n) x) -> (Not (Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (MonoidWithZero.toSemigroupWithZero.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (CommMonoidWithZero.toMonoidWithZero.{u1} R (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} R _inst_1))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x)) -> (Eq.{1} Nat (Multiset.count.{u1} R (fun (a : R) (b : R) => _inst_5 a b) p (UniqueFactorizationMonoid.normalizedFactors.{u1} R _inst_1 (fun (a : R) (b : R) => _inst_5 a b) _inst_4 _inst_2 x)) n))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'ₓ'. -/
 /-- The number of times an irreducible factor `p` appears in `normalized_factors x` is defined by
 the number of times it divides `x`. This is a slightly more general version of
 `unique_factorization_monoid.count_normalized_factors_eq` that allows `p = 0`.
@@ -1074,6 +1462,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 open BigOperators
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+#print UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert /-
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
     (is_coprime : ∀ (q) (_ : q ∈ insert p s) (q') (_ : q' ∈ insert p s), q ∣ q' → q = q') :
@@ -1091,7 +1480,14 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
   convert q_mem
   exact IsCoprime _ (Finset.mem_insert_self p s) _ (Finset.mem_insert_of_mem q_mem) this
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
+-/
 
+/- warning: unique_factorization_monoid.induction_on_prime_power -> UniqueFactorizationMonoid.induction_on_prime_power is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (s : Finset.{u1} α) (i : α -> Nat), (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (forall (q : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) q s) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (s : Finset.{u1} α) (i : α -> Nat), (forall (p : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) p s) -> (forall (q : α), (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) q s) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_prime_power UniqueFactorizationMonoid.induction_on_prime_powerₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
@@ -1113,6 +1509,12 @@ theorem induction_on_prime_power {P : α → Prop} (s : Finset α) (i : α → 
         IsCoprime _ (Finset.mem_insert_of_mem hq) _ (Finset.mem_insert_of_mem hq'))
 #align unique_factorization_monoid.induction_on_prime_power UniqueFactorizationMonoid.induction_on_prime_power
 
+/- warning: unique_factorization_monoid.induction_on_coprime -> UniqueFactorizationMonoid.induction_on_coprime is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))))))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {P : α -> Prop} (a : α), (P (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) -> (forall {x : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) x) -> (P x)) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (P (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (P x) -> (P y) -> (P (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y))) -> (P a)
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprimeₓ'. -/
 /-- If `P` holds for `0`, units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on all `a : α`. -/
@@ -1137,6 +1539,12 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
   · apply normalized_factors_eq_of_dvd
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 
+/- warning: unique_factorization_monoid.multiplicative_prime_power -> UniqueFactorizationMonoid.multiplicative_prime_power is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] {f : α -> β} (s : Finset.{u1} α) (i : α -> Nat) (j : α -> Nat), (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p)) -> (forall (p : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) p s) -> (forall (q : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) q s) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p q) -> (Eq.{succ u1} α p q))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (i p) (j p))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (i p)))) (f (Finset.prod.{u1, u1} α α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)) s (fun (p : α) => HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p (j p))))))
+but is expected to have type
+  forall {α : Type.{u2}} [_inst_3 : CancelCommMonoidWithZero.{u2} α] [_inst_4 : UniqueFactorizationMonoid.{u2} α _inst_3] {β : Type.{u1}} [_inst_5 : CancelCommMonoidWithZero.{u1} β] {f : α -> β} (s : Finset.{u2} α) (i : α -> Nat) (j : α -> Nat), (forall (p : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) p s) -> (Prime.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3) p)) -> (forall (p : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) p s) -> (forall (q : α), (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) q s) -> (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p q) -> (Eq.{succ u2} α p q))) -> (forall {x : α} {y : α}, (IsUnit.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))) y) -> (Eq.{succ u1} β (f (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)))))) x y)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3) p) -> (Eq.{succ u1} β (f (HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p i)) (HPow.hPow.{u1, 0, u1} β Nat β (instHPow.{u1, 0} β Nat (Monoid.Pow.{u1} β (MonoidWithZero.toMonoid.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p x) -> (Dvd.dvd.{u2} α (semigroupDvd.{u2} α (SemigroupWithZero.toSemigroup.{u2} α (MonoidWithZero.toSemigroupWithZero.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p y) -> (IsUnit.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))) p)) -> (Eq.{succ u1} β (f (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulZeroClass.toMul.{u2} α (MulZeroOneClass.toMulZeroClass.{u2} α (MonoidWithZero.toMulZeroOneClass.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)))))) x y)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u1} β (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (i p) (j p))))) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (MulZeroClass.toMul.{u1} β (MulZeroOneClass.toMulZeroClass.{u1} β (MonoidWithZero.toMulZeroOneClass.{u1} β (CommMonoidWithZero.toMonoidWithZero.{u1} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} β _inst_5)))))) (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (i p)))) (f (Finset.prod.{u2, u2} α α (CommMonoidWithZero.toCommMonoid.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3)) s (fun (p : α) => HPow.hPow.{u2, 0, u2} α Nat α (instHPow.{u2, 0} α Nat (Monoid.Pow.{u2} α (MonoidWithZero.toMonoid.{u2} α (CommMonoidWithZero.toMonoidWithZero.{u2} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} α _inst_3))))) p (j p))))))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_powerₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
@@ -1162,6 +1570,12 @@ theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α →
     mul_assoc, mul_left_comm (f p ^ j p), mul_assoc]
 #align unique_factorization_monoid.multiplicative_prime_power UniqueFactorizationMonoid.multiplicative_prime_power
 
+/- warning: unique_factorization_monoid.multiplicative_of_coprime -> UniqueFactorizationMonoid.multiplicative_of_coprime is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] (f : α -> β) (a : α) (b : α), (Eq.{succ u2} β (f (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))))))) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))))))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) a b)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toHasMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f a) (f b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : CancelCommMonoidWithZero.{u1} α] [_inst_4 : UniqueFactorizationMonoid.{u1} α _inst_3] {β : Type.{u2}} [_inst_5 : CancelCommMonoidWithZero.{u2} β] (f : α -> β) (a : α) (b : α), (Eq.{succ u2} β (f (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (CommMonoidWithZero.toZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) -> (forall {x : α} {y : α}, (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) y) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (forall {p : α} (i : Nat), (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3) p) -> (Eq.{succ u2} β (f (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p i)) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5))))) (f p) i))) -> (forall {x : α} {y : α}, (forall (p : α), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p x) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))))) p y) -> (IsUnit.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3))) p)) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) x y)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f x) (f y)))) -> (Eq.{succ u2} β (f (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_3)))))) a b)) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (MulZeroClass.toMul.{u2} β (MulZeroOneClass.toMulZeroClass.{u2} β (MonoidWithZero.toMulZeroOneClass.{u2} β (CommMonoidWithZero.toMonoidWithZero.{u2} β (CancelCommMonoidWithZero.toCommMonoidWithZero.{u2} β _inst_5)))))) (f a) (f b)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.multiplicative_of_coprime UniqueFactorizationMonoid.multiplicative_of_coprimeₓ'. -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative everywhere. -/
 theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
@@ -1234,6 +1648,7 @@ open UniqueFactorizationMonoid Associated Multiset
 
 variable [CancelCommMonoidWithZero α]
 
+#print Associates.FactorSet /-
 /-- `factor_set α` representation elements of unique factorization domain as multisets.
 `multiset α` produced by `normalized_factors` are only unique up to associated elements, while the
 multisets in `factor_set α` are unique by equality and restricted to irreducible elements. This
@@ -1245,13 +1660,26 @@ multiple.
 def FactorSet.{u} (α : Type u) [CancelCommMonoidWithZero α] : Type u :=
   WithTop (Multiset { a : Associates α // Irreducible a })
 #align associates.factor_set Associates.FactorSet
+-/
 
 attribute [local instance] Associated.setoid
 
+/- warning: associates.factor_set.coe_add -> Associates.FactorSet.coe_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))} {b : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (instHAdd.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))} {b : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (HAdd.hAdd.{u1, u1, u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (instHAdd.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) a b)) (HAdd.hAdd.{u1, u1, u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (instHAdd.{u1} (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) a) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) b))
+Case conversion may be inaccurate. Consider using '#align associates.factor_set.coe_add Associates.FactorSet.coe_addₓ'. -/
 theorem FactorSet.coe_add {a b : Multiset { a : Associates α // Irreducible a }} :
     (↑(a + b) : FactorSet α) = a + b := by norm_cast
 #align associates.factor_set.coe_add Associates.FactorSet.coe_add
 
+/- warning: associates.factor_set.sup_add_inf_eq_add -> Associates.FactorSet.sup_add_inf_eq_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Sup.sup.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeSup.toHasSup.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.lattice.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b) (Inf.inf.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeInf.toHasInf.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeInf.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeInf.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.lattice.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Sup.sup.{u1} (Associates.FactorSet.{u1} α _inst_1) (SemilatticeSup.toSup.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.semilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Lattice.toSemilatticeSup.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instLatticeMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b))))) a b) (Inf.inf.{u1} (Associates.FactorSet.{u1} α _inst_1) (Lattice.toInf.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.lattice.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instLatticeMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)
+Case conversion may be inaccurate. Consider using '#align associates.factor_set.sup_add_inf_eq_add Associates.FactorSet.sup_add_inf_eq_addₓ'. -/
 theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
     ∀ a b : FactorSet α, a ⊔ b + a ⊓ b = a + b
   | none, b => show ⊤ ⊔ b + ⊤ ⊓ b = ⊤ + b by simp
@@ -1264,24 +1692,44 @@ theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
       exact Multiset.union_add_inter _ _
 #align associates.factor_set.sup_add_inf_eq_add Associates.FactorSet.sup_add_inf_eq_add
 
+#print Associates.FactorSet.prod /-
 /-- Evaluates the product of a `factor_set` to be the product of the corresponding multiset,
   or `0` if there is none. -/
 def FactorSet.prod : FactorSet α → Associates α
   | none => 0
   | some s => (s.map coe).Prod
 #align associates.factor_set.prod Associates.FactorSet.prod
+-/
 
+/- warning: associates.prod_top -> Associates.prod_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align associates.prod_top Associates.prod_topₓ'. -/
 @[simp]
 theorem prod_top : (⊤ : FactorSet α).Prod = 0 :=
   rfl
 #align associates.prod_top Associates.prod_top
 
+/- warning: associates.prod_coe -> Associates.prod_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) s)) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeSubtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) s))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Subtype.val.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) s))
+Case conversion may be inaccurate. Consider using '#align associates.prod_coe Associates.prod_coeₓ'. -/
 @[simp]
 theorem prod_coe {s : Multiset { a : Associates α // Irreducible a }} :
     (s : FactorSet α).Prod = (s.map coe).Prod :=
   rfl
 #align associates.prod_coe Associates.prod_coe
 
+/- warning: associates.prod_add -> Associates.prod_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] (a : Associates.FactorSet.{u1} α _inst_1) (b : Associates.FactorSet.{u1} α _inst_1), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
+Case conversion may be inaccurate. Consider using '#align associates.prod_add Associates.prod_addₓ'. -/
 @[simp]
 theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
   | none, b => show (⊤ + b).Prod = (⊤ : FactorSet α).Prod * b.Prod by simp
@@ -1291,6 +1739,12 @@ theorem prod_add : ∀ a b : FactorSet α, (a + b).Prod = a.Prod * b.Prod
       rw [← factor_set.coe_add, prod_coe, prod_coe, prod_coe, Multiset.map_add, Multiset.prod_add]
 #align associates.prod_add Associates.prod_add
 
+/- warning: associates.prod_mono -> Associates.prod_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b))
+Case conversion may be inaccurate. Consider using '#align associates.prod_mono Associates.prod_monoₓ'. -/
 theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | none, b, h => by
     have : b = ⊤ := top_unique h
@@ -1299,6 +1753,12 @@ theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.Prod ≤ b.Prod
   | some a, some b, h => prod_le_prod <| Multiset.map_le_map <| WithTop.coe_le_coe.1 <| h
 #align associates.prod_mono Associates.prod_mono
 
+/- warning: associates.factor_set.prod_eq_zero_iff -> Associates.FactorSet.prod_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α] (p : Associates.FactorSet.{u1} α _inst_1), Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 p) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α] (p : Associates.FactorSet.{u1} α _inst_1), Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 p) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
+Case conversion may be inaccurate. Consider using '#align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iffₓ'. -/
 theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod = 0 ↔ p = ⊤ :=
   by
   induction p using WithTop.recTopCoe
@@ -1309,6 +1769,12 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.Prod =
   exact ha.ne_zero Eq
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
 
+/- warning: associates.bcount -> Associates.bcount is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
+Case conversion may be inaccurate. Consider using '#align associates.bcount Associates.bcountₓ'. -/
 /-- `bcount p s` is the multiplicity of `p` in the factor_set `s` (with bundled `p`)-/
 def bcount [DecidableEq (Associates α)] (p : { a : Associates α // Irreducible a }) :
     FactorSet α → ℕ
@@ -1320,6 +1786,12 @@ variable [dec_irr : ∀ p : Associates α, Decidable (Irreducible p)]
 
 include dec_irr
 
+/- warning: associates.count -> Associates.count is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Nat
+Case conversion may be inaccurate. Consider using '#align associates.count Associates.countₓ'. -/
 /-- `count p s` is the multiplicity of the irreducible `p` in the factor_set `s`.
 
 If `p` is not irreducible, `count p s` is defined to be `0`. -/
@@ -1327,6 +1799,12 @@ def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → 
   if hp : Irreducible p then bcount ⟨p, hp⟩ else 0
 #align associates.count Associates.count
 
+/- warning: associates.count_some -> Associates.count_some is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.count.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.decidableEq.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp) s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s)) (Multiset.count.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (fun (a : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (b : Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) => Subtype.instDecidableEqSubtype.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (x : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) x) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) a b) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp) s)
+Case conversion may be inaccurate. Consider using '#align associates.count_some Associates.count_someₓ'. -/
 @[simp]
 theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
     (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ :=
@@ -1336,6 +1814,12 @@ theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
   rfl
 #align associates.count_some Associates.count_some
 
+/- warning: associates.count_zero -> Associates.count_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (OfNat.mk.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.zero.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasZero.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.toOfNat0.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instZeroMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
+Case conversion may be inaccurate. Consider using '#align associates.count_zero Associates.count_zeroₓ'. -/
 @[simp]
 theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
     count p (0 : FactorSet α) = 0 := by
@@ -1344,6 +1828,12 @@ theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irred
   rfl
 #align associates.count_zero Associates.count_zero
 
+/- warning: associates.count_reducible -> Associates.count_reducible is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (OfNat.mk.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.zero.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (ᾰ : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => Nat.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (Eq.{succ u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => _inst_2 a b) p) (OfNat.ofNat.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) 0 (Zero.toOfNat0.{u1} ((Associates.FactorSet.{u1} α _inst_1) -> Nat) (Pi.instZero.{u1, 0} (Associates.FactorSet.{u1} α _inst_1) (fun (a._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.15480 : Associates.FactorSet.{u1} α _inst_1) => Nat) (fun (i : Associates.FactorSet.{u1} α _inst_1) => LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+Case conversion may be inaccurate. Consider using '#align associates.count_reducible Associates.count_reducibleₓ'. -/
 theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
     count p = 0 :=
   dif_neg hp
@@ -1351,6 +1841,12 @@ theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp :
 
 omit dec_irr
 
+/- warning: associates.bfactor_set_mem -> Associates.BfactorSetMem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α], (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
+Case conversion may be inaccurate. Consider using '#align associates.bfactor_set_mem Associates.BfactorSetMemₓ'. -/
 /-- membership in a factor_set (bundled version) -/
 def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α → Prop
   | _, ⊤ => True
@@ -1359,6 +1855,12 @@ def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α →
 
 include dec_irr
 
+/- warning: associates.factor_set_mem -> Associates.FactorSetMem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)], (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) -> (Associates.FactorSet.{u1} α _inst_1) -> Prop
+Case conversion may be inaccurate. Consider using '#align associates.factor_set_mem Associates.FactorSetMemₓ'. -/
 /-- `factor_set_mem p s` is the predicate that the irreducible `p` is a member of
 `s : factor_set α`.
 
@@ -1370,21 +1872,45 @@ def FactorSetMem (p : Associates α) (s : FactorSet α) : Prop :=
 instance : Membership (Associates α) (FactorSet α) :=
   ⟨FactorSetMem⟩
 
+/- warning: associates.factor_set_mem_eq_mem -> Associates.factorSetMem_eq_mem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (s : Associates.FactorSet.{u1} α _inst_1), Eq.{1} Prop (Associates.FactorSetMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) p s) (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (s : Associates.FactorSet.{u1} α _inst_1), Eq.{1} Prop (Associates.FactorSetMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) p s) (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s)
+Case conversion may be inaccurate. Consider using '#align associates.factor_set_mem_eq_mem Associates.factorSetMem_eq_memₓ'. -/
 @[simp]
 theorem factorSetMem_eq_mem (p : Associates α) (s : FactorSet α) : FactorSetMem p s = (p ∈ s) :=
   rfl
 #align associates.factor_set_mem_eq_mem Associates.factorSetMem_eq_mem
 
+/- warning: associates.mem_factor_set_top -> Associates.mem_factorSet_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
+Case conversion may be inaccurate. Consider using '#align associates.mem_factor_set_top Associates.mem_factorSet_topₓ'. -/
 theorem mem_factorSet_top {p : Associates α} {hp : Irreducible p} : p ∈ (⊤ : FactorSet α) := by
   dsimp only [Membership.Mem]; dsimp only [factor_set_mem]; split_ifs; exact trivial
 #align associates.mem_factor_set_top Associates.mem_factorSet_top
 
+/- warning: associates.mem_factor_set_some -> Associates.mem_factorSet_some is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {l : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Iff (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) l)) (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) p hp) l)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {l : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))}, Iff (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (WithTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) l)) (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p hp) l)
+Case conversion may be inaccurate. Consider using '#align associates.mem_factor_set_some Associates.mem_factorSet_someₓ'. -/
 theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
     {l : Multiset { a : Associates α // Irreducible a }} :
     p ∈ (l : FactorSet α) ↔ Subtype.mk p hp ∈ l := by dsimp only [Membership.Mem];
   dsimp only [factor_set_mem]; split_ifs; rfl
 #align associates.mem_factor_set_some Associates.mem_factorSet_some
 
+/- warning: associates.reducible_not_mem_factor_set -> Associates.reducible_not_mem_factorSet is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (forall (s : Associates.FactorSet.{u1} α _inst_1), Not (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Not (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) -> (forall (s : Associates.FactorSet.{u1} α _inst_1), Not (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p s))
+Case conversion may be inaccurate. Consider using '#align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSetₓ'. -/
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
     ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
   rwa [dif_neg hp] at h
@@ -1394,6 +1920,12 @@ omit dec_irr
 
 variable [UniqueFactorizationMonoid α]
 
+/- warning: associates.unique' -> Associates.unique' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) -> (Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p q)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) -> (Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p q)
+Case conversion may be inaccurate. Consider using '#align associates.unique' Associates.unique'ₓ'. -/
 theorem unique' {p q : Multiset (Associates α)} :
     (∀ a ∈ p, Irreducible a) → (∀ a ∈ q, Irreducible a) → p.Prod = q.Prod → p = q :=
   by
@@ -1406,6 +1938,7 @@ theorem unique' {p q : Multiset (Associates α)} :
   simpa [quot_mk_eq_mk, prod_mk, mk_eq_mk_iff_associated] using Eq
 #align associates.unique' Associates.unique'
 
+#print Associates.FactorSet.unique /-
 theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Prod) : p = q :=
   by
   induction p using WithTop.recTopCoe <;> induction q using WithTop.recTopCoe
@@ -1419,7 +1952,14 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.Prod = q.Pr
         obtain ⟨⟨a', irred⟩, -, rfl⟩ := multiset.mem_map.mp ha
         rwa [Subtype.coe_mk]
 #align associates.factor_set.unique Associates.FactorSet.unique
+-/
 
+/- warning: associates.prod_le_prod_iff_le -> Associates.prod_le_prod_iff_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.hasMem.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toLE.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.partialOrder.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {p : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))} {q : Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (forall (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instMembershipMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) a q) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) -> (Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Multiset.prod.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) q)) (LE.le.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Preorder.toLE.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.instPartialOrderMultiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) p q))
+Case conversion may be inaccurate. Consider using '#align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_leₓ'. -/
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.Prod ≤ q.Prod ↔ p ≤ q :=
   Iff.intro
@@ -1442,17 +1982,35 @@ variable [dec : DecidableEq α] [dec' : DecidableEq (Associates α)]
 
 include dec
 
+/- warning: associates.factors' -> Associates.factors' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α], α -> (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α], α -> (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))
+Case conversion may be inaccurate. Consider using '#align associates.factors' Associates.factors'ₓ'. -/
 /-- This returns the multiset of irreducible factors as a `factor_set`,
   a multiset of irreducible associates `with_top`. -/
 noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducible a } :=
   (factors a).pmap (fun a ha => ⟨Associates.mk a, (irreducible_mk _).2 ha⟩) irreducible_of_factor
 #align associates.factors' Associates.factors'
 
+/- warning: associates.map_subtype_coe_factors' -> Associates.map_subtype_coe_factors' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α}, Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (coeSubtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Multiset.map.{u1, u1} α (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => dec a b) _inst_2 a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α}, Eq.{succ u1} (Multiset.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Multiset.map.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Subtype.val.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Multiset.map.{u1, u1} α (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (UniqueFactorizationMonoid.factors.{u1} α _inst_1 (fun (a : α) (b : α) => dec a b) _inst_2 a))
+Case conversion may be inaccurate. Consider using '#align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'ₓ'. -/
 @[simp]
 theorem map_subtype_coe_factors' {a : α} : (factors' a).map coe = (factors a).map Associates.mk :=
   by simp [factors', Multiset.map_pmap, Multiset.pmap_eq_map]
 #align associates.map_subtype_coe_factors' Associates.map_subtype_coe_factors'
 
+/- warning: associates.factors'_cong -> Associates.factors'_cong is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {b : α}, (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b) -> (Eq.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {b : α}, (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b) -> (Eq.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) b))
+Case conversion may be inaccurate. Consider using '#align associates.factors'_cong Associates.factors'_congₓ'. -/
 theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -1471,6 +2029,7 @@ theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b :=
 
 include dec'
 
+#print Associates.factors /-
 /-- This returns the multiset of irreducible factors of an associate as a `factor_set`,
   a multiset of irreducible associates `with_top`. -/
 noncomputable def factors (a : Associates α) : FactorSet α :=
@@ -1483,12 +2042,25 @@ noncomputable def factors (a : Associates α) : FactorSet α :=
     simp only [quotient_mk_eq_mk, this, mk_eq_zero]
   exact fun ha hb eq => hEq_of_eq <| congr_arg some <| factors'_cong hab
 #align associates.factors Associates.factors
+-/
 
+/- warning: associates.factors_0 -> Associates.factors_0 is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasTop.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (Top.top.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.top.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))
+Case conversion may be inaccurate. Consider using '#align associates.factors_0 Associates.factors_0ₓ'. -/
 @[simp]
 theorem factors_0 : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
 #align associates.factors_0 Associates.factors_0
 
+/- warning: associates.factors_mk -> Associates.factors_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (HasLiftT.mk.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (CoeTCₓ.coe.{succ u1, succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.FactorSet.{u1} α _inst_1) (WithTop.hasCoeT.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)) (WithTop.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
+Case conversion may be inaccurate. Consider using '#align associates.factors_mk Associates.factors_mkₓ'. -/
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
   classical
@@ -1496,6 +2068,7 @@ theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors'
     apply mt mk_eq_zero.1 h
 #align associates.factors_mk Associates.factors_mk
 
+#print Associates.factors_prod /-
 @[simp]
 theorem factors_prod (a : Associates α) : a.factors.Prod = a :=
   Quotient.inductionOn a fun a =>
@@ -1505,16 +2078,31 @@ theorem factors_prod (a : Associates α) : a.factors.Prod = a :=
       have : a ≠ 0 := by simp_all
       simp [this, quotient_mk_eq_mk, prod_mk, mk_eq_mk_iff_associated.2 (factors_prod this)]
 #align associates.factors_prod Associates.factors_prod
+-/
 
+#print Associates.prod_factors /-
 theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.Prod.factors = s :=
   FactorSet.unique <| factors_prod _
 #align associates.prod_factors Associates.prod_factors
+-/
 
+/- warning: associates.factors_subsingleton -> Associates.factors_subsingleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Subsingleton.{succ u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Subsingleton.{succ u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))
+Case conversion may be inaccurate. Consider using '#align associates.factors_subsingleton Associates.factors_subsingletonₓ'. -/
 @[nontriviality]
 theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = Option.none := by
   convert factors_0 <;> infer_instance
 #align associates.factors_subsingleton Associates.factors_subsingleton
 
+/- warning: associates.factors_eq_none_iff_zero -> Associates.factors_eq_none_iff_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.none.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zeroₓ'. -/
 theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 :=
   by
   nontriviality α
@@ -1522,20 +2110,34 @@ theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none 
     ⟨fun h => by rwa [← factors_prod a, factor_set.prod_eq_zero_iff], fun h => h.symm ▸ factors_0⟩
 #align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
 
+/- warning: associates.factors_eq_some_iff_ne_zero -> Associates.factors_eq_some_iff_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Exists.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) (fun (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) => Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s))) (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (Exists.{succ u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) (fun (s : Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p))) => Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) s))) (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zeroₓ'. -/
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
     (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
   rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne.def, Ne.def,
     factors_eq_none_iff_zero]
 #align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zero
 
+#print Associates.eq_of_factors_eq_factors /-
 theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factors) : a = b :=
   by
   have : a.factors.Prod = b.factors.Prod := by rw [h]
   rwa [factors_prod, factors_prod] at this
 #align associates.eq_of_factors_eq_factors Associates.eq_of_factors_eq_factors
+-/
 
 omit dec dec'
 
+/- warning: associates.eq_of_prod_eq_prod -> Associates.eq_of_prod_eq_prod is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : DecidableEq.{succ u1} α] [a : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [b : Nontrivial.{u1} α] {h : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 h) (Associates.FactorSet.prod.{u1} α _inst_1 b)) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) h b)
+Case conversion may be inaccurate. Consider using '#align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prodₓ'. -/
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.Prod) : a = b := by
   classical
     have : a.prod.factors = b.prod.factors := by rw [h]
@@ -1544,6 +2146,12 @@ theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.Prod = b.
 
 include dec dec' dec_irr
 
+/- warning: associates.eq_factors_of_eq_counts -> Associates.eq_factors_of_eq_counts is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+Case conversion may be inaccurate. Consider using '#align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_countsₓ'. -/
 theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ (p : Associates α) (hp : Irreducible p), p.count a.factors = p.count b.factors) :
     a.factors = b.factors :=
@@ -1561,11 +2169,23 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
 
+/- warning: associates.eq_of_eq_counts -> Associates.eq_of_eq_counts is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+Case conversion may be inaccurate. Consider using '#align associates.eq_of_eq_counts Associates.eq_of_eq_countsₓ'. -/
 theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
   eq_of_factors_eq_factors (eq_factors_of_eq_counts ha hb h)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
 
+/- warning: associates.count_le_count_of_factors_le -> Associates.count_le_count_of_factors_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_leₓ'. -/
 theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
     (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors :=
   by
@@ -1580,6 +2200,12 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
 
 omit dec_irr
 
+/- warning: associates.factors_mul -> Associates.factors_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasAdd.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)) (HAdd.hAdd.{u1, u1, u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHAdd.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.add.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instAddMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+Case conversion may be inaccurate. Consider using '#align associates.factors_mul Associates.factors_mulₓ'. -/
 @[simp]
 theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors :=
   by
@@ -1589,10 +2215,22 @@ theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.fact
   rw [prod_add, factors_prod, factors_prod, factors_prod]
 #align associates.factors_mul Associates.factors_mul
 
+/- warning: associates.factors_mono -> Associates.factors_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))
+Case conversion may be inaccurate. Consider using '#align associates.factors_mono Associates.factors_monoₓ'. -/
 theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
   | s, t, ⟨d, rfl⟩ => by rw [factors_mul] <;> exact le_add_of_nonneg_right bot_le
 #align associates.factors_mono Associates.factors_mono
 
+/- warning: associates.factors_le -> Associates.factors_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, Iff (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+Case conversion may be inaccurate. Consider using '#align associates.factors_le Associates.factors_leₓ'. -/
 theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :=
   Iff.intro
     (fun h => by
@@ -1603,6 +2241,12 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
 
 include dec_irr
 
+/- warning: associates.count_le_count_of_le -> Associates.count_le_count_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat Nat.hasLe (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) -> (LE.le.{0} Nat instLENat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)))
+Case conversion may be inaccurate. Consider using '#align associates.count_le_count_of_le Associates.count_le_count_of_leₓ'. -/
 theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
   count_le_count_of_factors_le hb hp <| factors_mono h
@@ -1610,6 +2254,12 @@ theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irredu
 
 omit dec dec' dec_irr
 
+/- warning: associates.prod_le -> Associates.prod_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.partialOrder.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : DecidableEq.{succ u1} α] [a : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [b : Nontrivial.{u1} α] {a : Associates.FactorSet.{u1} α _inst_1} {b : Associates.FactorSet.{u1} α _inst_1}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.prod.{u1} α _inst_1 a) (Associates.FactorSet.prod.{u1} α _inst_1 b)) (LE.le.{u1} (Associates.FactorSet.{u1} α _inst_1) (Preorder.toLE.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.preorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (PartialOrder.toPreorder.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instPartialOrderMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))) a b)
+Case conversion may be inaccurate. Consider using '#align associates.prod_le Associates.prod_leₓ'. -/
 theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a ≤ b := by
   classical exact
       Iff.intro
@@ -1641,6 +2291,12 @@ noncomputable instance : Lattice (Associates α) :=
     inf_le_left := fun a b => le_trans (prod_mono inf_le_left) (le_of_eq (factors_prod a))
     inf_le_right := fun a b => le_trans (prod_mono inf_le_right) (le_of_eq (factors_prod b)) }
 
+/- warning: associates.sup_mul_inf -> Associates.sup_mul_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Sup.sup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasSup.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Sup.sup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instSupAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) a b)) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)
+Case conversion may be inaccurate. Consider using '#align associates.sup_mul_inf Associates.sup_mul_infₓ'. -/
 theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
   show (a.factors ⊔ b.factors).Prod * (a.factors ⊓ b.factors).Prod = a * b
     by
@@ -1651,6 +2307,12 @@ theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
 
 include dec_irr
 
+/- warning: associates.dvd_of_mem_factors -> Associates.dvd_of_mem_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p}, (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p a)
+Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors Associates.dvd_of_mem_factorsₓ'. -/
 theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) : p ∣ a :=
   by
   by_cases ha0 : a = 0;
@@ -1666,6 +2328,12 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
 
 omit dec'
 
+/- warning: associates.dvd_of_mem_factors' -> Associates.dvd_of_mem_factors' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {hz : Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))}, (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) p hp) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p} {hz : Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))}, (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p hp) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))
+Case conversion may be inaccurate. Consider using '#align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'ₓ'. -/
 theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {hz : a ≠ 0}
     (h_mem : Subtype.mk p hp ∈ factors' a) : p ∣ Associates.mk a :=
   by
@@ -1677,6 +2345,12 @@ theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {h
 
 omit dec_irr
 
+/- warning: associates.mem_factors'_of_dvd -> Associates.mem_factors'_of_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)))
+Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_of_dvd Associates.mem_factors'_of_dvdₓ'. -/
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a :=
   by
@@ -1687,6 +2361,12 @@ theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd
 
 include dec_irr
 
+/- warning: associates.mem_factors'_iff_dvd -> Associates.mem_factors'_iff_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), Iff (Membership.Mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasMem.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (forall (hp : Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p), Iff (Membership.mem.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instMembershipMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Iff.mpr (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p)) (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.irreducible_mk.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) hp)) (Associates.factors'.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) a)) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+Case conversion may be inaccurate. Consider using '#align associates.mem_factors'_iff_dvd Associates.mem_factors'_iff_dvdₓ'. -/
 theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a :=
   by
@@ -1699,11 +2379,23 @@ theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
 
 include dec'
 
+/- warning: associates.mem_factors_of_dvd -> Associates.mem_factors_of_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) -> (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a)))
+Case conversion may be inaccurate. Consider using '#align associates.mem_factors_of_dvd Associates.mem_factors_of_dvdₓ'. -/
 theorem mem_factors_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Associates.mk p ∈ factors (Associates.mk a) := by rw [factors_mk _ ha0];
   exact mem_factor_set_some.mpr (mem_factors'_of_dvd ha0 hp hd)
 #align associates.mem_factors_of_dvd Associates.mem_factors_of_dvd
 
+/- warning: associates.mem_factors_iff_dvd -> Associates.mem_factors_iff_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Membership.Mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.hasMem.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Membership.mem.{u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.FactorSet.{u1} α _inst_1) (Associates.instMembershipAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZeroFactorSet.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+Case conversion may be inaccurate. Consider using '#align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvdₓ'. -/
 theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     Associates.mk p ∈ factors (Associates.mk a) ↔ p ∣ a :=
   by
@@ -1714,6 +2406,12 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
 
+/- warning: associates.exists_prime_dvd_of_not_inf_one -> Associates.exists_prime_dvd_of_not_inf_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Exists.{succ u1} α (fun (p : α) => And (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) (And (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Exists.{succ u1} α (fun (p : α) => And (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) p) (And (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p b))))
+Case conversion may be inaccurate. Consider using '#align associates.exists_prime_dvd_of_not_inf_one Associates.exists_prime_dvd_of_not_inf_oneₓ'. -/
 theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b :=
   by
@@ -1738,6 +2436,12 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     apply hb
 #align associates.exists_prime_dvd_of_not_inf_one Associates.exists_prime_dvd_of_not_inf_one
 
+/- warning: associates.coprime_iff_inf_one -> Associates.coprime_iff_inf_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasInf.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (forall {d : α}, (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d a) -> (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d b) -> (Not (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) d))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Inf.inf.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instInfAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b)) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) b)) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (forall {d : α}, (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d a) -> (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) d b) -> (Not (Prime.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1) d))))
+Case conversion may be inaccurate. Consider using '#align associates.coprime_iff_inf_one Associates.coprime_iff_inf_oneₓ'. -/
 theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
     Associates.mk a ⊓ Associates.mk b = 1 ↔ ∀ {d : α}, d ∣ a → d ∣ b → ¬Prime d :=
   by
@@ -1754,12 +2458,24 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
 
 omit dec_irr
 
+/- warning: associates.factors_self -> Associates.factors_self is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Singleton.singleton.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasSingleton.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Singleton.singleton.{u1, u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instSingletonMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+Case conversion may be inaccurate. Consider using '#align associates.factors_self Associates.factors_selfₓ'. -/
 theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
     p.factors = some {⟨p, hp⟩} :=
   eq_of_prod_eq_prod
     (by rw [factors_prod, factor_set.prod, map_singleton, prod_singleton, Subtype.coe_mk])
 #align associates.factors_self Associates.factors_self
 
+/- warning: associates.factors_prime_pow -> Associates.factors_prime_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (k : Nat), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k)) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.replicate.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) k (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} (hp : Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) (k : Nat), Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k)) (Option.some.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.replicate.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)) k (Subtype.mk.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a) p hp)))
+Case conversion may be inaccurate. Consider using '#align associates.factors_prime_pow Associates.factors_prime_powₓ'. -/
 theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible p) (k : ℕ) :
     factors (p ^ k) = some (Multiset.replicate k ⟨p, hp⟩) :=
   eq_of_prod_eq_prod
@@ -1770,6 +2486,12 @@ theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible
 
 include dec_irr
 
+/- warning: associates.prime_pow_dvd_iff_le -> Associates.prime_pow_dvd_iff_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat Nat.hasLe k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {k : Nat}, Iff (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p k) m) (LE.le.{0} Nat instLENat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m))))
+Case conversion may be inaccurate. Consider using '#align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_leₓ'. -/
 theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p)
     {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors :=
   by
@@ -1779,6 +2501,12 @@ theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠
   exact WithTop.coe_le_coe
 #align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_le
 
+/- warning: associates.le_of_count_ne_zero -> Associates.le_of_count_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.preorder.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {m : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) m (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) m)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (LE.le.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Preorder.toLE.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instPreorderAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p m)
+Case conversion may be inaccurate. Consider using '#align associates.le_of_count_ne_zero Associates.le_of_count_ne_zeroₓ'. -/
 theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) :
     count p m.factors ≠ 0 → p ≤ m := by
   nontriviality α
@@ -1789,6 +2517,12 @@ theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducib
   simpa only
 #align associates.le_of_count_ne_zero Associates.le_of_count_ne_zero
 
+/- warning: associates.count_ne_zero_iff_dvd -> Associates.count_ne_zero_iff_dvd is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Dvd.Dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : α} {p : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Irreducible.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) -> (Iff (Ne.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) p) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (Associates.mk.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Dvd.dvd.{u1} α (semigroupDvd.{u1} α (SemigroupWithZero.toSemigroup.{u1} α (MonoidWithZero.toSemigroupWithZero.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) p a))
+Case conversion may be inaccurate. Consider using '#align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvdₓ'. -/
 theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a :=
   by
@@ -1806,10 +2540,22 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
     exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 
+/- warning: associates.count_self -> Associates.count_self is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p)) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))
+Case conversion may be inaccurate. Consider using '#align associates.count_self Associates.count_selfₓ'. -/
 theorem count_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) : p.count p.factors = 1 :=
   by simp [factors_self hp, Associates.count_some hp]
 #align associates.count_self Associates.count_self
 
+/- warning: associates.count_eq_zero_of_ne -> Associates.count_eq_zero_of_ne is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {q : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) q) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p q) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) q)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {q : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) q) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p q) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) q)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
+Case conversion may be inaccurate. Consider using '#align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_neₓ'. -/
 theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irreducible q)
     (h : p ≠ q) : p.count q.factors = 0 :=
   not_ne_iff.mp fun h' =>
@@ -1820,6 +2566,12 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
           exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
+/- warning: associates.count_mul -> Associates.count_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))))
+Case conversion may be inaccurate. Consider using '#align associates.count_mul Associates.count_mulₓ'. -/
 theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) : count p (factors (a * b)) = count p a.factors + count p b.factors :=
   by
@@ -1830,6 +2582,12 @@ theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b
     Multiset.count_add, count_some hp, count_some hp]
 #align associates.count_mul Associates.count_mul
 
+/- warning: associates.count_of_coprime -> Associates.count_of_coprime is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))))
+Case conversion may be inaccurate. Consider using '#align associates.count_of_coprime Associates.count_of_coprimeₓ'. -/
 theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
     count p a.factors = 0 ∨ count p b.factors = 0 :=
@@ -1841,6 +2599,12 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
     ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb, irreducible_iff_prime.mp hp⟩
 #align associates.count_of_coprime Associates.count_of_coprime
 
+/- warning: associates.count_mul_of_coprime -> Associates.count_mul_of_coprime is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))))))
+Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime Associates.count_mul_of_coprimeₓ'. -/
 theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p a.factors = 0 ∨ count p a.factors = count p (a * b).factors :=
@@ -1852,6 +2616,12 @@ theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠
   rw [count_mul ha hb hp, hb0, add_zero]
 #align associates.count_mul_of_coprime Associates.count_mul_of_coprime
 
+/- warning: associates.count_mul_of_coprime' -> Associates.count_mul_of_coprime' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (Or (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))) (Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b))) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) b))))
+Case conversion may be inaccurate. Consider using '#align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'ₓ'. -/
 theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Irreducible p)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p (a * b).factors = count p a.factors ∨ count p (a * b).factors = count p b.factors :=
@@ -1866,6 +2636,12 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
     rw [hb0, add_zero]
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
 
+/- warning: associates.dvd_count_of_dvd_count_mul -> Associates.dvd_count_of_dvd_count_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)))) -> (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b)))) -> (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+Case conversion may be inaccurate. Consider using '#align associates.dvd_count_of_dvd_count_mul Associates.dvd_count_of_dvd_count_mulₓ'. -/
 theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Associates α}
     (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
     (habk : k ∣ count p (a * b).factors) : k ∣ count p a.factors :=
@@ -1880,6 +2656,12 @@ theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Ass
 
 omit dec_irr
 
+/- warning: associates.factors_one -> Associates.factors_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.one.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (OfNat.mk.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.zero.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.hasZero.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α], Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instOneAssociates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Associates.FactorSet.{u1} α _inst_1) 0 (Zero.toOfNat0.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.zero.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instZeroMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))
+Case conversion may be inaccurate. Consider using '#align associates.factors_one Associates.factors_oneₓ'. -/
 @[simp]
 theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   by
@@ -1888,6 +2670,12 @@ theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 :=
   exact Multiset.prod_zero
 #align associates.factors_one Associates.factors_one
 
+/- warning: associates.pow_factors -> Associates.pow_factors is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {k : Nat}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)) (SMul.smul.{0, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (AddMonoid.SMul.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.addMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.orderedCancelAddCommMonoid.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))))))))) k (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {k : Nat}, Eq.{succ u1} (Associates.FactorSet.{u1} α _inst_1) (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)) (HSMul.hSMul.{0, u1, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (Associates.FactorSet.{u1} α _inst_1) (instHSMul.{0, u1} Nat (Associates.FactorSet.{u1} α _inst_1) (AddMonoid.SMul.{u1} (Associates.FactorSet.{u1} α _inst_1) (WithTop.addMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Subtype.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a)))))))))) k (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a))
+Case conversion may be inaccurate. Consider using '#align associates.pow_factors Associates.pow_factorsₓ'. -/
 @[simp]
 theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
   by
@@ -1899,6 +2687,12 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).fact
 
 include dec_irr
 
+/- warning: associates.count_pow -> Associates.count_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Eq.{1} Nat (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k))) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+Case conversion may be inaccurate. Consider using '#align associates.count_pow Associates.count_powₓ'. -/
 theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors :=
   by
@@ -1908,6 +2702,12 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
     ring
 #align associates.count_pow Associates.count_pow
 
+/- warning: associates.dvd_count_pow -> Associates.dvd_count_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall (k : Nat), Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a k)))))
+Case conversion may be inaccurate. Consider using '#align associates.dvd_count_pow Associates.dvd_count_powₓ'. -/
 theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
     (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors :=
   by
@@ -1915,6 +2715,12 @@ theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : As
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
+/- warning: associates.is_pow_of_dvd_count -> Associates.is_pow_of_dvd_count is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {k : Nat}, (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Dvd.Dvd.{0} Nat Nat.hasDvd k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) b k))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall {k : Nat}, (forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (Dvd.dvd.{0} Nat Nat.instDvdNat k (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) b k))))
+Case conversion may be inaccurate. Consider using '#align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_countₓ'. -/
 theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
     (hk : ∀ (p : Associates α) (hp : Irreducible p), k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k :=
@@ -1934,6 +2740,12 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
   exact WithBot.coe_nsmul u k
 #align associates.is_pow_of_dvd_count Associates.is_pow_of_dvd_count
 
+/- warning: associates.eq_pow_count_factors_of_dvd_pow -> Associates.eq_pow_count_factors_of_dvd_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {n : Nat}, (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall {n : Nat}, (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) -> (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))))
+Case conversion may be inaccurate. Consider using '#align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. See `eq_pow_find_of_dvd_irreducible_pow`
 for an explicit expression as a p-power (without using `count`). -/
 theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible p) {n : ℕ}
@@ -1955,6 +2767,12 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
   · rw [count_eq_zero_of_ne hq hp h, MulZeroClass.mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
+/- warning: associates.count_factors_eq_find_of_dvd_pow -> Associates.count_factors_eq_find_of_dvd_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{1} Nat (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [dec_irr : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [dec : DecidableEq.{succ u1} α] [dec' : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{1} Nat (Nat.find (fun (n : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => (fun (n : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n) n h)) (Associates.count.{u1} α _inst_1 (fun (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec_irr p) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) p (Associates.factors.{u1} α _inst_1 _inst_2 (fun (a : α) (b : α) => dec a b) (fun (a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => dec' a b) a)))
+Case conversion may be inaccurate. Consider using '#align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_powₓ'. -/
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
     Nat.find ⟨n, h⟩ = p.count a.factors :=
@@ -1977,6 +2795,12 @@ omit dec_irr
 
 omit dec'
 
+/- warning: associates.eq_pow_of_mul_eq_pow -> Associates.eq_pow_of_mul_eq_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : Nontrivial.{u1} α] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {b : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {c : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) b (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (OfNat.mk.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.zero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasZero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d a) -> (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d b) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.hasMul.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a b) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) c k)) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d k))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [_inst_3 : UniqueFactorizationMonoid.{u1} α _inst_1] [a : DecidableEq.{succ u1} α] [b : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] [c : Nontrivial.{u1} α] {ha : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hb : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {hab : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (Ne.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) hb (OfNat.ofNat.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) 0 (Zero.toOfNat0.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instZeroAssociates.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) -> (forall (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d ha) -> (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d hb) -> (Not (Prime.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)) d))) -> (forall {k : Nat}, (Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHMul.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instMulAssociatesToMonoid.{u1} α (CommMonoidWithZero.toCommMonoid.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha hb) (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) hab k)) -> (Exists.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (fun (d : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) => Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) ha (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) d k))))
+Case conversion may be inaccurate. Consider using '#align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_powₓ'. -/
 theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
     ∃ d : Associates α, a = d ^ k := by
@@ -1995,6 +2819,12 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
       cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
+/- warning: associates.eq_pow_find_of_dvd_irreducible_pow -> Associates.eq_pow_find_of_dvd_irreducible_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] {a : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p) -> (forall [_inst_3 : forall (n : Nat), Decidable (Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n))] {n : Nat} (h : Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p (Nat.find (fun {n : Nat} => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) (fun (a : Nat) => _inst_3 a) (Exists.intro.{1} Nat (fun (n : Nat) => Dvd.Dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.commMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) p n)) n h))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : forall (p : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))), Decidable (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) p)] [a : UniqueFactorizationMonoid.{u1} α _inst_1] [p : DecidableEq.{succ u1} α] [hp : DecidableEq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))] {_inst_3 : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))} {n : Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))}, (Irreducible.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) n) -> (forall [inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24551 : forall (n_1 : Nat), Decidable (Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1))] {n_1 : Nat} (h : Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)), Eq.{succ u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n (Nat.find (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) (fun (a : Nat) => inst._@.Mathlib.RingTheory.UniqueFactorizationDomain._hyg.24551 a) (Exists.intro.{1} Nat (fun (n_1 : Nat) => (fun (n_1 : Nat) => Dvd.dvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (semigroupDvd.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (SemigroupWithZero.toSemigroup.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toSemigroupWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) _inst_3 (HPow.hPow.{u1, 0, u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (instHPow.{u1, 0} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) Nat (Monoid.Pow.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (CommMonoidWithZero.toMonoidWithZero.{u1} (Associates.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))) (Associates.instCommMonoidWithZeroAssociatesToMonoidToMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) n n_1)) n_1) n_1 h))))
+Case conversion may be inaccurate. Consider using '#align associates.eq_pow_find_of_dvd_irreducible_pow Associates.eq_pow_find_of_dvd_irreducible_powₓ'. -/
 /-- The only divisors of prime powers are prime powers. -/
 theorem eq_pow_find_of_dvd_irreducible_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) : a = p ^ Nat.find ⟨n, h⟩ := by
@@ -2007,12 +2837,15 @@ section
 
 open Associates UniqueFactorizationMonoid
 
+#print Associates.quot_out /-
 theorem Associates.quot_out {α : Type _} [CommMonoid α] (a : Associates α) :
     Associates.mk (Quot.out a) = a := by rw [← quot_mk_eq_mk, Quot.out_eq]
 #align associates.quot_out Associates.quot_out
+-/
 
+#print UniqueFactorizationMonoid.toGCDMonoid /-
 /-- `to_gcd_monoid` constructs a GCD monoid out of a unique factorization domain. -/
-noncomputable def UniqueFactorizationMonoid.toGcdMonoid (α : Type _) [CancelCommMonoidWithZero α]
+noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type _) [CancelCommMonoidWithZero α]
     [UniqueFactorizationMonoid α] [DecidableEq (Associates α)] [DecidableEq α] : GCDMonoid α
     where
   gcd a b := Quot.out (Associates.mk a ⊓ Associates.mk b : Associates α)
@@ -2041,11 +2874,13 @@ noncomputable def UniqueFactorizationMonoid.toGcdMonoid (α : Type _) [CancelCom
   gcd_mul_lcm a b := by
     rw [← mk_eq_mk_iff_associated, ← Associates.mk_mul_mk, ← associated_iff_eq, Associates.quot_out,
       Associates.quot_out, mul_comm, sup_mul_inf, Associates.mk_mul_mk]
-#align unique_factorization_monoid.to_gcd_monoid UniqueFactorizationMonoid.toGcdMonoid
+#align unique_factorization_monoid.to_gcd_monoid UniqueFactorizationMonoid.toGCDMonoid
+-/
 
+#print UniqueFactorizationMonoid.toNormalizedGCDMonoid /-
 /-- `to_normalized_gcd_monoid` constructs a GCD monoid out of a normalization on a
   unique factorization domain. -/
-noncomputable def UniqueFactorizationMonoid.toNormalizedGcdMonoid (α : Type _)
+noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type _)
     [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [NormalizationMonoid α]
     [DecidableEq (Associates α)] [DecidableEq α] : NormalizedGCDMonoid α :=
   {
@@ -2068,12 +2903,19 @@ noncomputable def UniqueFactorizationMonoid.toNormalizedGcdMonoid (α : Type _)
       exact normalize_associated (a * b)
     normalize_gcd := fun a b => by convert normalize_out _
     normalize_lcm := fun a b => by convert normalize_out _ }
-#align unique_factorization_monoid.to_normalized_gcd_monoid UniqueFactorizationMonoid.toNormalizedGcdMonoid
+#align unique_factorization_monoid.to_normalized_gcd_monoid UniqueFactorizationMonoid.toNormalizedGCDMonoid
+-/
 
 end
 
 namespace UniqueFactorizationMonoid
 
+/- warning: unique_factorization_monoid.fintype_subtype_dvd -> UniqueFactorizationMonoid.fintypeSubtypeDvd is a dubious translation:
+lean 3 declaration is
+  forall {M : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} M] [_inst_2 : UniqueFactorizationMonoid.{u1} M _inst_1] [_inst_3 : Fintype.{u1} (Units.{u1} M (MonoidWithZero.toMonoid.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))] (y : M), (Ne.{succ u1} M y (OfNat.ofNat.{u1} M 0 (OfNat.mk.{u1} M 0 (Zero.zero.{u1} M (MulZeroClass.toHasZero.{u1} M (MulZeroOneClass.toMulZeroClass.{u1} M (MonoidWithZero.toMulZeroOneClass.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))))))) -> (Fintype.{u1} (Subtype.{succ u1} M (fun (x : M) => Dvd.Dvd.{u1} M (semigroupDvd.{u1} M (SemigroupWithZero.toSemigroup.{u1} M (MonoidWithZero.toSemigroupWithZero.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) x y)))
+but is expected to have type
+  forall {M : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} M] [_inst_2 : UniqueFactorizationMonoid.{u1} M _inst_1] [_inst_3 : Fintype.{u1} (Units.{u1} M (MonoidWithZero.toMonoid.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))] (y : M), (Ne.{succ u1} M y (OfNat.ofNat.{u1} M 0 (Zero.toOfNat0.{u1} M (CommMonoidWithZero.toZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) -> (Fintype.{u1} (Subtype.{succ u1} M (fun (x : M) => Dvd.dvd.{u1} M (semigroupDvd.{u1} M (SemigroupWithZero.toSemigroup.{u1} M (MonoidWithZero.toSemigroupWithZero.{u1} M (CommMonoidWithZero.toMonoidWithZero.{u1} M (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} M _inst_1))))) x y)))
+Case conversion may be inaccurate. Consider using '#align unique_factorization_monoid.fintype_subtype_dvd UniqueFactorizationMonoid.fintypeSubtypeDvdₓ'. -/
 /-- If `y` is a nonzero element of a unique factorization monoid with finitely
 many units (e.g. `ℤ`, `ideal (ring_of_integers K)`), it has finitely many divisors. -/
 noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
@@ -2123,30 +2965,54 @@ variable [NormalizationMonoid α] [DecidableEq α]
 
 open UniqueFactorizationMonoid
 
+#print factorization /-
 /-- This returns the multiset of irreducible factors as a `finsupp` -/
 noncomputable def factorization (n : α) : α →₀ ℕ :=
   (normalizedFactors n).toFinsupp
 #align factorization factorization
+-/
 
+#print factorization_eq_count /-
 theorem factorization_eq_count {n p : α} :
     factorization n p = Multiset.count p (normalizedFactors n) := by simp [factorization]
 #align factorization_eq_count factorization_eq_count
+-/
 
+/- warning: factorization_zero -> factorization_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (OfNat.mk.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (Zero.zero.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.zero.{u1, 0} α Nat Nat.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) 0 (Zero.toOfNat0.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.zero.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))
+Case conversion may be inaccurate. Consider using '#align factorization_zero factorization_zeroₓ'. -/
 @[simp]
 theorem factorization_zero : factorization (0 : α) = 0 := by simp [factorization]
 #align factorization_zero factorization_zero
 
+/- warning: factorization_one -> factorization_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (MulZeroOneClass.toMulOneClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (OfNat.mk.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) 0 (Zero.zero.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.zero.{u1, 0} α Nat Nat.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α], Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) 0 (Zero.toOfNat0.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.zero.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))
+Case conversion may be inaccurate. Consider using '#align factorization_one factorization_oneₓ'. -/
 @[simp]
 theorem factorization_one : factorization (1 : α) = 0 := by simp [factorization]
 #align factorization_one factorization_one
 
+#print support_factorization /-
 /-- The support of `factorization n` is exactly the finset of normalized factors -/
 @[simp]
 theorem support_factorization {n : α} :
     (factorization n).support = (normalizedFactors n).toFinset := by
   simp [factorization, Multiset.toFinsupp_support]
 #align support_factorization support_factorization
+-/
 
+/- warning: factorization_mul -> factorization_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.{u1, 0} α Nat Nat.hasZero) (instHAdd.{u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (Finsupp.add.{u1, 0} α Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid))) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] {a : α} {b : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulZeroClass.toMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1)))))) a b)) (HAdd.hAdd.{u1, u1, u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (instHAdd.{u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (Finsupp.add.{u1, 0} α Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid))) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)))
+Case conversion may be inaccurate. Consider using '#align factorization_mul factorization_mulₓ'. -/
 /-- For nonzero `a` and `b`, the power of `p` in `a * b` is the sum of the powers in `a` and `b` -/
 @[simp]
 theorem factorization_mul {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) :
@@ -2154,13 +3020,21 @@ theorem factorization_mul {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) :
   simp [factorization, normalized_factors_mul ha hb]
 #align factorization_mul factorization_mul
 
+#print factorization_pow /-
 /-- For any `p`, the power of `p` in `x^n` is `n` times the power in `x` -/
 theorem factorization_pow {x : α} {n : ℕ} : factorization (x ^ n) = n • factorization x :=
   by
   ext
   simp [factorization]
 #align factorization_pow factorization_pow
+-/
 
+/- warning: associated_of_factorization_eq -> associated_of_factorization_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] (a : α) (b : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat Nat.hasZero) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CancelCommMonoidWithZero.{u1} α] [_inst_2 : UniqueFactorizationMonoid.{u1} α _inst_1] [_inst_3 : NormalizationMonoid.{u1} α _inst_1] [_inst_4 : DecidableEq.{succ u1} α] (a : α) (b : α), (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Ne.{succ u1} α b (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))))) -> (Eq.{succ u1} (Finsupp.{u1, 0} α Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) a) (factorization.{u1} α _inst_1 _inst_2 _inst_3 (fun (a : α) (b : α) => _inst_4 a b) b)) -> (Associated.{u1} α (MonoidWithZero.toMonoid.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α (CancelCommMonoidWithZero.toCommMonoidWithZero.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align associated_of_factorization_eq associated_of_factorization_eqₓ'. -/
 theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
     (h : factorization a = factorization b) : Associated a b :=
   by
Diff
@@ -317,7 +317,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
         _ = Multiset.card (Classical.choose (pf b h)) :=
           Multiset.card_eq_card_of_rel (prime_factors_unique _ (Classical.choose_spec (pf _ h)).1 _)
         
-      · convert (Classical.choose_spec (pf c cne0)).2.symm
+      · convert(Classical.choose_spec (pf c cne0)).2.symm
         rw [Con, Multiset.prod_zero]
       · intro x hadd
         rw [Multiset.mem_add] at hadd
@@ -365,7 +365,7 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
   obtain ⟨w, hp, u, h⟩ :=
     hα (e.symm a) fun h =>
       ha <| by
-        convert ← map_zero e
+        convert← map_zero e
         simp [← h]
   exact
     ⟨w.map e, fun b hb =>
@@ -573,7 +573,7 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
     [UniqueFactorizationMonoid M] [Unique Mˣ] (x : M) : factors x = normalizedFactors x :=
   by
   unfold normalized_factors
-  convert (Multiset.map_id (factors x)).symm
+  convert(Multiset.map_id (factors x)).symm
   ext p
   exact normalize_eq p
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
@@ -629,8 +629,7 @@ theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
   by
   intro p hp q hq hdvd
-  convert
-        normalize_eq_normalize hdvd
+  convert normalize_eq_normalize hdvd
           ((prime_of_normalized_factor _ hp).Irreducible.dvd_symm
             (prime_of_normalized_factor _ hq).Irreducible hdvd) <;>
       apply (normalize_normalized_factor _ _).symm <;>
@@ -1042,7 +1041,7 @@ theorem count_normalizedFactors_eq {p x : R} (hp : Irreducible p) (hnorm : norma
   · simp [hx0] at hlt
     contradiction
   rw [← PartENat.natCast_inj]
-  convert (multiplicity_eq_count_normalized_factors hp hx0).symm
+  convert(multiplicity_eq_count_normalized_factors hp hx0).symm
   · exact hnorm.symm
   exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm
 #align unique_factorization_monoid.count_normalized_factors_eq UniqueFactorizationMonoid.count_normalizedFactors_eq
Diff
@@ -306,7 +306,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
       rw [dif_neg h, WithTop.coe_lt_coe]
       have cne0 : c ≠ 0 := by
         refine' mt (fun con => _) h
-        rw [b_eq, Con, mul_zero]
+        rw [b_eq, Con, MulZeroClass.mul_zero]
       calc
         Multiset.card (Classical.choose (pf a ane0)) <
             _ + Multiset.card (Classical.choose (pf c cne0)) :=
@@ -902,7 +902,7 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
   by
   refine' induction_on_prime c _ _ _
   · intro no_factors
-    simp only [dvd_zero, mul_zero, forall_prop_of_true]
+    simp only [dvd_zero, MulZeroClass.mul_zero, forall_prop_of_true]
     haveI := Classical.propDecidable
     exact
       is_unit_iff_forall_dvd.mp
@@ -1172,15 +1172,15 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
     f (a * b) = f a * f b := by
   letI := Classical.decEq α
   by_cases ha0 : a = 0
-  · rw [ha0, zero_mul, h0, zero_mul]
+  · rw [ha0, MulZeroClass.zero_mul, h0, MulZeroClass.zero_mul]
   by_cases hb0 : b = 0
-  · rw [hb0, mul_zero, h0, mul_zero]
+  · rw [hb0, MulZeroClass.mul_zero, h0, MulZeroClass.mul_zero]
   by_cases hf1 : f 1 = 0
   ·
     calc
       f (a * b) = f (a * b * 1) := by rw [mul_one]
-      _ = 0 := by simp only [h1 isUnit_one, hf1, mul_zero]
-      _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, mul_zero]
+      _ = 0 := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
+      _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
       _ = f a * f b := by rw [mul_one]
       
   have h1' : f 1 = 1 := (mul_left_inj' hf1).mp (by rw [← h1 isUnit_one, one_mul, one_mul])
@@ -1435,7 +1435,7 @@ theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
           congr
           refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
           refine' not_irreducible_zero (hq _ _)
-          rw [← prod_eq_zero_iff, eqc, hc, mul_zero])
+          rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
     prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 
@@ -1904,7 +1904,7 @@ theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associ
     (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors :=
   by
   induction' k with n h
-  · rw [pow_zero, factors_one, zero_mul, count_zero hp]
+  · rw [pow_zero, factors_one, MulZeroClass.zero_mul, count_zero hp]
   · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]
     ring
 #align associates.count_pow Associates.count_pow
@@ -1948,12 +1948,12 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
     Nat.eq_zero_of_le_zero <| by
       convert count_le_count_of_le hph hq h
       symm
-      rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', mul_zero]
+      rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', MulZeroClass.mul_zero]
   intro q hq
   rw [count_pow hp.ne_zero hq]
   by_cases h : q = p
   · rw [h, count_self hp, mul_one]
-  · rw [count_eq_zero_of_ne hq hp h, mul_zero, eq_zero_of_ne q hq h]
+  · rw [count_eq_zero_of_ne hq hp h, MulZeroClass.mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
Diff
@@ -412,7 +412,7 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
           calc
             Multiset.prod (p ::ₘ fx) ~ᵤ a * b := by
               rw [hx, Multiset.prod_cons] <;> exact hfx.2.mul_left _
-            _ ~ᵤ fa.Prod * fb.Prod := hfa.2.symm.mul_mul hfb.2.symm
+            _ ~ᵤ fa.Prod * fb.Prod := (hfa.2.symm.mul_mul hfb.2.symm)
             _ = _ := by rw [Multiset.prod_add]
             
         exact
@@ -624,7 +624,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
   rwa [← normalize_normalized_factor p p_mem, normalize_eq_normalize_iff, dvd_dvd_iff_associated]
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » normalized_factors[unique_factorization_monoid.normalized_factors] a) -/
 theorem normalizedFactors_eq_of_dvd (a : α) :
     ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q :=
   by
@@ -923,7 +923,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
   simpa [mul_comm b c] using dvd_of_dvd_mul_left_of_no_prime_factors ha @no_factors
 #align unique_factorization_monoid.dvd_of_dvd_mul_right_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (a «expr ≠ » (0 : R)) -/
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
@@ -1074,7 +1074,7 @@ variable {β : Type _} [CancelCommMonoidWithZero β]
 
 open BigOperators
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (q q' «expr ∈ » insert[has_insert.insert] p s) -/
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
     (is_coprime : ∀ (q) (_ : q ∈ insert p s) (q') (_ : q' ∈ insert p s), q ∣ q' → q = q') :
@@ -1093,7 +1093,7 @@ theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α
   exact IsCoprime _ (Finset.mem_insert_self p s) _ (Finset.mem_insert_of_mem q_mem) this
 #align unique_factorization_monoid.prime_pow_coprime_prod_of_coprime_insert UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `P` holds for units and powers of primes,
 and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on a product of powers of distinct primes. -/
@@ -1138,8 +1138,8 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
   · apply normalized_factors_eq_of_dvd
 #align unique_factorization_monoid.induction_on_coprime UniqueFactorizationMonoid.induction_on_coprime
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (p q «expr ∈ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (p q «expr ∈ » s) -/
 /-- If `f` maps `p ^ i` to `(f p) ^ i` for primes `p`, and `f`
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
 @[elab_as_elim]
Diff
@@ -1622,10 +1622,10 @@ theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.Prod ≤ b.Prod ↔ a 
 
 include dec dec'
 
-noncomputable instance : HasSup (Associates α) :=
+noncomputable instance : Sup (Associates α) :=
   ⟨fun a b => (a.factors ⊔ b.factors).Prod⟩
 
-noncomputable instance : HasInf (Associates α) :=
+noncomputable instance : Inf (Associates α) :=
   ⟨fun a b => (a.factors ⊓ b.factors).Prod⟩
 
 noncomputable instance : Lattice (Associates α) :=

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 3 (#12372)

A PR analogous to #12338 and #12361: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -1194,7 +1194,7 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
       Finset.prod_subset (Finset.subset_union_left _ (normalizedFactors b).toFinset),
       Finset.prod_subset (Finset.subset_union_right _ (normalizedFactors b).toFinset), ←
       Finset.prod_mul_distrib]
-    simp_rw [id, ← pow_add, this]
+    · simp_rw [id, ← pow_add, this]
     all_goals simp only [Multiset.mem_toFinset]
     · intro p _ hpb
       simp [hpb]
feat: FastSubsingleton and FastIsEmpty to speed up congr!/convert (#12495)

This is a PR that's a temporary measure to improve performance of congr!/convert, and the implementation may change in a future PR with a new version of congr!.

Introduces two typeclasses that are meant to quickly evaluate in common cases of Subsingleton and IsEmpty. Makes congr! use these typeclasses rather than Subsingleton.

Local Subsingleton/IsEmpty instances are included as Fast instances. To get congr!/convert to reason about subsingleton types, you can add such instances to the local context. Or, you can apply Subsingleton.elim yourself.

Zulip discussion

Diff
@@ -1487,6 +1487,7 @@ theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.prod.factors = s :=
 
 @[nontriviality]
 theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = ⊤ := by
+  have : Subsingleton (Associates α) := inferInstance
   convert factors_zero
 #align associates.factors_subsingleton Associates.factors_subsingleton
 
chore: unify date formatting in lemma deprecations (#12334)
  • consistently use the YYYY-MM-DD format
  • when easily possible, put the date on the same line as the deprecated attribute
  • when easily possible, format the entire declaration on the same line

Why these changes?

  • consistency makes it easier for tools to parse this information
  • compactness: I don't see a good reason for these declarations taking up more space than needed; as I understand it, deprecated lemmas are not supposed to be used in mathlib anyway
  • putting the date on the same line as the attribute makes it easier to discover un-dated deprecations; they also ease writing a tool to replace these by a machine-readable version using leanprover/lean4#3968
Diff
@@ -1462,7 +1462,7 @@ theorem factors_zero : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
 #align associates.factors_0 Associates.factors_zero
 
-@[deprecated] alias factors_0 := factors_zero -- 2024/03/16
+@[deprecated] alias factors_0 := factors_zero -- 2024-03-16
 
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
chore(Associated): add simps, golf (#11435)

New simp tags or simp lemmas

associated_one_iff_isUnit, associated_zero_iff_eq_zero, Associates.mk_eq_one, Associates.mk_dvd_mk, Associates.mk_isRelPrime_iff, Associates.mk_zero, Associates.quot_out_zero, Associates.le_zero, Associates.prime_mk, Associates.irreducible_mk, Associates.mk_dvdNotUnit_mk_iff, Associates.factors_le, Associates.prod_factors

New gcongr tags

Associates.factors_mono, Associates.prod_mono

Change explicit args to implicit

Associates.prime_mk, Associates.irreducible_mk, Associates.one_or_eq_of_le_of_prime

Change typeclass assumptions

  • drop [Nontrivial _] here and there, mostly in cases when a lemma has _ ≠ _ assumption
  • drop all decidability assumptions in Associates.FactorSetMem
  • drop decidability assumptions when they aren't needed to formulate a theorem

Use WithTop API

Use WithTop.some and instead of Option.some and none in UniqueFactorizationDomain.

Renames

  • Associates.isPrimal_iffAssociates.isPrimal_mk;
  • Associates.mk_le_mk_iff_dvd_iffAssociates.mk_le_mk_iff_dvd;
  • Associates.factors_0Associates.factors_zero;
  • Associates.factors_eq_none_iff_zeroAssociates.factors_eq_top_iff_zero
Diff
@@ -933,7 +933,6 @@ out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
     ∀ a ≠ (0 : R), ∀ b,
       ∃ a' b' c', IsRelPrime a' b' ∧ c' * a' = a ∧ c' * b' = b := by
-  haveI := Classical.propDecidable
   intro a
   refine' induction_on_prime a _ _ _
   · intros
@@ -985,8 +984,8 @@ theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} :
 
 section multiplicity
 
-variable [Nontrivial R] [NormalizationMonoid R]
-variable [dec_dvd : DecidableRel (Dvd.dvd : R → R → Prop)]
+variable [NormalizationMonoid R]
+variable [DecidableRel (Dvd.dvd : R → R → Prop)]
 
 open multiplicity Multiset
 
@@ -1242,9 +1241,9 @@ theorem FactorSet.coe_add {a b : Multiset { a : Associates α // Irreducible a }
 
 theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
     ∀ a b : FactorSet α, a ⊔ b + a ⊓ b = a + b
-  | none, b => show ⊤ ⊔ b + ⊤ ⊓ b = ⊤ + b by simp
-  | a, none => show a ⊔ ⊤ + a ⊓ ⊤ = a + ⊤ by simp
-  | some a, some b =>
+  | ⊤, b => show ⊤ ⊔ b + ⊤ ⊓ b = ⊤ + b by simp
+  | a, ⊤ => show a ⊔ ⊤ + a ⊓ ⊤ = a + ⊤ by simp
+  | WithTop.some a, WithTop.some b =>
     show (a : FactorSet α) ⊔ b + (a : FactorSet α) ⊓ b = a + b by
       rw [← WithTop.coe_sup, ← WithTop.coe_inf, ← WithTop.coe_add, ← WithTop.coe_add,
         WithTop.coe_eq_coe]
@@ -1254,8 +1253,8 @@ theorem FactorSet.sup_add_inf_eq_add [DecidableEq (Associates α)] :
 /-- Evaluates the product of a `FactorSet` to be the product of the corresponding multiset,
   or `0` if there is none. -/
 def FactorSet.prod : FactorSet α → Associates α
-  | none => 0
-  | some s => (s.map (↑)).prod
+  | ⊤ => 0
+  | WithTop.some s => (s.map (↑)).prod
 #align associates.factor_set.prod Associates.FactorSet.prod
 
 @[simp]
@@ -1271,20 +1270,20 @@ theorem prod_coe {s : Multiset { a : Associates α // Irreducible a }} :
 
 @[simp]
 theorem prod_add : ∀ a b : FactorSet α, (a + b).prod = a.prod * b.prod
-  | none, b => show (⊤ + b).prod = (⊤ : FactorSet α).prod * b.prod by simp
-  | a, none => show (a + ⊤).prod = a.prod * (⊤ : FactorSet α).prod by simp
-  | some a, some b =>
-    show (↑a + ↑b : FactorSet α).prod =
-        FactorSet.prod (↑a : FactorSet α) * FactorSet.prod (↑b : FactorSet α) by
-      rw [← FactorSet.coe_add, prod_coe, prod_coe, prod_coe, Multiset.map_add, Multiset.prod_add]
+  | ⊤, b => show (⊤ + b).prod = (⊤ : FactorSet α).prod * b.prod by simp
+  | a, ⊤ => show (a + ⊤).prod = a.prod * (⊤ : FactorSet α).prod by simp
+  | WithTop.some a, WithTop.some b => by
+    rw [← FactorSet.coe_add, prod_coe, prod_coe, prod_coe, Multiset.map_add, Multiset.prod_add]
 #align associates.prod_add Associates.prod_add
 
+@[gcongr]
 theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.prod ≤ b.prod
-  | none, b, h => by
+  | ⊤, b, h => by
     have : b = ⊤ := top_unique h
-    rw [this, prod_top]; exact le_rfl
-  | a, none, _ => show a.prod ≤ (⊤ : FactorSet α).prod by simp; exact le_top
-  | some a, some b, h => prod_le_prod <| Multiset.map_le_map <| WithTop.coe_le_coe.1 <| h
+    rw [this, prod_top]
+  | a, ⊤, _ => show a.prod ≤ (⊤ : FactorSet α).prod by simp
+  | WithTop.some a, WithTop.some b, h =>
+    prod_le_prod <| Multiset.map_le_map <| WithTop.coe_le_coe.1 <| h
 #align associates.prod_mono Associates.prod_mono
 
 theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.prod = 0 ↔ p = ⊤ := by
@@ -1295,43 +1294,44 @@ theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.prod =
     exact fun a => not_and_of_not_right _ a.prop.ne_zero
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
 
+section count
+
+variable [DecidableEq (Associates α)]
+
 /-- `bcount p s` is the multiplicity of `p` in the FactorSet `s` (with bundled `p`)-/
-def bcount [DecidableEq (Associates α)] (p : { a : Associates α // Irreducible a }) :
+def bcount (p : { a : Associates α // Irreducible a }) :
     FactorSet α → ℕ
-  | none => 0
-  | some s => s.count p
+  | ⊤ => 0
+  | WithTop.some s => s.count p
 #align associates.bcount Associates.bcount
 
-variable [dec_irr : ∀ p : Associates α, Decidable (Irreducible p)]
+variable [∀ p : Associates α, Decidable (Irreducible p)] {p : Associates α}
 
 /-- `count p s` is the multiplicity of the irreducible `p` in the FactorSet `s`.
 
 If `p` is not irreducible, `count p s` is defined to be `0`. -/
-def count [DecidableEq (Associates α)] (p : Associates α) : FactorSet α → ℕ :=
+def count (p : Associates α) : FactorSet α → ℕ :=
   if hp : Irreducible p then bcount ⟨p, hp⟩ else 0
 #align associates.count Associates.count
 
 @[simp]
-theorem count_some [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p)
-    (s : Multiset _) : count p (some s) = s.count ⟨p, hp⟩ := by
-  dsimp only [count]
-  split_ifs
-  rfl
+theorem count_some (hp : Irreducible p) (s : Multiset _) :
+    count p (WithTop.some s) = s.count ⟨p, hp⟩ := by
+  simp only [count, dif_pos hp, bcount]
 #align associates.count_some Associates.count_some
 
 @[simp]
-theorem count_zero [DecidableEq (Associates α)] {p : Associates α} (hp : Irreducible p) :
-    count p (0 : FactorSet α) = 0 := by
-  dsimp only [count]
-  split_ifs
-  rfl
+theorem count_zero (hp : Irreducible p) : count p (0 : FactorSet α) = 0 := by
+  simp only [count, dif_pos hp, bcount, Multiset.count_zero]
 #align associates.count_zero Associates.count_zero
 
-theorem count_reducible [DecidableEq (Associates α)] {p : Associates α} (hp : ¬Irreducible p) :
-    count p = 0 :=
-  dif_neg hp
+theorem count_reducible (hp : ¬Irreducible p) : count p = 0 := dif_neg hp
 #align associates.count_reducible Associates.count_reducible
 
+end count
+
+section Mem
+
 /-- membership in a FactorSet (bundled version) -/
 def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α → Prop
   | _, ⊤ => True
@@ -1343,6 +1343,7 @@ def BfactorSetMem : { a : Associates α // Irreducible a } → FactorSet α →
 
 If `p` is not irreducible, `p` is not a member of any `FactorSet`. -/
 def FactorSetMem (p : Associates α) (s : FactorSet α) : Prop :=
+  letI : Decidable (Irreducible p) := Classical.dec _
   if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False
 #align associates.factor_set_mem Associates.FactorSetMem
 
@@ -1365,10 +1366,16 @@ theorem mem_factorSet_some {p : Associates α} {hp : Irreducible p}
 #align associates.mem_factor_set_some Associates.mem_factorSet_some
 
 theorem reducible_not_mem_factorSet {p : Associates α} (hp : ¬Irreducible p) (s : FactorSet α) :
-    ¬p ∈ s := fun h : if hp : Irreducible p then BfactorSetMem ⟨p, hp⟩ s else False => by
-  rwa [dif_neg hp] at h
+    ¬p ∈ s := fun h ↦ by
+  rwa [← factorSetMem_eq_mem, FactorSetMem, dif_neg hp] at h
 #align associates.reducible_not_mem_factor_set Associates.reducible_not_mem_factorSet
 
+theorem irreducible_of_mem_factorSet {p : Associates α} {s : FactorSet α} (h : p ∈ s) :
+    Irreducible p :=
+  by_contra fun hp ↦ reducible_not_mem_factorSet hp s h
+
+end Mem
+
 variable [UniqueFactorizationMonoid α]
 
 theorem unique' {p q : Multiset (Associates α)} :
@@ -1377,8 +1384,8 @@ theorem unique' {p q : Multiset (Associates α)} :
   apply Multiset.induction_on_multiset_quot q
   intro s t hs ht eq
   refine' Multiset.map_mk_eq_map_mk_of_rel (UniqueFactorizationMonoid.factors_unique _ _ _)
-  · exact fun a ha => (irreducible_mk _).1 <| hs _ <| Multiset.mem_map_of_mem _ ha
-  · exact fun a ha => (irreducible_mk _).1 <| ht _ <| Multiset.mem_map_of_mem _ ha
+  · exact fun a ha => irreducible_mk.1 <| hs _ <| Multiset.mem_map_of_mem _ ha
+  · exact fun a ha => irreducible_mk.1 <| ht _ <| Multiset.mem_map_of_mem _ ha
   have eq' : (Quot.mk Setoid.r : α → Associates α) = Associates.mk := funext quot_mk_eq_mk
   rwa [eq', prod_mk, prod_mk, mk_eq_mk_iff_associated] at eq
 #align associates.unique' Associates.unique'
@@ -1397,27 +1404,24 @@ theorem FactorSet.unique [Nontrivial α] {p q : FactorSet α} (h : p.prod = q.pr
 #align associates.factor_set.unique Associates.FactorSet.unique
 
 theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
-    (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.prod ≤ q.prod ↔ p ≤ q :=
-  Iff.intro
-    (by
-      classical
-        rintro ⟨c, eqc⟩
-        refine' Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx => _) _⟩
-        · obtain h | h := Multiset.mem_add.1 hx
-          · exact hp x h
-          · exact irreducible_of_factor _ h
-        · rw [eqc, Multiset.prod_add]
-          congr
-          refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
-          refine' not_irreducible_zero (hq _ _)
-          rw [← prod_eq_zero_iff, eqc, hc, mul_zero])
-    prod_le_prod
+    (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.prod ≤ q.prod ↔ p ≤ q := by
+  refine ⟨?_, prod_le_prod⟩
+  rintro ⟨c, eqc⟩
+  refine Multiset.le_iff_exists_add.2 ⟨factors c, unique' hq (fun x hx ↦ ?_) ?_⟩
+  · obtain h | h := Multiset.mem_add.1 hx
+    · exact hp x h
+    · exact irreducible_of_factor _ h
+  · rw [eqc, Multiset.prod_add]
+    congr
+    refine associated_iff_eq.mp (factors_prod fun hc => ?_).symm
+    refine not_irreducible_zero (hq _ ?_)
+    rw [← prod_eq_zero_iff, eqc, hc, mul_zero]
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 
 /-- This returns the multiset of irreducible factors as a `FactorSet`,
   a multiset of irreducible associates `WithTop`. -/
 noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducible a } :=
-  (factors a).pmap (fun a ha => ⟨Associates.mk a, (irreducible_mk _).2 ha⟩) irreducible_of_factor
+  (factors a).pmap (fun a ha => ⟨Associates.mk a, irreducible_mk.2 ha⟩) irreducible_of_factor
 #align associates.factors' Associates.factors'
 
 @[simp]
@@ -1444,7 +1448,7 @@ theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b := by
 /-- This returns the multiset of irreducible factors of an associate as a `FactorSet`,
   a multiset of irreducible associates `WithTop`. -/
 noncomputable def factors (a : Associates α) : FactorSet α := by
-  classical refine' if h : a = 0 then ⊤ else Quotient.hrecOn a (fun x _ => some <| factors' x) _ h
+  classical refine' if h : a = 0 then ⊤ else Quotient.hrecOn a (fun x _ => factors' x) _ h
   intro a b hab
   apply Function.hfunext
   · have : a ~ᵤ 0 ↔ b ~ᵤ 0 := Iff.intro (fun ha0 => hab.symm.trans ha0) fun hb0 => hab.trans hb0
@@ -1454,9 +1458,11 @@ noncomputable def factors (a : Associates α) : FactorSet α := by
 #align associates.factors Associates.factors
 
 @[simp]
-theorem factors_0 : (0 : Associates α).factors = ⊤ :=
+theorem factors_zero : (0 : Associates α).factors = ⊤ :=
   dif_pos rfl
-#align associates.factors_0 Associates.factors_0
+#align associates.factors_0 Associates.factors_zero
+
+@[deprecated] alias factors_0 := factors_zero -- 2024/03/16
 
 @[simp]
 theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors' a := by
@@ -1466,36 +1472,35 @@ theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors'
 #align associates.factors_mk Associates.factors_mk
 
 @[simp]
-theorem factors_prod (a : Associates α) : a.factors.prod = a :=
-  Quotient.inductionOn a fun b => by
-    if this : Associates.mk b = 0 then
-      simp [quotient_mk_eq_mk, this]
-    else
-      have : b ≠ 0 := by simp_all
-      simp [this, quotient_mk_eq_mk, prod_mk,
-          mk_eq_mk_iff_associated.2 (UniqueFactorizationMonoid.factors_prod this)]
-
+theorem factors_prod (a : Associates α) : a.factors.prod = a := by
+  rcases Associates.mk_surjective a with ⟨a, rfl⟩
+  rcases eq_or_ne a 0 with rfl | ha
+  · simp
+  · simp [ha, prod_mk, mk_eq_mk_iff_associated, UniqueFactorizationMonoid.factors_prod,
+      -Quotient.eq]
 #align associates.factors_prod Associates.factors_prod
 
+@[simp]
 theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.prod.factors = s :=
   FactorSet.unique <| factors_prod _
 #align associates.prod_factors Associates.prod_factors
 
 @[nontriviality]
-theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = Option.none := by
-  convert @factors_0 _ _ _
+theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = ⊤ := by
+  convert factors_zero
 #align associates.factors_subsingleton Associates.factors_subsingleton
 
-theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 := by
+theorem factors_eq_top_iff_zero {a : Associates α} : a.factors = ⊤ ↔ a = 0 := by
   nontriviality α
-  exact
-    ⟨fun h => by rwa [← factors_prod a, FactorSet.prod_eq_zero_iff], fun h => h.symm ▸ factors_0⟩
-#align associates.factors_eq_none_iff_zero Associates.factors_eq_none_iff_zero
+  exact ⟨fun h ↦ by rwa [← factors_prod a, FactorSet.prod_eq_zero_iff], fun h ↦ h ▸ factors_zero⟩
+#align associates.factors_eq_none_iff_zero Associates.factors_eq_top_iff_zero
+
+@[deprecated] alias factors_eq_none_iff_zero := factors_eq_top_iff_zero
 
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
-    (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
-  rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne, Ne,
-    factors_eq_none_iff_zero]
+    (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = s) ↔ a ≠ 0 := by
+  simp_rw [@eq_comm _ a.factors, ← WithTop.ne_top_iff_exists]
+  exact factors_eq_top_iff_zero.not
 #align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zero
 
 theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factors) : a = b := by
@@ -1504,18 +1509,40 @@ theorem eq_of_factors_eq_factors {a b : Associates α} (h : a.factors = b.factor
 #align associates.eq_of_factors_eq_factors Associates.eq_of_factors_eq_factors
 
 theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.prod = b.prod) : a = b := by
-  classical
-    have : a.prod.factors = b.prod.factors := by rw [h]
-    rwa [prod_factors, prod_factors] at this
+  have : a.prod.factors = b.prod.factors := by rw [h]
+  rwa [prod_factors, prod_factors] at this
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 
-theorem eq_factors_of_eq_counts [DecidableEq (Associates α)] {a b : Associates α} (ha : a ≠ 0)
-    (hb : b ≠ 0) (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) :
+@[simp]
+theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors := by
+  nontriviality α
+  refine eq_of_prod_eq_prod <| eq_of_factors_eq_factors ?_
+  rw [prod_add, factors_prod, factors_prod, factors_prod]
+#align associates.factors_mul Associates.factors_mul
+
+@[gcongr]
+theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
+  | s, t, ⟨d, eq⟩ => by rw [eq, factors_mul]; exact le_add_of_nonneg_right bot_le
+#align associates.factors_mono Associates.factors_mono
+
+@[simp]
+theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b := by
+  refine ⟨fun h ↦ ?_, factors_mono⟩
+  have : a.factors.prod ≤ b.factors.prod := prod_mono h
+  rwa [factors_prod, factors_prod] at this
+#align associates.factors_le Associates.factors_le
+
+section count
+
+variable [DecidableEq (Associates α)] [∀ p : Associates α, Decidable (Irreducible p)]
+
+theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
+    (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) :
     a.factors = b.factors := by
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
   rw [h_sa, h_sb] at h ⊢
-  rw [Option.some_inj]
+  rw [WithTop.coe_eq_coe]
   have h_count : ∀ (p : Associates α) (hp : Irreducible p),
       sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ := by
     intro p hp
@@ -1525,57 +1552,33 @@ theorem eq_factors_of_eq_counts [DecidableEq (Associates α)] {a b : Associates
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
 
-theorem eq_of_eq_counts [DecidableEq (Associates α)] {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
+theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
   eq_of_factors_eq_factors (eq_factors_of_eq_counts ha hb h)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
 
-theorem count_le_count_of_factors_le [DecidableEq (Associates α)] {a b p : Associates α}
-    (hb : b ≠ 0) (hp : Irreducible p) (h : a.factors ≤ b.factors) :
-    p.count a.factors ≤ p.count b.factors := by
+theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
+    (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors := by
   by_cases ha : a = 0
   · simp_all
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
   rw [h_sa, h_sb] at h ⊢
-  rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h
+  rw [count_some hp, count_some hp]; rw [WithTop.coe_le_coe] at h
   exact Multiset.count_le_of_le _ h
 #align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_le
 
-@[simp]
-theorem factors_mul (a b : Associates α) : (a * b).factors = a.factors + b.factors := by
-  cases subsingleton_or_nontrivial α
-  · simp [Subsingleton.elim a 0]
-  refine' eq_of_prod_eq_prod (eq_of_factors_eq_factors _)
-  rw [prod_add, factors_prod, factors_prod, factors_prod]
-#align associates.factors_mul Associates.factors_mul
-
-theorem factors_mono : ∀ {a b : Associates α}, a ≤ b → a.factors ≤ b.factors
-  | s, t, ⟨d, eq⟩ => by rw [eq, factors_mul]; exact le_add_of_nonneg_right bot_le
-#align associates.factors_mono Associates.factors_mono
-
-theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :=
-  Iff.intro
-    (fun h => by
-      have : a.factors.prod ≤ b.factors.prod := prod_mono h
-      rwa [factors_prod, factors_prod] at this)
-    factors_mono
-#align associates.factors_le Associates.factors_le
-
-theorem count_le_count_of_le [DecidableEq (Associates α)] {a b p : Associates α} (hb : b ≠ 0)
-    (hp : Irreducible p) (h : a ≤ b) :
+theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
   count_le_count_of_factors_le hb hp <| factors_mono h
 #align associates.count_le_count_of_le Associates.count_le_count_of_le
 
+end count
+
 theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.prod ≤ b.prod ↔ a ≤ b := by
-  classical
-    exact
-      Iff.intro
-        (fun h => by
-          have : a.prod.factors ≤ b.prod.factors := factors_mono h
-          rwa [prod_factors, prod_factors] at this)
-        prod_mono
+  refine ⟨fun h ↦ ?_, prod_mono⟩
+  have : a.prod.factors ≤ b.prod.factors := factors_mono h
+  rwa [prod_factors, prod_factors] at this
 #align associates.prod_le Associates.prod_le
 
 open Classical in
@@ -1609,36 +1612,35 @@ theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
     rw [← prod_add, prod_factors, factors_mul, FactorSet.sup_add_inf_eq_add]
 #align associates.sup_mul_inf Associates.sup_mul_inf
 
-theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) :
+theorem dvd_of_mem_factors {a p : Associates α} (hm : p ∈ factors a) :
     p ∣ a := by
-  by_cases ha0 : a = 0
-  · rw [ha0]
-    exact dvd_zero p
+  rcases eq_or_ne a 0 with rfl | ha0
+  · exact dvd_zero p
   obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha0
   rw [← Associates.factors_prod a]
   rw [← ha', factors_mk a0 nza] at hm ⊢
   rw [prod_coe]
   apply Multiset.dvd_prod; apply Multiset.mem_map.mpr
-  exact ⟨⟨p, hp⟩, mem_factorSet_some.mp hm, rfl⟩
+  exact ⟨⟨p, irreducible_of_mem_factorSet hm⟩, mem_factorSet_some.mp hm, rfl⟩
 #align associates.dvd_of_mem_factors Associates.dvd_of_mem_factors
 
 theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {hz : a ≠ 0}
     (h_mem : Subtype.mk p hp ∈ factors' a) : p ∣ Associates.mk a := by
   haveI := Classical.decEq (Associates α)
-  apply dvd_of_mem_factors (hp := hp)
+  apply dvd_of_mem_factors
   rw [factors_mk _ hz]
   apply mem_factorSet_some.2 h_mem
 #align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'
 
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
-    Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a := by
+    Subtype.mk (Associates.mk p) (irreducible_mk.2 hp) ∈ factors' a := by
   obtain ⟨q, hq, hpq⟩ := exists_mem_factors_of_dvd ha0 hp hd
   apply Multiset.mem_pmap.mpr; use q; use hq
   exact Subtype.eq (Eq.symm (mk_eq_mk_iff_associated.mpr hpq))
 #align associates.mem_factors'_of_dvd Associates.mem_factors'_of_dvd
 
 theorem mem_factors'_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
-    Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a ↔ p ∣ a := by
+    Subtype.mk (Associates.mk p) (irreducible_mk.2 hp) ∈ factors' a ↔ p ∣ a := by
   constructor
   · rw [← mk_dvd_mk]
     apply dvd_of_mem_factors'
@@ -1657,7 +1659,6 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   constructor
   · rw [← mk_dvd_mk]
     apply dvd_of_mem_factors
-    exact (irreducible_mk p).mpr hp
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
 
@@ -1688,7 +1689,7 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
     Associates.mk a ⊓ Associates.mk b = 1 ↔ ∀ {d : α}, d ∣ a → d ∣ b → ¬Prime d := by
   constructor
   · intro hg p ha hb hp
-    refine' ((Associates.prime_mk _).mpr hp).not_unit (isUnit_of_dvd_one _)
+    refine' (Associates.prime_mk.mpr hp).not_unit (isUnit_of_dvd_one _)
     rw [← hg]
     exact le_inf (mk_le_mk_of_dvd ha) (mk_le_mk_of_dvd hb)
   · contrapose
@@ -1698,29 +1699,37 @@ theorem coprime_iff_inf_one {a b : α} (ha0 : a ≠ 0) (hb0 : b ≠ 0) :
 #align associates.coprime_iff_inf_one Associates.coprime_iff_inf_one
 
 theorem factors_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) :
-    p.factors = some {⟨p, hp⟩} :=
+    p.factors = WithTop.some {⟨p, hp⟩} :=
   eq_of_prod_eq_prod
     (by rw [factors_prod, FactorSet.prod]; dsimp; rw [prod_singleton])
 #align associates.factors_self Associates.factors_self
 
 theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible p) (k : ℕ) :
-    factors (p ^ k) = some (Multiset.replicate k ⟨p, hp⟩) :=
+    factors (p ^ k) = WithTop.some (Multiset.replicate k ⟨p, hp⟩) :=
   eq_of_prod_eq_prod
     (by
       rw [Associates.factors_prod, FactorSet.prod]
       dsimp; rw [Multiset.map_replicate, Multiset.prod_replicate, Subtype.coe_mk])
 #align associates.factors_prime_pow Associates.factors_prime_pow
 
-theorem prime_pow_dvd_iff_le [Nontrivial α] [DecidableEq (Associates α)] {m p : Associates α}
-    (h₁ : m ≠ 0) (h₂ : Irreducible p) {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors := by
-  obtain ⟨a, nz, rfl⟩ := Associates.exists_non_zero_rep h₁
-  rw [factors_mk _ nz, ← WithTop.some_eq_coe, count_some, Multiset.le_count_iff_replicate_le, ←
-    factors_le, factors_prime_pow h₂, factors_mk _ nz]
-  exact WithTop.coe_le_coe
+theorem prime_pow_le_iff_le_bcount [DecidableEq (Associates α)] {m p : Associates α}
+    (h₁ : m ≠ 0) (h₂ : Irreducible p) {k : ℕ} : p ^ k ≤ m ↔ k ≤ bcount ⟨p, h₂⟩ m.factors := by
+  rcases Associates.exists_non_zero_rep h₁ with ⟨m, hm, rfl⟩
+  have := nontrivial_of_ne _ _ hm
+  rw [bcount, factors_mk, Multiset.le_count_iff_replicate_le, ← factors_le, factors_prime_pow,
+    factors_mk, WithTop.coe_le_coe] <;> assumption
+
+section count
+
+variable [DecidableEq (Associates α)] [∀ p : Associates α, Decidable (Irreducible p)]
+
+theorem prime_pow_dvd_iff_le {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p) {k : ℕ} :
+    p ^ k ≤ m ↔ k ≤ count p m.factors := by
+  rw [count, dif_pos h₂, prime_pow_le_iff_le_bcount h₁]
 #align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_le
 
-theorem le_of_count_ne_zero [DecidableEq (Associates α)] {m p : Associates α} (h0 : m ≠ 0)
-    (hp : Irreducible p) : count p m.factors ≠ 0 → p ≤ m := by
+theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) :
+    count p m.factors ≠ 0 → p ≤ m := by
   nontriviality α
   rw [← pos_iff_ne_zero]
   intro h
@@ -1729,18 +1738,18 @@ theorem le_of_count_ne_zero [DecidableEq (Associates α)] {m p : Associates α}
   simpa only
 #align associates.le_of_count_ne_zero Associates.le_of_count_ne_zero
 
-theorem count_ne_zero_iff_dvd [DecidableEq (Associates α)] {a p : α} (ha0 : a ≠ 0)
-    (hp : Irreducible p) : (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a := by
+theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
+    (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a := by
   nontriviality α
-  rw [← Associates.mk_le_mk_iff_dvd_iff]
+  rw [← Associates.mk_le_mk_iff_dvd]
   refine'
     ⟨fun h =>
       Associates.le_of_count_ne_zero (Associates.mk_ne_zero.mpr ha0)
-        ((Associates.irreducible_mk p).mpr hp) h,
+        (Associates.irreducible_mk.mpr hp) h,
       fun h => _⟩
   rw [← pow_one (Associates.mk p),
     Associates.prime_pow_dvd_iff_le (Associates.mk_ne_zero.mpr ha0)
-      ((Associates.irreducible_mk p).mpr hp)] at h
+      (Associates.irreducible_mk.mpr hp)] at h
   exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 
@@ -1751,21 +1760,16 @@ theorem count_self [Nontrivial α] [DecidableEq (Associates α)] {p : Associates
 
 theorem count_eq_zero_of_ne [DecidableEq (Associates α)] {p q : Associates α} (hp : Irreducible p)
     (hq : Irreducible q) (h : p ≠ q) : p.count q.factors = 0 :=
-  not_ne_iff.mp fun h' =>
-    h <|
-      associated_iff_eq.mp <|
-        hp.associated_of_dvd hq <| by
-          nontriviality α
-          exact le_of_count_ne_zero hq.ne_zero hp h'
+  not_ne_iff.mp fun h' ↦ h <| associated_iff_eq.mp <| hp.associated_of_dvd hq <|
+    le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
 theorem count_mul [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0) {b : Associates α}
     (hb : b ≠ 0) {p : Associates α} (hp : Irreducible p) :
     count p (factors (a * b)) = count p a.factors + count p b.factors := by
-  obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha
-  obtain ⟨b0, nzb, hb'⟩ := exists_non_zero_rep hb
-  rw [factors_mul, ← ha', ← hb', factors_mk a0 nza, factors_mk b0 nzb, ← FactorSet.coe_add, ←
-    WithTop.some_eq_coe, ← WithTop.some_eq_coe, ← WithTop.some_eq_coe, count_some hp,
+  obtain ⟨a0, nza, rfl⟩ := exists_non_zero_rep ha
+  obtain ⟨b0, nzb, rfl⟩ := exists_non_zero_rep hb
+  rw [factors_mul, factors_mk a0 nza, factors_mk b0 nzb, ← FactorSet.coe_add, count_some hp,
     Multiset.count_add, count_some hp, count_some hp]
 #align associates.count_mul Associates.count_mul
 
@@ -1847,9 +1851,10 @@ theorem dvd_count_pow [Nontrivial α] [DecidableEq (Associates α)] {a : Associa
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
-theorem is_pow_of_dvd_count [Nontrivial α] [DecidableEq (Associates α)] {a : Associates α}
+theorem is_pow_of_dvd_count [DecidableEq (Associates α)] {a : Associates α}
     (ha : a ≠ 0) {k : ℕ} (hk : ∀ p : Associates α, Irreducible p → k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k := by
+  nontriviality α
   obtain ⟨a0, hz, rfl⟩ := exists_non_zero_rep ha
   rw [factors_mk a0 hz] at hk
   have hk' : ∀ p, p ∈ factors' a0 → k ∣ (factors' a0).count p := by
@@ -1899,22 +1904,24 @@ theorem count_factors_eq_find_of_dvd_pow [DecidableEq (Associates α)] {a p : As
     rw [count_pow hp.ne_zero hp, count_self hp, mul_one]
 #align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_pow
 
-theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
+end count
+
+theorem eq_pow_of_mul_eq_pow {a b c : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ} (h : a * b = c ^ k) :
     ∃ d : Associates α, a = d ^ k := by
   classical
-    by_cases hk0 : k = 0
-    · use 1
-      rw [hk0, pow_zero] at h ⊢
-      apply (mul_eq_one_iff.1 h).1
-    · refine' is_pow_of_dvd_count ha _
-      intro p hp
-      apply dvd_count_of_dvd_count_mul hb hp hab
-      rw [h]
-      apply dvd_count_pow _ hp
-      rintro rfl
-      rw [zero_pow hk0] at h
-      cases mul_eq_zero.mp h <;> contradiction
+  nontriviality α
+  by_cases hk0 : k = 0
+  · use 1
+    rw [hk0, pow_zero] at h ⊢
+    apply (mul_eq_one_iff.1 h).1
+  · refine is_pow_of_dvd_count ha fun p hp ↦ ?_
+    apply dvd_count_of_dvd_count_mul hb hp hab
+    rw [h]
+    apply dvd_count_pow _ hp
+    rintro rfl
+    rw [zero_pow hk0] at h
+    cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
 /-- The only divisors of prime powers are prime powers. -/
@@ -1937,25 +1944,17 @@ noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type*) [CancelComm
   gcd a b := Quot.out (Associates.mk a ⊓ Associates.mk b : Associates α)
   lcm a b := Quot.out (Associates.mk a ⊔ Associates.mk b : Associates α)
   gcd_dvd_left a b := by
-    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le]
+    rw [← mk_dvd_mk, Associates.quot_out, congr_fun₂ dvd_eq_le]
     exact inf_le_left
   gcd_dvd_right a b := by
-    rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le]
+    rw [← mk_dvd_mk, Associates.quot_out, congr_fun₂ dvd_eq_le]
     exact inf_le_right
   dvd_gcd {a b c} hac hab := by
-    rw [← mk_dvd_mk, (Associates.mk c ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le, le_inf_iff,
-      mk_le_mk_iff_dvd_iff, mk_le_mk_iff_dvd_iff]
+    rw [← mk_dvd_mk, Associates.quot_out, congr_fun₂ dvd_eq_le, le_inf_iff,
+      mk_le_mk_iff_dvd, mk_le_mk_iff_dvd]
     exact ⟨hac, hab⟩
-  lcm_zero_left a := by
-    have : Associates.mk (0 : α) = ⊤ := rfl
-    dsimp
-    rw [this, top_sup_eq, ← this, ← associated_zero_iff_eq_zero, ← mk_eq_mk_iff_associated, ←
-      associated_iff_eq, Associates.quot_out]
-  lcm_zero_right a := by
-    have : Associates.mk (0 : α) = ⊤ := rfl
-    dsimp
-    rw [this, sup_top_eq, ← this, ← associated_zero_iff_eq_zero, ← mk_eq_mk_iff_associated, ←
-      associated_iff_eq, Associates.quot_out]
+  lcm_zero_left a := by simp
+  lcm_zero_right a := by simp
   gcd_mul_lcm a b := by
     rw [← mk_eq_mk_iff_associated, ← Associates.mk_mul_mk, ← associated_iff_eq, Associates.quot_out,
       Associates.quot_out, mul_comm, sup_mul_inf, Associates.mk_mul_mk]
@@ -1974,8 +1973,8 @@ noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
       (out_dvd_iff b (Associates.mk a ⊓ Associates.mk b)).2 <| inf_le_right
     dvd_gcd := fun {a} {b} {c} hac hab =>
       show a ∣ (Associates.mk c ⊓ Associates.mk b).out by
-        rw [dvd_out_iff, le_inf_iff, mk_le_mk_iff_dvd_iff, mk_le_mk_iff_dvd_iff];
-          exact ⟨hac, hab⟩
+        rw [dvd_out_iff, le_inf_iff, mk_le_mk_iff_dvd, mk_le_mk_iff_dvd]
+        exact ⟨hac, hab⟩
     lcm_zero_left := fun a => show (⊤ ⊔ Associates.mk a).out = 0 by simp
     lcm_zero_right := fun a => show (Associates.mk a ⊔ ⊤).out = 0 by simp
     gcd_mul_lcm := fun a b => by
chore: backports from #11997, adaptations for nightly-2024-04-07 (#12176)

These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -835,7 +835,7 @@ theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x
     DvdNotUnit x y ↔ normalizedFactors x < normalizedFactors y := by
   constructor
   · rintro ⟨_, c, hc, rfl⟩
-    simp only [hx, right_ne_zero_of_mul hy, normalizedFactors_mul, Ne.def, not_false_iff,
+    simp only [hx, right_ne_zero_of_mul hy, normalizedFactors_mul, Ne, not_false_iff,
       lt_add_iff_pos_right, normalizedFactors_pos, hc]
   · intro h
     exact
@@ -999,7 +999,7 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (
   intro b hb
   constructor
   · rintro ⟨c, rfl⟩
-    rw [Ne.def, pow_succ', mul_assoc, mul_eq_zero, not_or] at hb
+    rw [Ne, pow_succ', mul_assoc, mul_eq_zero, not_or] at hb
     rw [pow_succ', mul_assoc, normalizedFactors_mul hb.1 hb.2, replicate_succ,
       normalizedFactors_irreducible ha, singleton_add, cons_le_cons_iff, ← ih hb.2]
     apply Dvd.intro _ rfl
@@ -1195,7 +1195,7 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
       Finset.prod_subset (Finset.subset_union_left _ (normalizedFactors b).toFinset),
       Finset.prod_subset (Finset.subset_union_right _ (normalizedFactors b).toFinset), ←
       Finset.prod_mul_distrib]
-    simp_rw [id.def, ← pow_add, this]
+    simp_rw [id, ← pow_add, this]
     all_goals simp only [Multiset.mem_toFinset]
     · intro p _ hpb
       simp [hpb]
@@ -1494,7 +1494,7 @@ theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none 
 
 theorem factors_eq_some_iff_ne_zero {a : Associates α} :
     (∃ s : Multiset { p : Associates α // Irreducible p }, a.factors = some s) ↔ a ≠ 0 := by
-  rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne.def, Ne.def,
+  rw [← Option.isSome_iff_exists, ← Option.ne_none_iff_isSome, Ne, Ne,
     factors_eq_none_iff_zero]
 #align associates.factors_eq_some_iff_ne_zero Associates.factors_eq_some_iff_ne_zero
 
@@ -1772,7 +1772,7 @@ theorem count_mul [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠
 theorem count_of_coprime [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0)
     {b : Associates α} (hb : b ≠ 0) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α}
     (hp : Irreducible p) : count p a.factors = 0 ∨ count p b.factors = 0 := by
-  rw [or_iff_not_imp_left, ← Ne.def]
+  rw [or_iff_not_imp_left, ← Ne]
   intro hca
   contrapose! hab with hcb
   exact ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb,
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -432,7 +432,7 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
           calc
             Multiset.prod (p ::ₘ fx) ~ᵤ a * b := by
               rw [hx, Multiset.prod_cons]; exact hfx.2.mul_left _
-            _ ~ᵤ fa.prod * fb.prod := (hfa.2.symm.mul_mul hfb.2.symm)
+            _ ~ᵤ fa.prod * fb.prod := hfa.2.symm.mul_mul hfb.2.symm
             _ = _ := by rw [Multiset.prod_add]
 
         exact
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -153,7 +153,7 @@ theorem WfDvdMonoid.max_power_factor' [CommMonoidWithZero α] [WfDvdMonoid α] {
   obtain ⟨a, ⟨n, rfl⟩, hm⟩ := wellFounded_dvdNotUnit.has_min
     {a | ∃ n, x ^ n * a = a₀} ⟨a₀, 0, by rw [pow_zero, one_mul]⟩
   refine ⟨n, a, ?_, rfl⟩; rintro ⟨d, rfl⟩
-  exact hm d ⟨n + 1, by rw [pow_succ', mul_assoc]⟩
+  exact hm d ⟨n + 1, by rw [pow_succ, mul_assoc]⟩
     ⟨(right_ne_zero_of_mul <| right_ne_zero_of_mul h), x, hx, mul_comm _ _⟩
 
 theorem WfDvdMonoid.max_power_factor [CommMonoidWithZero α] [WfDvdMonoid α] {a₀ x : α}
@@ -163,7 +163,7 @@ theorem WfDvdMonoid.max_power_factor [CommMonoidWithZero α] [WfDvdMonoid α] {a
 theorem multiplicity.finite_of_not_isUnit [CancelCommMonoidWithZero α] [WfDvdMonoid α]
     {a b : α} (ha : ¬IsUnit a) (hb : b ≠ 0) : multiplicity.Finite a b := by
   obtain ⟨n, c, ndvd, rfl⟩ := WfDvdMonoid.max_power_factor' hb ha
-  exact ⟨n, by rwa [pow_succ', mul_dvd_mul_iff_left (left_ne_zero_of_mul hb)]⟩
+  exact ⟨n, by rwa [pow_succ, mul_dvd_mul_iff_left (left_ne_zero_of_mul hb)]⟩
 
 section Prio
 
@@ -548,7 +548,7 @@ theorem factors_pow {x : α} (n : ℕ) :
   | n+1 =>
     · by_cases h0 : x = 0
       · simp [h0, zero_pow n.succ_ne_zero, smul_zero]
-      · rw [pow_succ, succ_nsmul]
+      · rw [pow_succ', succ_nsmul']
         refine' Multiset.Rel.trans _ (factors_mul h0 (pow_ne_zero n h0)) _
         refine' Multiset.Rel.add _ <| factors_pow n
         exact Multiset.rel_refl_of_refl_on fun y _ => Associated.refl _
@@ -726,7 +726,7 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   · simp
   by_cases h0 : x = 0
   · simp [h0, zero_pow n.succ_ne_zero, smul_zero]
-  rw [pow_succ, succ_nsmul, normalizedFactors_mul h0 (pow_ne_zero _ h0), ih]
+  rw [pow_succ', succ_nsmul', normalizedFactors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
 
 theorem _root_.Irreducible.normalizedFactors_pow {p : α} (hp : Irreducible p) (k : ℕ) :
@@ -999,8 +999,8 @@ theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (
   intro b hb
   constructor
   · rintro ⟨c, rfl⟩
-    rw [Ne.def, pow_succ, mul_assoc, mul_eq_zero, not_or] at hb
-    rw [pow_succ, mul_assoc, normalizedFactors_mul hb.1 hb.2, replicate_succ,
+    rw [Ne.def, pow_succ', mul_assoc, mul_eq_zero, not_or] at hb
+    rw [pow_succ', mul_assoc, normalizedFactors_mul hb.1 hb.2, replicate_succ,
       normalizedFactors_irreducible ha, singleton_add, cons_le_cons_iff, ← ih hb.2]
     apply Dvd.intro _ rfl
   · rw [Multiset.le_iff_exists_add]
@@ -1837,7 +1837,7 @@ theorem count_pow [Nontrivial α] [DecidableEq (Associates α)] {a : Associates
     count p (a ^ k).factors = k * count p a.factors := by
   induction' k with n h
   · rw [pow_zero, factors_one, Nat.zero_eq, zero_mul, count_zero hp]
-  · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]
+  · rw [pow_succ', count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]
     ring
 #align associates.count_pow Associates.count_pow
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -307,7 +307,6 @@ theorem prime_factors_irreducible [CancelCommMonoidWithZero α] {a : α} {f : Mu
 section ExistsPrimeFactors
 
 variable [CancelCommMonoidWithZero α]
-
 variable (pf : ∀ a : α, a ≠ 0 → ∃ f : Multiset α, (∀ b ∈ f, Prime b) ∧ f.prod ~ᵤ a)
 
 theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
@@ -462,7 +461,6 @@ theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCo
 namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α]
-
 variable [UniqueFactorizationMonoid α]
 
 open Classical in
@@ -583,7 +581,6 @@ end UniqueFactorizationMonoid
 namespace UniqueFactorizationMonoid
 
 variable [CancelCommMonoidWithZero α] [NormalizationMonoid α]
-
 variable [UniqueFactorizationMonoid α]
 
 /-- Noncomputably determines the multiset of prime factors. -/
@@ -989,7 +986,6 @@ theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} :
 section multiplicity
 
 variable [Nontrivial R] [NormalizationMonoid R]
-
 variable [dec_dvd : DecidableRel (Dvd.dvd : R → R → Prop)]
 
 open multiplicity Multiset
@@ -1075,7 +1071,6 @@ end multiplicity
 section Multiplicative
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
-
 variable {β : Type*} [CancelCommMonoidWithZero β]
 
 open BigOperators
@@ -2036,7 +2031,6 @@ end UniqueFactorizationMonoid
 section Finsupp
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
-
 variable [NormalizationMonoid α] [DecidableEq α]
 
 open UniqueFactorizationMonoid
chore(UniqueFactorizationDomain): golf (#11424)

Move factors_zero up, use it to golf ne_zero_of_mem_factors

Diff
@@ -476,10 +476,13 @@ theorem factors_prod {a : α} (ane0 : a ≠ 0) : Associated (factors a).prod a :
   exact (Classical.choose_spec (exists_prime_factors a ane0)).2
 #align unique_factorization_monoid.factors_prod UniqueFactorizationMonoid.factors_prod
 
+@[simp]
+theorem factors_zero : factors (0 : α) = 0 := by simp [factors]
+#align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zero
+
 theorem ne_zero_of_mem_factors {p a : α} (h : p ∈ factors a) : a ≠ 0 := by
-  intro ha
-  rw [factors, dif_pos ha] at h
-  exact Multiset.not_mem_zero _ h
+  rintro rfl
+  simp at h
 #align unique_factorization_monoid.ne_zero_of_mem_factors UniqueFactorizationMonoid.ne_zero_of_mem_factors
 
 theorem dvd_of_mem_factors {p a : α} (h : p ∈ factors a) : p ∣ a :=
@@ -496,10 +499,6 @@ theorem irreducible_of_factor {a : α} : ∀ x : α, x ∈ factors a → Irreduc
   (prime_of_factor x h).irreducible
 #align unique_factorization_monoid.irreducible_of_factor UniqueFactorizationMonoid.irreducible_of_factor
 
-@[simp]
-theorem factors_zero : factors (0 : α) = 0 := by simp [factors]
-#align unique_factorization_monoid.factors_zero UniqueFactorizationMonoid.factors_zero
-
 @[simp]
 theorem factors_one : factors (1 : α) = 0 := by
   nontriviality α using factors
fix: remove DecidableEq assumption from factors (#11158)

It doesn't make a lot of sense for factors to require a DecidableEq assumption since it's not used in the statement, and the definition is already noncomputable. This PR removes that assumption and updates some lemmas later in the file accordingly.

Diff
@@ -461,10 +461,11 @@ theorem UniqueFactorizationMonoid.of_exists_unique_irreducible_factors [CancelCo
 
 namespace UniqueFactorizationMonoid
 
-variable [CancelCommMonoidWithZero α] [DecidableEq α]
+variable [CancelCommMonoidWithZero α]
 
 variable [UniqueFactorizationMonoid α]
 
+open Classical in
 /-- Noncomputably determines the multiset of prime factors. -/
 noncomputable def factors (a : α) : Multiset α :=
   if h : a = 0 then 0 else Classical.choose (UniqueFactorizationMonoid.exists_prime_factors a h)
@@ -531,6 +532,7 @@ theorem exists_mem_factors {x : α} (hx : x ≠ 0) (h : ¬IsUnit x) : ∃ p, p 
   exact ⟨p, hp⟩
 #align unique_factorization_monoid.exists_mem_factors UniqueFactorizationMonoid.exists_mem_factors
 
+open Classical in
 theorem factors_mul {x y : α} (hx : x ≠ 0) (hy : y ≠ 0) :
     Multiset.Rel Associated (factors (x * y)) (factors x + factors y) := by
   refine'
@@ -569,7 +571,7 @@ theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x := by
 #align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_pos
 
 open BigOperators Multiset in
-theorem factors_pow_count_prod {x : α} (hx : x ≠ 0) :
+theorem factors_pow_count_prod [DecidableEq α] {x : α} (hx : x ≠ 0) :
     (∏ p in (factors x).toFinset, p ^ (factors x).count p) ~ᵤ x :=
   calc
   _ = prod (∑ a in toFinset (factors x), count a (factors x) • {a}) := by
@@ -581,7 +583,7 @@ end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
 
-variable [CancelCommMonoidWithZero α] [DecidableEq α] [NormalizationMonoid α]
+variable [CancelCommMonoidWithZero α] [NormalizationMonoid α]
 
 variable [UniqueFactorizationMonoid α]
 
@@ -593,7 +595,7 @@ noncomputable def normalizedFactors (a : α) : Multiset α :=
 /-- An arbitrary choice of factors of `x : M` is exactly the (unique) normalized set of factors,
 if `M` has a trivial group of units. -/
 @[simp]
-theorem factors_eq_normalizedFactors {M : Type*} [CancelCommMonoidWithZero M] [DecidableEq M]
+theorem factors_eq_normalizedFactors {M : Type*} [CancelCommMonoidWithZero M]
     [UniqueFactorizationMonoid M] [Unique Mˣ] (x : M) : factors x = normalizedFactors x := by
   unfold normalizedFactors
   convert (Multiset.map_id (factors x)).symm
@@ -993,8 +995,8 @@ variable [dec_dvd : DecidableRel (Dvd.dvd : R → R → Prop)]
 
 open multiplicity Multiset
 
-theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
-    (ha : Irreducible a) (hb : b ≠ 0) :
+theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (ha : Irreducible a)
+    (hb : b ≠ 0) :
     ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b := by
   rw [← pow_dvd_iff_le_multiplicity]
   revert b
@@ -1418,8 +1420,6 @@ theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
     prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 
-variable [dec : DecidableEq α] [dec' : DecidableEq (Associates α)]
-
 /-- This returns the multiset of irreducible factors as a `FactorSet`,
   a multiset of irreducible associates `WithTop`. -/
 noncomputable def factors' (a : α) : Multiset { a : Associates α // Irreducible a } :=
@@ -1450,7 +1450,7 @@ theorem factors'_cong {a b : α} (h : a ~ᵤ b) : factors' a = factors' b := by
 /-- This returns the multiset of irreducible factors of an associate as a `FactorSet`,
   a multiset of irreducible associates `WithTop`. -/
 noncomputable def factors (a : Associates α) : FactorSet α := by
-  refine' if h : a = 0 then ⊤ else Quotient.hrecOn a (fun x _ => some <| factors' x) _ h
+  classical refine' if h : a = 0 then ⊤ else Quotient.hrecOn a (fun x _ => some <| factors' x) _ h
   intro a b hab
   apply Function.hfunext
   · have : a ~ᵤ 0 ↔ b ~ᵤ 0 := Iff.intro (fun ha0 => hab.symm.trans ha0) fun hb0 => hab.trans hb0
@@ -1473,12 +1473,14 @@ theorem factors_mk (a : α) (h : a ≠ 0) : (Associates.mk a).factors = factors'
 
 @[simp]
 theorem factors_prod (a : Associates α) : a.factors.prod = a :=
-  Quotient.inductionOn a fun b =>
-    Decidable.byCases (fun (this : Associates.mk b = 0) => by simp [quotient_mk_eq_mk, this])
-      fun (_ : Associates.mk b ≠ 0) => by
+  Quotient.inductionOn a fun b => by
+    if this : Associates.mk b = 0 then
+      simp [quotient_mk_eq_mk, this]
+    else
       have : b ≠ 0 := by simp_all
       simp [this, quotient_mk_eq_mk, prod_mk,
           mk_eq_mk_iff_associated.2 (UniqueFactorizationMonoid.factors_prod this)]
+
 #align associates.factors_prod Associates.factors_prod
 
 theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.prod.factors = s :=
@@ -1487,7 +1489,7 @@ theorem prod_factors [Nontrivial α] (s : FactorSet α) : s.prod.factors = s :=
 
 @[nontriviality]
 theorem factors_subsingleton [Subsingleton α] {a : Associates α} : a.factors = Option.none := by
-  convert @factors_0 _ _ _ _ _
+  convert @factors_0 _ _ _
 #align associates.factors_subsingleton Associates.factors_subsingleton
 
 theorem factors_eq_none_iff_zero {a : Associates α} : a.factors = Option.none ↔ a = 0 := by
@@ -1513,8 +1515,8 @@ theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.prod = b.
     rwa [prod_factors, prod_factors] at this
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 
-theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
-    (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) :
+theorem eq_factors_of_eq_counts [DecidableEq (Associates α)] {a b : Associates α} (ha : a ≠ 0)
+    (hb : b ≠ 0) (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) :
     a.factors = b.factors := by
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
@@ -1529,13 +1531,14 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   rw [Multiset.toFinsupp_apply, Multiset.toFinsupp_apply, h_count p hp]
 #align associates.eq_factors_of_eq_counts Associates.eq_factors_of_eq_counts
 
-theorem eq_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
+theorem eq_of_eq_counts [DecidableEq (Associates α)] {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a = b :=
   eq_of_factors_eq_factors (eq_factors_of_eq_counts ha hb h)
 #align associates.eq_of_eq_counts Associates.eq_of_eq_counts
 
-theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p)
-    (h : a.factors ≤ b.factors) : p.count a.factors ≤ p.count b.factors := by
+theorem count_le_count_of_factors_le [DecidableEq (Associates α)] {a b p : Associates α}
+    (hb : b ≠ 0) (hp : Irreducible p) (h : a.factors ≤ b.factors) :
+    p.count a.factors ≤ p.count b.factors := by
   by_cases ha : a = 0
   · simp_all
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
@@ -1565,7 +1568,8 @@ theorem factors_le {a b : Associates α} : a.factors ≤ b.factors ↔ a ≤ b :
     factors_mono
 #align associates.factors_le Associates.factors_le
 
-theorem count_le_count_of_le {a b p : Associates α} (hb : b ≠ 0) (hp : Irreducible p) (h : a ≤ b) :
+theorem count_le_count_of_le [DecidableEq (Associates α)] {a b p : Associates α} (hb : b ≠ 0)
+    (hp : Irreducible p) (h : a ≤ b) :
     p.count a.factors ≤ p.count b.factors :=
   count_le_count_of_factors_le hb hp <| factors_mono h
 #align associates.count_le_count_of_le Associates.count_le_count_of_le
@@ -1580,12 +1584,15 @@ theorem prod_le [Nontrivial α] {a b : FactorSet α} : a.prod ≤ b.prod ↔ a 
         prod_mono
 #align associates.prod_le Associates.prod_le
 
+open Classical in
 noncomputable instance : Sup (Associates α) :=
   ⟨fun a b => (a.factors ⊔ b.factors).prod⟩
 
+open Classical in
 noncomputable instance : Inf (Associates α) :=
   ⟨fun a b => (a.factors ⊓ b.factors).prod⟩
 
+open Classical in
 noncomputable instance : Lattice (Associates α) :=
   { Associates.instPartialOrder with
     sup := (· ⊔ ·)
@@ -1600,6 +1607,7 @@ noncomputable instance : Lattice (Associates α) :=
     inf_le_left := fun a _ => le_trans (prod_mono inf_le_left) (le_of_eq (factors_prod a))
     inf_le_right := fun _ b => le_trans (prod_mono inf_le_right) (le_of_eq (factors_prod b)) }
 
+open Classical in
 theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
   show (a.factors ⊔ b.factors).prod * (a.factors ⊓ b.factors).prod = a * b by
     nontriviality α
@@ -1659,6 +1667,7 @@ theorem mem_factors_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   · apply mem_factors_of_dvd ha0 hp
 #align associates.mem_factors_iff_dvd Associates.mem_factors_iff_dvd
 
+open Classical in
 theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
     (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b := by
   have hz : factors (Associates.mk a) ⊓ factors (Associates.mk b) ≠ 0 := by
@@ -1708,16 +1717,16 @@ theorem factors_prime_pow [Nontrivial α] {p : Associates α} (hp : Irreducible
       dsimp; rw [Multiset.map_replicate, Multiset.prod_replicate, Subtype.coe_mk])
 #align associates.factors_prime_pow Associates.factors_prime_pow
 
-theorem prime_pow_dvd_iff_le [Nontrivial α] {m p : Associates α} (h₁ : m ≠ 0) (h₂ : Irreducible p)
-    {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors := by
+theorem prime_pow_dvd_iff_le [Nontrivial α] [DecidableEq (Associates α)] {m p : Associates α}
+    (h₁ : m ≠ 0) (h₂ : Irreducible p) {k : ℕ} : p ^ k ≤ m ↔ k ≤ count p m.factors := by
   obtain ⟨a, nz, rfl⟩ := Associates.exists_non_zero_rep h₁
   rw [factors_mk _ nz, ← WithTop.some_eq_coe, count_some, Multiset.le_count_iff_replicate_le, ←
     factors_le, factors_prime_pow h₂, factors_mk _ nz]
   exact WithTop.coe_le_coe
 #align associates.prime_pow_dvd_iff_le Associates.prime_pow_dvd_iff_le
 
-theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) :
-    count p m.factors ≠ 0 → p ≤ m := by
+theorem le_of_count_ne_zero [DecidableEq (Associates α)] {m p : Associates α} (h0 : m ≠ 0)
+    (hp : Irreducible p) : count p m.factors ≠ 0 → p ≤ m := by
   nontriviality α
   rw [← pos_iff_ne_zero]
   intro h
@@ -1726,8 +1735,8 @@ theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducib
   simpa only
 #align associates.le_of_count_ne_zero Associates.le_of_count_ne_zero
 
-theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
-    (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a := by
+theorem count_ne_zero_iff_dvd [DecidableEq (Associates α)] {a p : α} (ha0 : a ≠ 0)
+    (hp : Irreducible p) : (Associates.mk p).count (Associates.mk a).factors ≠ 0 ↔ p ∣ a := by
   nontriviality α
   rw [← Associates.mk_le_mk_iff_dvd_iff]
   refine'
@@ -1741,12 +1750,13 @@ theorem count_ne_zero_iff_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) :
   exact (zero_lt_one.trans_le h).ne'
 #align associates.count_ne_zero_iff_dvd Associates.count_ne_zero_iff_dvd
 
-theorem count_self [Nontrivial α] {p : Associates α} (hp : Irreducible p) : p.count p.factors = 1 :=
+theorem count_self [Nontrivial α] [DecidableEq (Associates α)] {p : Associates α}
+    (hp : Irreducible p) : p.count p.factors = 1 :=
   by simp [factors_self hp, Associates.count_some hp]
 #align associates.count_self Associates.count_self
 
-theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irreducible q)
-    (h : p ≠ q) : p.count q.factors = 0 :=
+theorem count_eq_zero_of_ne [DecidableEq (Associates α)] {p q : Associates α} (hp : Irreducible p)
+    (hq : Irreducible q) (h : p ≠ q) : p.count q.factors = 0 :=
   not_ne_iff.mp fun h' =>
     h <|
       associated_iff_eq.mp <|
@@ -1755,8 +1765,9 @@ theorem count_eq_zero_of_ne {p q : Associates α} (hp : Irreducible p) (hq : Irr
           exact le_of_count_ne_zero hq.ne_zero hp h'
 #align associates.count_eq_zero_of_ne Associates.count_eq_zero_of_ne
 
-theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0) {p : Associates α}
-    (hp : Irreducible p) : count p (factors (a * b)) = count p a.factors + count p b.factors := by
+theorem count_mul [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0) {b : Associates α}
+    (hb : b ≠ 0) {p : Associates α} (hp : Irreducible p) :
+    count p (factors (a * b)) = count p a.factors + count p b.factors := by
   obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha
   obtain ⟨b0, nzb, hb'⟩ := exists_non_zero_rep hb
   rw [factors_mul, ← ha', ← hb', factors_mk a0 nza, factors_mk b0 nzb, ← FactorSet.coe_add, ←
@@ -1764,9 +1775,9 @@ theorem count_mul {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b
     Multiset.count_add, count_some hp, count_some hp]
 #align associates.count_mul Associates.count_mul
 
-theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α} (hb : b ≠ 0)
-    (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α} (hp : Irreducible p) :
-    count p a.factors = 0 ∨ count p b.factors = 0 := by
+theorem count_of_coprime [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0)
+    {b : Associates α} (hb : b ≠ 0) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {p : Associates α}
+    (hp : Irreducible p) : count p a.factors = 0 ∨ count p b.factors = 0 := by
   rw [or_iff_not_imp_left, ← Ne.def]
   intro hca
   contrapose! hab with hcb
@@ -1774,8 +1785,8 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
     UniqueFactorizationMonoid.irreducible_iff_prime.mp hp⟩
 #align associates.count_of_coprime Associates.count_of_coprime
 
-theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
-    (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
+theorem count_mul_of_coprime [DecidableEq (Associates α)] {a : Associates α} {b : Associates α}
+    (hb : b ≠ 0) {p : Associates α} (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p a.factors = 0 ∨ count p a.factors = count p (a * b).factors := by
   by_cases ha : a = 0
   · simp [ha]
@@ -1784,8 +1795,8 @@ theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠
   rw [count_mul ha hb hp, hb0, add_zero]
 #align associates.count_mul_of_coprime Associates.count_mul_of_coprime
 
-theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Irreducible p)
-    (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
+theorem count_mul_of_coprime' [DecidableEq (Associates α)] {a b : Associates α} {p : Associates α}
+    (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) :
     count p (a * b).factors = count p a.factors ∨ count p (a * b).factors = count p b.factors := by
   by_cases ha : a = 0
   · simp [ha]
@@ -1799,8 +1810,8 @@ theorem count_mul_of_coprime' {a b : Associates α} {p : Associates α} (hp : Ir
     rw [hb0, add_zero]
 #align associates.count_mul_of_coprime' Associates.count_mul_of_coprime'
 
-theorem dvd_count_of_dvd_count_mul {a b : Associates α} (hb : b ≠ 0) {p : Associates α}
-    (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
+theorem dvd_count_of_dvd_count_mul [DecidableEq (Associates α)] {a b : Associates α} (hb : b ≠ 0)
+    {p : Associates α} (hp : Irreducible p) (hab : ∀ d, d ∣ a → d ∣ b → ¬Prime d) {k : ℕ}
     (habk : k ∣ count p (a * b).factors) : k ∣ count p a.factors := by
   by_cases ha : a = 0
   · simpa [*] using habk
@@ -1827,22 +1838,23 @@ theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} :
   · rw [pow_succ, succ_nsmul, factors_mul, h]
 #align associates.pow_factors Associates.pow_factors
 
-theorem count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
-    (hp : Irreducible p) (k : ℕ) : count p (a ^ k).factors = k * count p a.factors := by
+theorem count_pow [Nontrivial α] [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0)
+    {p : Associates α} (hp : Irreducible p) (k : ℕ) :
+    count p (a ^ k).factors = k * count p a.factors := by
   induction' k with n h
   · rw [pow_zero, factors_one, Nat.zero_eq, zero_mul, count_zero hp]
   · rw [pow_succ, count_mul ha (pow_ne_zero _ ha) hp, h, Nat.succ_eq_add_one]
     ring
 #align associates.count_pow Associates.count_pow
 
-theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : Associates α}
-    (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors := by
+theorem dvd_count_pow [Nontrivial α] [DecidableEq (Associates α)] {a : Associates α} (ha : a ≠ 0)
+    {p : Associates α} (hp : Irreducible p) (k : ℕ) : k ∣ count p (a ^ k).factors := by
   rw [count_pow ha hp]
   apply dvd_mul_right
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
-theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
-    (hk : ∀ p : Associates α, Irreducible p → k ∣ count p a.factors) :
+theorem is_pow_of_dvd_count [Nontrivial α] [DecidableEq (Associates α)] {a : Associates α}
+    (ha : a ≠ 0) {k : ℕ} (hk : ∀ p : Associates α, Irreducible p → k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k := by
   obtain ⟨a0, hz, rfl⟩ := exists_non_zero_rep ha
   rw [factors_mk a0 hz] at hk
@@ -1860,8 +1872,8 @@ theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {
 
 /-- The only divisors of prime powers are prime powers. See `eq_pow_find_of_dvd_irreducible_pow`
 for an explicit expression as a p-power (without using `count`). -/
-theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible p) {n : ℕ}
-    (h : a ∣ p ^ n) : a = p ^ p.count a.factors := by
+theorem eq_pow_count_factors_of_dvd_pow [DecidableEq (Associates α)] {p a : Associates α}
+    (hp : Irreducible p) {n : ℕ} (h : a ∣ p ^ n) : a = p ^ p.count a.factors := by
   nontriviality α
   have hph := pow_ne_zero n hp.ne_zero
   have ha := ne_zero_of_dvd_ne_zero hph h
@@ -1878,8 +1890,8 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
   · rw [count_eq_zero_of_ne hq hp h, mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
-theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
-    [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
+theorem count_factors_eq_find_of_dvd_pow [DecidableEq (Associates α)] {a p : Associates α}
+    (hp : Irreducible p) [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
     @Nat.find (fun n => a ∣ p ^ n) _ ⟨n, h⟩ = p.count a.factors := by
   apply le_antisymm
   · refine' Nat.find_le ⟨1, _⟩
@@ -1927,7 +1939,7 @@ open Associates UniqueFactorizationMonoid
 
 /-- `toGCDMonoid` constructs a GCD monoid out of a unique factorization domain. -/
 noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type*) [CancelCommMonoidWithZero α]
-    [UniqueFactorizationMonoid α] [DecidableEq (Associates α)] [DecidableEq α] : GCDMonoid α where
+    [UniqueFactorizationMonoid α] : GCDMonoid α where
   gcd a b := Quot.out (Associates.mk a ⊓ Associates.mk b : Associates α)
   lcm a b := Quot.out (Associates.mk a ⊔ Associates.mk b : Associates α)
   gcd_dvd_left a b := by
@@ -1958,8 +1970,8 @@ noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type*) [CancelComm
 /-- `toNormalizedGCDMonoid` constructs a GCD monoid out of a normalization on a
   unique factorization domain. -/
 noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
-    [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [NormalizationMonoid α]
-    [DecidableEq (Associates α)] [DecidableEq α] : NormalizedGCDMonoid α :=
+    [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [NormalizationMonoid α] :
+    NormalizedGCDMonoid α :=
   { ‹NormalizationMonoid α› with
     gcd := fun a b => (Associates.mk a ⊓ Associates.mk b).out
     lcm := fun a b => (Associates.mk a ⊔ Associates.mk b).out
chore: remove unused tactics (#11351)

I removed some of the tactics that were not used and are hopefully uncontroversial arising from the linter at #11308.

As the commit messages should convey, the removed tactics are, essentially,

push_cast
norm_cast
congr
norm_num
dsimp
funext
intro
infer_instance
Diff
@@ -1975,8 +1975,8 @@ noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
     gcd_mul_lcm := fun a b => by
       rw [← out_mul, mul_comm, sup_mul_inf, mk_mul_mk, out_mk]
       exact normalize_associated (a * b)
-    normalize_gcd := fun a b => by congr; apply normalize_out _
-    normalize_lcm := fun a b => by congr; apply normalize_out _ }
+    normalize_gcd := fun a b => by apply normalize_out _
+    normalize_lcm := fun a b => by apply normalize_out _ }
 #align unique_factorization_monoid.to_normalized_gcd_monoid UniqueFactorizationMonoid.toNormalizedGCDMonoid
 
 instance (α) [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
feat(RingTheory/UniqueFactorizationDomain): add lemma UniqueFactorizationMonoid.IsPrime.exists_mem_Prime_of_neq_bot (#11218)

We add UniqueFactorizationMonoid.IsPrime.exists_mem_Prime_of_neq_bot: if an integral domain is a UniqueFactorizationMonoid, then every nonzero prime ideal contains a prime element.

We plan to add the other implication (known as Kaplansky's criterion) in a future PR.

Co-authored-by: EmilieUthaiwat <102412311+EmilieUthaiwat@users.noreply.github.com> Co-authored-by: faenuccio <filippo.nuccio@univ-st-etienne.fr>

Diff
@@ -2074,3 +2074,17 @@ theorem associated_of_factorization_eq (a b : α) (ha : a ≠ 0) (hb : b ≠ 0)
 #align associated_of_factorization_eq associated_of_factorization_eq
 
 end Finsupp
+
+open UniqueFactorizationMonoid in
+/-- Every non-zero prime ideal in a unique factorization domain contains a prime element. -/
+theorem Ideal.IsPrime.exists_mem_prime_of_ne_bot {R : Type*} [CommSemiring R] [IsDomain R]
+    [UniqueFactorizationMonoid R] {I : Ideal R} (hI₂ : I.IsPrime) (hI : I ≠ ⊥) :
+    ∃ x ∈ I, Prime x := by
+  classical
+  obtain ⟨a : R, ha₁ : a ∈ I, ha₂ : a ≠ 0⟩ := Submodule.exists_mem_ne_zero_of_ne_bot hI
+  replace ha₁ : (factors a).prod ∈ I := by
+    obtain ⟨u : Rˣ, hu : (factors a).prod * u = a⟩ := factors_prod ha₂
+    rwa [← hu, mul_unit_mem_iff_mem _ u.isUnit] at ha₁
+  obtain ⟨p : R, hp₁ : p ∈ factors a, hp₂ : p ∈ I⟩ :=
+    (hI₂.multiset_prod_mem_iff_exists_mem <| factors a).1 ha₁
+  exact ⟨p, hp₂, prime_of_factor p hp₁⟩
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -867,7 +867,7 @@ end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
 
-open Classical
+open scoped Classical
 
 open Multiset Associates
 
feat(RingTheory/UniqueFactorizationDomain): add WfDvdMonoid.max_power_factor['] and multiplicity.finite_of_not_isUnit (#11066)
  • makes UniqueFactorizationMonoid.max_power_factor obsolete
  • makes the proof of multiplicity.finite_prime_left trivial
  • relax the condition of exists_reduced_fraction'

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -148,6 +148,23 @@ theorem WfDvdMonoid.iff_wellFounded_associates [CancelCommMonoidWithZero α] :
   ⟨by apply WfDvdMonoid.wellFounded_associates, WfDvdMonoid.of_wellFounded_associates⟩
 #align wf_dvd_monoid.iff_well_founded_associates WfDvdMonoid.iff_wellFounded_associates
 
+theorem WfDvdMonoid.max_power_factor' [CommMonoidWithZero α] [WfDvdMonoid α] {a₀ x : α}
+    (h : a₀ ≠ 0) (hx : ¬IsUnit x) : ∃ (n : ℕ) (a : α), ¬x ∣ a ∧ a₀ = x ^ n * a := by
+  obtain ⟨a, ⟨n, rfl⟩, hm⟩ := wellFounded_dvdNotUnit.has_min
+    {a | ∃ n, x ^ n * a = a₀} ⟨a₀, 0, by rw [pow_zero, one_mul]⟩
+  refine ⟨n, a, ?_, rfl⟩; rintro ⟨d, rfl⟩
+  exact hm d ⟨n + 1, by rw [pow_succ', mul_assoc]⟩
+    ⟨(right_ne_zero_of_mul <| right_ne_zero_of_mul h), x, hx, mul_comm _ _⟩
+
+theorem WfDvdMonoid.max_power_factor [CommMonoidWithZero α] [WfDvdMonoid α] {a₀ x : α}
+    (h : a₀ ≠ 0) (hx : Irreducible x) : ∃ (n : ℕ) (a : α), ¬x ∣ a ∧ a₀ = x ^ n * a :=
+  max_power_factor' h hx.not_unit
+
+theorem multiplicity.finite_of_not_isUnit [CancelCommMonoidWithZero α] [WfDvdMonoid α]
+    {a b : α} (ha : ¬IsUnit a) (hb : b ≠ 0) : multiplicity.Finite a b := by
+  obtain ⟨n, c, ndvd, rfl⟩ := WfDvdMonoid.max_power_factor' hb ha
+  exact ⟨n, by rwa [pow_succ', mul_dvd_mul_iff_left (left_ne_zero_of_mul hb)]⟩
+
 section Prio
 
 -- set_option default_priority 100
@@ -1046,20 +1063,12 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   · exact count_normalizedFactors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
 
-
-theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
-    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
-  classical
-    let n := (normalizedFactors a₀).count (normalize x)
-    obtain ⟨a, ha1, ha2⟩ := @exists_eq_pow_mul_and_not_dvd R _ _ x a₀
-      (ne_top_iff_finite.mp (PartENat.ne_top_iff.mpr
-        -- Porting note: this was a hole that was filled at the end of the proof with `use`:
-        ⟨n, multiplicity_eq_count_normalizedFactors hx h⟩))
-    simp_rw [← (multiplicity_eq_count_normalizedFactors hx h).symm] at ha1
-    use n, a, ha2, ha1
+/-- Deprecated. Use `WfDvdMonoid.max_power_factor` instead. -/
+@[deprecated WfDvdMonoid.max_power_factor]
+theorem max_power_factor {a₀ x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
+    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := WfDvdMonoid.max_power_factor h hx
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
 
-
 end multiplicity
 
 section Multiplicative
chore: remove stream-of-conciousness syntax for obtain (#11045)

This covers many instances, but is not exhaustive.

Independently of whether that syntax should be avoided (similar to #10534), I think all these changes are small improvements.

Diff
@@ -832,8 +832,8 @@ theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x
 theorem normalizedFactors_multiset_prod (s : Multiset α) (hs : 0 ∉ s) :
     normalizedFactors (s.prod) = (s.map normalizedFactors).sum := by
   cases subsingleton_or_nontrivial α
-  · obtain rfl : s = 0
-    · apply Multiset.eq_zero_of_forall_not_mem
+  · obtain rfl : s = 0 := by
+      apply Multiset.eq_zero_of_forall_not_mem
       intro _
       convert hs
     simp
feat: introduce IsRelPrime and DecompositionMonoid and refactor (#10327)
  • Introduce typeclass DecompositionMonoid, which says every element in the monoid is primal, i.e., whenever an element divides a product b * c, it can be factored into a product such that the factors divides b and c respectively. A domain is called pre-Schreier if its multiplicative monoid is a decomposition monoid, and these are more general than GCD domains.

  • Show that any GCDMonoid is a DecompositionMonoid. In order for lemmas about DecompositionMonoids to automatically apply to UniqueFactorizationMonoids, we add instances from UniqueFactorizationMonoid α to Nonempty (NormalizedGCDMonoid α) to Nonempty (GCDMonoid α) to DecompositionMonoid α. (Zulip) See the bottom of message for an updated diagram of classes and instances.

  • Introduce binary predicate IsRelPrime which says that the only common divisors of the two elements are units. Replace previous occurrences in mathlib by this predicate.

  • Duplicate all lemmas about IsCoprime in Coprime/Basic (except three lemmas about smul) to IsRelPrime. Due to import constraints, they are spread into three files Algebra/Divisibility/Units (including key lemmas assuming DecompositionMonoid), GroupWithZero/Divisibility, and Coprime/Basic.

  • Show IsCoprime always imply IsRelPrime and is equivalent to it in Bezout rings. To reduce duplication, the definition of Bezout rings and the GCDMonoid instance are moved from RingTheory/Bezout to RingTheory/PrincipalIdealDomain, and some results in PrincipalIdealDomain are generalized to Bezout rings.

  • Remove the recently added file Squarefree/UniqueFactorizationMonoid and place the results appropriately within Squarefree/Basic. All results are generalized to DecompositionMonoid or weaker except the last one.

Zulip

With this PR, all the following instances (indicated by arrows) now work; this PR fills the central part.

                                                                          EuclideanDomain (bundled)
                                                                              ↙          ↖
                                                                 IsPrincipalIdealRing ← Field (bundled)
                                                                            ↓             ↓
         NormalizationMonoid ←          NormalizedGCDMonoid → GCDMonoid  IsBezout ← ValuationRing ← DiscreteValuationRing
                   ↓                             ↓                 ↘       ↙
Nonempty NormalizationMonoid ← Nonempty NormalizedGCDMonoid →  Nonempty GCDMonoid → IsIntegrallyClosed
                                                 ↑                    ↓
                    WfDvdMonoid ← UniqueFactorizationMonoid → DecompositionMonoid
                                                 ↑
                                       IsPrincipalIdealRing

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: Oliver Nash <github@olivernash.org>

Diff
@@ -126,6 +126,12 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     not_isUnit_of_not_isUnit_dvd (hi b h).not_unit <| he ▸ Multiset.dvd_prod h⟩
 #align wf_dvd_monoid.not_unit_iff_exists_factors_eq WfDvdMonoid.not_unit_iff_exists_factors_eq
 
+theorem isRelPrime_of_no_irreducible_factors {x y : α} (nonzero : ¬(x = 0 ∧ y = 0))
+    (H : ∀ z : α, Irreducible z → z ∣ x → ¬z ∣ y) : IsRelPrime x y :=
+  isRelPrime_of_no_nonunits_factors nonzero fun _z znu znz zx zy ↦
+    have ⟨i, h1, h2⟩ := exists_irreducible_factor znu znz
+    H i h1 (h2.trans zx) (h2.trans zy)
+
 end WfDvdMonoid
 
 theorem WfDvdMonoid.of_wellFounded_associates [CancelCommMonoidWithZero α]
@@ -167,15 +173,15 @@ of prime factors, use the definition `of_exists_prime_factors`
 -/
 class UniqueFactorizationMonoid (α : Type*) [CancelCommMonoidWithZero α] extends WfDvdMonoid α :
   Prop where
-  irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
+  protected irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
 #align unique_factorization_monoid UniqueFactorizationMonoid
 
 /-- Can't be an instance because it would cause a loop `ufm → WfDvdMonoid → ufm → ...`. -/
-@[reducible]
-theorem ufm_of_gcd_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α] [GCDMonoid α] :
-    UniqueFactorizationMonoid α :=
-  { ‹WfDvdMonoid α› with irreducible_iff_prime := GCDMonoid.irreducible_iff_prime }
-#align ufm_of_gcd_of_wf_dvd_monoid ufm_of_gcd_of_wfDvdMonoid
+theorem ufm_of_decomposition_of_wfDvdMonoid [CancelCommMonoidWithZero α] [WfDvdMonoid α]
+    [DecompositionMonoid α] : UniqueFactorizationMonoid α :=
+  { ‹WfDvdMonoid α› with irreducible_iff_prime := irreducible_iff_prime }
+#align ufm_of_gcd_of_wf_dvd_monoid ufm_of_decomposition_of_wfDvdMonoid
+@[deprecated] alias ufm_of_gcd_of_wfDvdMonoid := ufm_of_decomposition_of_wfDvdMonoid
 
 instance Associates.ufm [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
     UniqueFactorizationMonoid (Associates α) :=
@@ -197,14 +203,17 @@ theorem exists_prime_factors (a : α) :
   apply WfDvdMonoid.exists_factors a
 #align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factors
 
+instance : DecompositionMonoid α where
+  primal a := by
+    obtain rfl | ha := eq_or_ne a 0; · exact isPrimal_zero
+    obtain ⟨f, hf, u, rfl⟩ := exists_prime_factors a ha
+    exact ((Submonoid.isPrimal α).multiset_prod_mem f (hf · ·|>.isPrimal)).mul u.isUnit.isPrimal
+
 lemma exists_prime_iff :
     (∃ (p : α), Prime p) ↔ ∃ (x : α), x ≠ 0 ∧ ¬ IsUnit x := by
   refine ⟨fun ⟨p, hp⟩ ↦ ⟨p, hp.ne_zero, hp.not_unit⟩, fun ⟨x, hx₀, hxu⟩ ↦ ?_⟩
-  obtain ⟨f, hf, hf'⟩ := exists_prime_factors x hx₀
-  rcases f.empty_or_exists_mem with rfl | h
-  · have := associated_one_iff_isUnit.mp hf'.symm; contradiction
-  · obtain ⟨p, hp⟩ := h
-    exact ⟨p, hf _ hp⟩
+  obtain ⟨f, hf, -⟩ := WfDvdMonoid.exists_irreducible_factor hxu hx₀
+  exact ⟨f, UniqueFactorizationMonoid.irreducible_iff_prime.mp hf⟩
 
 @[elab_as_elim]
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
@@ -248,8 +257,8 @@ variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
 theorem factors_unique {f g : Multiset α} (hf : ∀ x ∈ f, Irreducible x)
     (hg : ∀ x ∈ g, Irreducible x) (h : f.prod ~ᵤ g.prod) : Multiset.Rel Associated f g :=
-  prime_factors_unique (fun x hx => irreducible_iff_prime.mp (hf x hx))
-    (fun x hx => irreducible_iff_prime.mp (hg x hx)) h
+  prime_factors_unique (fun x hx => UniqueFactorizationMonoid.irreducible_iff_prime.mp (hf x hx))
+    (fun x hx => UniqueFactorizationMonoid.irreducible_iff_prime.mp (hg x hx)) h
 #align unique_factorization_monoid.factors_unique UniqueFactorizationMonoid.factors_unique
 
 end UniqueFactorizationMonoid
@@ -845,7 +854,7 @@ open Classical
 
 open Multiset Associates
 
-variable [CancelCommMonoidWithZero α] [Nontrivial α] [UniqueFactorizationMonoid α]
+variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
 /-- Noncomputably defines a `normalizationMonoid` structure on a `UniqueFactorizationMonoid`. -/
 protected noncomputable def normalizationMonoid : NormalizationMonoid α :=
@@ -855,7 +864,7 @@ protected noncomputable def normalizationMonoid : NormalizationMonoid α :=
         else
           ((normalizedFactors a).map
               (Classical.choose mk_surjective.hasRightInverse : Associates α → α)).prod
-      map_one' := by simp
+      map_one' := by nontriviality α; simp
       map_mul' := fun x y => by
         by_cases hx : x = 0
         · simp [hx]
@@ -878,44 +887,23 @@ protected noncomputable def normalizationMonoid : NormalizationMonoid α :=
       apply normalizedFactors_prod hx)
 #align unique_factorization_monoid.normalization_monoid UniqueFactorizationMonoid.normalizationMonoid
 
-noncomputable instance : Inhabited (NormalizationMonoid α) :=
-  ⟨UniqueFactorizationMonoid.normalizationMonoid⟩
-
 end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
 
 variable {R : Type*} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
-theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
-    (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun {d} =>
-  induction_on_prime d
-    (by
-      simp only [zero_dvd_iff]
-      intros
-      contradiction)
-    (fun x hx _ _ => hx) fun d q _ hq _ dvd_a dvd_b =>
-    absurd hq (h (dvd_of_mul_right_dvd dvd_a) (dvd_of_mul_right_dvd dvd_b))
-#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.no_factors_of_no_prime_factors
+theorem isRelPrime_iff_no_prime_factors {a b : R} (ha : a ≠ 0) :
+    IsRelPrime a b ↔ ∀ ⦃d⦄, d ∣ a → d ∣ b → ¬Prime d :=
+  ⟨fun h _ ha hb ↦ (·.not_unit <| h ha hb), fun h ↦ WfDvdMonoid.isRelPrime_of_no_irreducible_factors
+    (ha ·.1) fun _ irr ha hb ↦ h ha hb (UniqueFactorizationMonoid.irreducible_iff_prime.mp irr)⟩
+#align unique_factorization_monoid.no_factors_of_no_prime_factors UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors
 
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `c` have no common prime factors, `a ∣ b`.
 Compare `IsCoprime.dvd_of_dvd_mul_left`. -/
-theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
-    (∀ {d}, d ∣ a → d ∣ c → ¬Prime d) → a ∣ b * c → a ∣ b := by
-  refine' induction_on_prime c _ _ _
-  · intro no_factors
-    simp only [dvd_zero, mul_zero, forall_prop_of_true]
-    haveI := Classical.propDecidable
-    exact
-      isUnit_iff_forall_dvd.mp
-        (no_factors_of_no_prime_factors ha (@no_factors) (dvd_refl a) (dvd_zero a)) _
-  · rintro _ ⟨x, rfl⟩ _ a_dvd_bx
-    apply Units.dvd_mul_right.mp a_dvd_bx
-  · intro c p _ hp ih no_factors a_dvd_bpc
-    apply ih fun {q} dvd_a dvd_c hq => no_factors dvd_a (dvd_c.mul_left _) hq
-    rw [mul_left_comm] at a_dvd_bpc
-    refine' Or.resolve_left (hp.left_dvd_or_dvd_right_of_dvd_mul a_dvd_bpc) fun h => _
-    exact no_factors h (dvd_mul_right p c) hp
+theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
+    (h : ∀ ⦃d⦄, d ∣ a → d ∣ c → ¬Prime d) : a ∣ b * c → a ∣ b :=
+  ((isRelPrime_iff_no_prime_factors ha).mpr h).dvd_of_dvd_mul_right
 #align unique_factorization_monoid.dvd_of_dvd_mul_left_of_no_prime_factors UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors
 
 /-- Euclid's lemma: if `a ∣ b * c` and `a` and `b` have no common prime factors, `a ∣ c`.
@@ -929,7 +917,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
     ∀ a ≠ (0 : R), ∀ b,
-      ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b := by
+      ∃ a' b' c', IsRelPrime a' b' ∧ c' * a' = a ∧ c' * b' = b := by
   haveI := Classical.propDecidable
   intro a
   refine' induction_on_prime a _ _ _
@@ -958,9 +946,9 @@ theorem exists_reduced_factors :
 #align unique_factorization_monoid.exists_reduced_factors UniqueFactorizationMonoid.exists_reduced_factors
 
 theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
-    ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b :=
+    ∃ a' b' c', IsRelPrime a' b' ∧ c' * a' = a ∧ c' * b' = b :=
   let ⟨b', a', c', no_factor, hb, ha⟩ := exists_reduced_factors b hb a
-  ⟨a', b', c', fun hpb hpa => no_factor hpa hpb, ha, hb⟩
+  ⟨a', b', c', fun _ hpb hpa => no_factor hpa hpb, ha, hb⟩
 #align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'
 
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
@@ -1085,9 +1073,9 @@ open BigOperators
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
     (is_coprime : ∀ᵉ (q ∈ insert p s) (q' ∈ insert p s), q ∣ q' → q = q') :
-    ∀ q : α, q ∣ p ^ i p → (q ∣ ∏ p' in s, p' ^ i p') → IsUnit q := by
+    IsRelPrime (p ^ i p) (∏ p' in s, p' ^ i p') := by
   have hp := is_prime _ (Finset.mem_insert_self _ _)
-  refine' fun _ => no_factors_of_no_prime_factors (pow_ne_zero _ hp.ne_zero) _
+  refine (isRelPrime_iff_no_prime_factors <| pow_ne_zero _ hp.ne_zero).mpr ?_
   intro d hdp hdprod hd
   apply hps
   replace hdp := hd.dvd_of_dvd_pow hdp
@@ -1107,7 +1095,7 @@ then `P` holds on a product of powers of distinct primes. -/
 theorem induction_on_prime_power {P : α → Prop} (s : Finset α) (i : α → ℕ)
     (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ᵉ (p ∈ s) (q ∈ s), p ∣ q → p = q)
     (h1 : ∀ {x}, IsUnit x → P x) (hpr : ∀ {p} (i : ℕ), Prime p → P (p ^ i))
-    (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → P x → P y → P (x * y)) :
+    (hcp : ∀ {x y}, IsRelPrime x y → P x → P y → P (x * y)) :
     P (∏ p in s, p ^ i p) := by
   letI := Classical.decEq α
   induction' s using Finset.induction_on with p f' hpf' ih
@@ -1126,7 +1114,7 @@ then `P` holds on all `a : α`. -/
 @[elab_as_elim]
 theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}, IsUnit x → P x)
     (hpr : ∀ {p} (i : ℕ), Prime p → P (p ^ i))
-    (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → P x → P y → P (x * y)) : P a := by
+    (hcp : ∀ {x y}, IsRelPrime x y → P x → P y → P (x * y)) : P a := by
   letI := Classical.decEq α
   have P_of_associated : ∀ {x y}, Associated x y → P x → P y := by
     rintro x y ⟨u, rfl⟩ hx
@@ -1149,7 +1137,7 @@ theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α →
     (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ᵉ (p ∈ s) (q ∈ s), p ∣ q → p = q)
     (h1 : ∀ {x y}, IsUnit y → f (x * y) = f x * f y)
     (hpr : ∀ {p} (i : ℕ), Prime p → f (p ^ i) = f p ^ i)
-    (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y) :
+    (hcp : ∀ {x y}, IsRelPrime x y → f (x * y) = f x * f y) :
     f (∏ p in s, p ^ (i p + j p)) = f (∏ p in s, p ^ i p) * f (∏ p in s, p ^ j p) := by
   letI := Classical.decEq α
   induction' s using Finset.induction_on with p s hps ih
@@ -1169,7 +1157,7 @@ is multiplicative on coprime elements, then `f` is multiplicative everywhere. -/
 theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
     (h1 : ∀ {x y}, IsUnit y → f (x * y) = f x * f y)
     (hpr : ∀ {p} (i : ℕ), Prime p → f (p ^ i) = f p ^ i)
-    (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y) :
+    (hcp : ∀ {x y}, IsRelPrime x y → f (x * y) = f x * f y) :
     f (a * b) = f a * f b := by
   letI := Classical.decEq α
   by_cases ha0 : a = 0
@@ -1221,45 +1209,6 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
 
 end Multiplicative
 
-section Coprime
-
-variable {x y d : R}
-
-/-- See also `IsCoprime.dvd_of_dvd_mul_left`. -/
-theorem dvd_of_coprime_of_dvd_mul_left
-    (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (h' : y ∣ x * d) : y ∣ d := by
-  rcases eq_or_ne x 0 with rfl | hx
-  · replace h : IsUnit y := h y (dvd_zero y) (refl _); exact h.dvd
-  rcases eq_or_ne y 0 with rfl | hy
-  · simp only [zero_dvd_iff, mul_eq_zero, hx, false_or] at h'; simp [h']
-  induction' y using UniqueFactorizationMonoid.induction_on_coprime
-    with u hu p k hp a b _ ha hb generalizing x d
-  · simpa [hx] using h'
-  · exact hu.dvd
-  · rcases eq_or_ne k 0 with rfl | hk; · simp
-    replace h : ¬ p ∣ x := fun contra ↦ hp.not_unit <| h p contra (dvd_pow_self p hk)
-    exact Prime.pow_dvd_of_dvd_mul_left hp k h h'
-  · rw [ne_eq, mul_eq_zero, not_or] at hy
-    have hxa : ∀ p, p ∣ x → p ∣ a → IsUnit p := fun p h₁ h₂ ↦ h p h₁ (h₂.mul_right b)
-    have hxb : ∀ p, p ∣ x → p ∣ b → IsUnit p := fun p h₁ h₂ ↦ h p h₁ (h₂.mul_left a)
-    obtain ⟨a', rfl⟩ := @ha x d hxa (dvd_of_mul_right_dvd h') hx hy.1
-    rw [mul_left_comm, mul_dvd_mul_iff_left hy.1] at h'
-    exact mul_dvd_mul_left a (@hb x a' hxb h' hx hy.2)
-
-/-- See also `IsCoprime.dvd_of_dvd_mul_right`. -/
-theorem dvd_of_coprime_of_dvd_mul_right
-    (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (h' : y ∣ d * x) : y ∣ d := by
-  rw [mul_comm] at h'; exact dvd_of_coprime_of_dvd_mul_left h h'
-
-/-- See also `IsCoprime.mul_dvd`. -/
-theorem mul_dvd_of_coprime (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (hx : x ∣ d) (hy : y ∣ d) :
-    x * y ∣ d := by
-  obtain ⟨x', rfl⟩ := hx
-  suffices y ∣ x' by exact mul_dvd_mul_left x this
-  exact dvd_of_coprime_of_dvd_mul_left h hy
-
-end Coprime
-
 end UniqueFactorizationMonoid
 
 namespace Associates
@@ -1670,7 +1619,6 @@ theorem dvd_of_mem_factors' {a : α} {p : Associates α} {hp : Irreducible p} {h
   apply mem_factorSet_some.2 h_mem
 #align associates.dvd_of_mem_factors' Associates.dvd_of_mem_factors'
 
-
 theorem mem_factors'_of_dvd {a p : α} (ha0 : a ≠ 0) (hp : Irreducible p) (hd : p ∣ a) :
     Subtype.mk (Associates.mk p) ((irreducible_mk _).2 hp) ∈ factors' a := by
   obtain ⟨q, hq, hpq⟩ := exists_mem_factors_of_dvd ha0 hp hd
@@ -1714,7 +1662,7 @@ theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0)
   rw [Multiset.inf_eq_inter] at p0_mem
   obtain ⟨p, rfl⟩ : ∃ p, Associates.mk p = p0 := Quot.exists_rep p0
   refine' ⟨p, _, _, _⟩
-  · rw [← irreducible_iff_prime, ← irreducible_mk]
+  · rw [← UniqueFactorizationMonoid.irreducible_iff_prime, ← irreducible_mk]
     exact p0_irr
   · apply dvd_of_mk_le_mk
     apply dvd_of_mem_factors' (Multiset.mem_inter.mp p0_mem).left
@@ -1813,8 +1761,8 @@ theorem count_of_coprime {a : Associates α} (ha : a ≠ 0) {b : Associates α}
   rw [or_iff_not_imp_left, ← Ne.def]
   intro hca
   contrapose! hab with hcb
-  exact
-    ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb, irreducible_iff_prime.mp hp⟩
+  exact ⟨p, le_of_count_ne_zero ha hp hca, le_of_count_ne_zero hb hp hcb,
+    UniqueFactorizationMonoid.irreducible_iff_prime.mp hp⟩
 #align associates.count_of_coprime Associates.count_of_coprime
 
 theorem count_mul_of_coprime {a : Associates α} {b : Associates α} (hb : b ≠ 0) {p : Associates α}
@@ -2022,6 +1970,11 @@ noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
     normalize_lcm := fun a b => by congr; apply normalize_out _ }
 #align unique_factorization_monoid.to_normalized_gcd_monoid UniqueFactorizationMonoid.toNormalizedGCDMonoid
 
+instance (α) [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
+    Nonempty (NormalizedGCDMonoid α) := by
+  letI := UniqueFactorizationMonoid.normalizationMonoid (α := α)
+  classical exact ⟨UniqueFactorizationMonoid.toNormalizedGCDMonoid α⟩
+
 end
 
 namespace UniqueFactorizationMonoid
feat: a polynomial over a perfect field is separable iff it is square-free (#10170)

Yet another small step toward Jordan-Chevalley-Dunford.

This was far more work than expected, partly because of missing API for Squarefree, and partly because the definition IsCoprime is the wrong concept for unique factorization domains.

Diff
@@ -197,6 +197,15 @@ theorem exists_prime_factors (a : α) :
   apply WfDvdMonoid.exists_factors a
 #align unique_factorization_monoid.exists_prime_factors UniqueFactorizationMonoid.exists_prime_factors
 
+lemma exists_prime_iff :
+    (∃ (p : α), Prime p) ↔ ∃ (x : α), x ≠ 0 ∧ ¬ IsUnit x := by
+  refine ⟨fun ⟨p, hp⟩ ↦ ⟨p, hp.ne_zero, hp.not_unit⟩, fun ⟨x, hx₀, hxu⟩ ↦ ?_⟩
+  obtain ⟨f, hf, hf'⟩ := exists_prime_factors x hx₀
+  rcases f.empty_or_exists_mem with rfl | h
+  · have := associated_one_iff_isUnit.mp hf'.symm; contradiction
+  · obtain ⟨p, hp⟩ := h
+    exact ⟨p, hf _ hp⟩
+
 @[elab_as_elim]
 theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x)
     (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a := by
@@ -1212,6 +1221,45 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
 
 end Multiplicative
 
+section Coprime
+
+variable {x y d : R}
+
+/-- See also `IsCoprime.dvd_of_dvd_mul_left`. -/
+theorem dvd_of_coprime_of_dvd_mul_left
+    (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (h' : y ∣ x * d) : y ∣ d := by
+  rcases eq_or_ne x 0 with rfl | hx
+  · replace h : IsUnit y := h y (dvd_zero y) (refl _); exact h.dvd
+  rcases eq_or_ne y 0 with rfl | hy
+  · simp only [zero_dvd_iff, mul_eq_zero, hx, false_or] at h'; simp [h']
+  induction' y using UniqueFactorizationMonoid.induction_on_coprime
+    with u hu p k hp a b _ ha hb generalizing x d
+  · simpa [hx] using h'
+  · exact hu.dvd
+  · rcases eq_or_ne k 0 with rfl | hk; · simp
+    replace h : ¬ p ∣ x := fun contra ↦ hp.not_unit <| h p contra (dvd_pow_self p hk)
+    exact Prime.pow_dvd_of_dvd_mul_left hp k h h'
+  · rw [ne_eq, mul_eq_zero, not_or] at hy
+    have hxa : ∀ p, p ∣ x → p ∣ a → IsUnit p := fun p h₁ h₂ ↦ h p h₁ (h₂.mul_right b)
+    have hxb : ∀ p, p ∣ x → p ∣ b → IsUnit p := fun p h₁ h₂ ↦ h p h₁ (h₂.mul_left a)
+    obtain ⟨a', rfl⟩ := @ha x d hxa (dvd_of_mul_right_dvd h') hx hy.1
+    rw [mul_left_comm, mul_dvd_mul_iff_left hy.1] at h'
+    exact mul_dvd_mul_left a (@hb x a' hxb h' hx hy.2)
+
+/-- See also `IsCoprime.dvd_of_dvd_mul_right`. -/
+theorem dvd_of_coprime_of_dvd_mul_right
+    (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (h' : y ∣ d * x) : y ∣ d := by
+  rw [mul_comm] at h'; exact dvd_of_coprime_of_dvd_mul_left h h'
+
+/-- See also `IsCoprime.mul_dvd`. -/
+theorem mul_dvd_of_coprime (h : ∀ p, p ∣ x → p ∣ y → IsUnit p) (hx : x ∣ d) (hy : y ∣ d) :
+    x * y ∣ d := by
+  obtain ⟨x', rfl⟩ := hx
+  suffices y ∣ x' by exact mul_dvd_mul_left x this
+  exact dvd_of_coprime_of_dvd_mul_left h hy
+
+end Coprime
+
 end UniqueFactorizationMonoid
 
 namespace Associates
feat: The support of f ^ n (#9617)

This involves moving lemmas from Algebra.GroupPower.Ring to Algebra.GroupWithZero.Basic and changing some 0 < n assumptions to n ≠ 0.

From LeanAPAP

Diff
@@ -513,7 +513,7 @@ theorem factors_pow {x : α} (n : ℕ) :
   | 0 => rw [zero_smul, pow_zero, factors_one, Multiset.rel_zero_right]
   | n+1 =>
     · by_cases h0 : x = 0
-      · simp [h0, zero_pow n.succ_pos, smul_zero]
+      · simp [h0, zero_pow n.succ_ne_zero, smul_zero]
       · rw [pow_succ, succ_nsmul]
         refine' Multiset.Rel.trans _ (factors_mul h0 (pow_ne_zero n h0)) _
         refine' Multiset.Rel.add _ <| factors_pow n
@@ -692,7 +692,7 @@ theorem normalizedFactors_pow {x : α} (n : ℕ) :
   induction' n with n ih
   · simp
   by_cases h0 : x = 0
-  · simp [h0, zero_pow n.succ_pos, smul_zero]
+  · simp [h0, zero_pow n.succ_ne_zero, smul_zero]
   rw [pow_succ, succ_nsmul, normalizedFactors_mul h0 (pow_ne_zero _ h0), ih]
 #align unique_factorization_monoid.normalized_factors_pow UniqueFactorizationMonoid.normalizedFactors_pow
 
@@ -1044,7 +1044,7 @@ theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Ir
   rcases hp with (rfl | hp)
   · cases n
     · exact count_eq_zero.2 (zero_not_mem_normalizedFactors _)
-    · rw [zero_pow (Nat.succ_pos _)] at hle hlt
+    · rw [zero_pow (Nat.succ_ne_zero _)] at hle hlt
       exact absurd hle hlt
   · exact count_normalizedFactors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
@@ -1902,7 +1902,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
       rw [h]
       apply dvd_count_pow _ hp
       rintro rfl
-      rw [zero_pow' _ hk0] at h
+      rw [zero_pow hk0] at h
       cases mul_eq_zero.mp h <;> contradiction
 #align associates.eq_pow_of_mul_eq_pow Associates.eq_pow_of_mul_eq_pow
 
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9184)

Search for [∀∃].*(_ and manually replace some occurrences with more readable versions. In case of , the new expressions are defeq to the old ones. In case of , they differ by exists_prop.

In some rare cases, golf proofs that needed fixing.

Diff
@@ -611,7 +611,7 @@ theorem normalizedFactors_irreducible {a : α} (ha : Irreducible a) :
 #align unique_factorization_monoid.normalized_factors_irreducible UniqueFactorizationMonoid.normalizedFactors_irreducible
 
 theorem normalizedFactors_eq_of_dvd (a : α) :
-    ∀ (p) (_ : p ∈ normalizedFactors a) (q) (_ : q ∈ normalizedFactors a), p ∣ q → p = q := by
+    ∀ᵉ (p ∈ normalizedFactors a) (q ∈ normalizedFactors a), p ∣ q → p = q := by
   intro p hp q hq hdvd
   convert normalize_eq_normalize hdvd
           ((prime_of_normalized_factor _ hp).irreducible.dvd_symm
@@ -919,7 +919,7 @@ theorem dvd_of_dvd_mul_right_of_no_prime_factors {a b c : R} (ha : a ≠ 0)
 /-- If `a ≠ 0, b` are elements of a unique factorization domain, then dividing
 out their common factor `c'` gives `a'` and `b'` with no factors in common. -/
 theorem exists_reduced_factors :
-    ∀ (a) (_ : a ≠ (0 : R)) (b),
+    ∀ a ≠ (0 : R), ∀ b,
       ∃ a' b' c', (∀ {d}, d ∣ a' → d ∣ b' → IsUnit d) ∧ c' * a' = a ∧ c' * b' = b := by
   haveI := Classical.propDecidable
   intro a
@@ -1075,7 +1075,7 @@ open BigOperators
 
 theorem prime_pow_coprime_prod_of_coprime_insert [DecidableEq α] {s : Finset α} (i : α → ℕ) (p : α)
     (hps : p ∉ s) (is_prime : ∀ q ∈ insert p s, Prime q)
-    (is_coprime : ∀ (q) (_ : q ∈ insert p s) (q') (_ : q' ∈ insert p s), q ∣ q' → q = q') :
+    (is_coprime : ∀ᵉ (q ∈ insert p s) (q' ∈ insert p s), q ∣ q' → q = q') :
     ∀ q : α, q ∣ p ^ i p → (q ∣ ∏ p' in s, p' ^ i p') → IsUnit q := by
   have hp := is_prime _ (Finset.mem_insert_self _ _)
   refine' fun _ => no_factors_of_no_prime_factors (pow_ne_zero _ hp.ne_zero) _
@@ -1096,7 +1096,7 @@ and `P x ∧ P y` for coprime `x, y` implies `P (x * y)`,
 then `P` holds on a product of powers of distinct primes. -/
 -- @[elab_as_elim] Porting note: commented out
 theorem induction_on_prime_power {P : α → Prop} (s : Finset α) (i : α → ℕ)
-    (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ (p) (_ : p ∈ s) (q) (_ : q ∈ s), p ∣ q → p = q)
+    (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ᵉ (p ∈ s) (q ∈ s), p ∣ q → p = q)
     (h1 : ∀ {x}, IsUnit x → P x) (hpr : ∀ {p} (i : ℕ), Prime p → P (p ^ i))
     (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → P x → P y → P (x * y)) :
     P (∏ p in s, p ^ i p) := by
@@ -1137,7 +1137,7 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
 is multiplicative on coprime elements, then `f` is multiplicative on all products of primes. -/
 -- @[elab_as_elim] Porting note: commented out
 theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α → ℕ)
-    (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ (p) (_ : p ∈ s) (q) (_ : q ∈ s), p ∣ q → p = q)
+    (is_prime : ∀ p ∈ s, Prime p) (is_coprime : ∀ᵉ (p ∈ s) (q ∈ s), p ∣ q → p = q)
     (h1 : ∀ {x y}, IsUnit y → f (x * y) = f x * f y)
     (hpr : ∀ {p} (i : ℕ), Prime p → f (p ^ i) = f p ^ i)
     (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y) :
@@ -1148,7 +1148,7 @@ theorem multiplicative_prime_power {f : α → β} (s : Finset α) (i j : α →
   have hpr_p := is_prime _ (Finset.mem_insert_self _ _)
   have hpr_s : ∀ p ∈ s, Prime p := fun p hp => is_prime _ (Finset.mem_insert_of_mem hp)
   have hcp_p := fun i => prime_pow_coprime_prod_of_coprime_insert i p hps is_prime is_coprime
-  have hcp_s : ∀ (p) (_ : p ∈ s) (q) (_ : q ∈ s), p ∣ q → p = q := fun p hp q hq =>
+  have hcp_s : ∀ᵉ (p ∈ s) (q ∈ s), p ∣ q → p = q := fun p hp q hq =>
     is_coprime p (Finset.mem_insert_of_mem hp) q (Finset.mem_insert_of_mem hq)
   rw [Finset.prod_insert hps, Finset.prod_insert hps, Finset.prod_insert hps, hcp (hcp_p _),
     hpr _ hpr_p, hcp (hcp_p _), hpr _ hpr_p, hcp (hcp_p (fun p => i p + j p)), hpr _ hpr_p,
@@ -1508,7 +1508,7 @@ theorem eq_of_prod_eq_prod [Nontrivial α] {a b : FactorSet α} (h : a.prod = b.
 #align associates.eq_of_prod_eq_prod Associates.eq_of_prod_eq_prod
 
 theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0)
-    (h : ∀ (p : Associates α) (_ : Irreducible p), p.count a.factors = p.count b.factors) :
+    (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) :
     a.factors = b.factors := by
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
@@ -1837,7 +1837,7 @@ theorem dvd_count_pow [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {p : As
 #align associates.dvd_count_pow Associates.dvd_count_pow
 
 theorem is_pow_of_dvd_count [Nontrivial α] {a : Associates α} (ha : a ≠ 0) {k : ℕ}
-    (hk : ∀ (p : Associates α) (_ : Irreducible p), k ∣ count p a.factors) :
+    (hk : ∀ p : Associates α, Irreducible p → k ∣ count p a.factors) :
     ∃ b : Associates α, a = b ^ k := by
   obtain ⟨a0, hz, rfl⟩ := exists_non_zero_rep ha
   rw [factors_mk a0 hz] at hk
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -955,7 +955,7 @@ theorem exists_reduced_factors' (a b : R) (hb : b ≠ 0) :
 #align unique_factorization_monoid.exists_reduced_factors' UniqueFactorizationMonoid.exists_reduced_factors'
 
 theorem pow_right_injective {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) :
-    Function.Injective ((· ^ ·) a : ℕ → R) := by
+    Function.Injective (a ^ · : ℕ → R) := by
   letI := Classical.decEq R
   intro i j hij
   letI : Nontrivial R := ⟨⟨a, 0, ha0⟩⟩
chore: move Associates.quot_out earlier (#8484)

And don't require commutativity while we're here.

Diff
@@ -1920,10 +1920,6 @@ section
 
 open Associates UniqueFactorizationMonoid
 
-theorem Associates.quot_out {α : Type*} [CommMonoid α] (a : Associates α) :
-    Associates.mk (Quot.out a) = a := by rw [← quot_mk_eq_mk, Quot.out_eq]
-#align associates.quot_out Associates.quot_out
-
 /-- `toGCDMonoid` constructs a GCD monoid out of a unique factorization domain. -/
 noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type*) [CancelCommMonoidWithZero α]
     [UniqueFactorizationMonoid α] [DecidableEq (Associates α)] [DecidableEq α] : GCDMonoid α where
chore: add missing hypothesis names to by_cases (#8533)

I've also got a change to make this required, but I'd like to land this first.

Diff
@@ -933,7 +933,7 @@ theorem exists_reduced_factors :
       exact isUnit_of_dvd_unit p_dvd_a a_unit
     · simp
   · intro a p a_ne_zero p_prime ih_a pa_ne_zero b
-    by_cases p ∣ b
+    by_cases h : p ∣ b
     · rcases h with ⟨b, rfl⟩
       obtain ⟨a', b', c', no_factor, ha', hb'⟩ := ih_a a_ne_zero b
       refine' ⟨a', b', p * c', @no_factor, _, _⟩
feat: some lemmas about UniqueFactorizationMonoids (#8486)

From flt-regular.

Diff
@@ -533,6 +533,15 @@ theorem factors_pos (x : α) (hx : x ≠ 0) : 0 < factors x ↔ ¬IsUnit x := by
         (mt Multiset.eq_zero_iff_forall_not_mem.mp (not_forall.mpr ⟨p, not_not.mpr hp⟩))
 #align unique_factorization_monoid.factors_pos UniqueFactorizationMonoid.factors_pos
 
+open BigOperators Multiset in
+theorem factors_pow_count_prod {x : α} (hx : x ≠ 0) :
+    (∏ p in (factors x).toFinset, p ^ (factors x).count p) ~ᵤ x :=
+  calc
+  _ = prod (∑ a in toFinset (factors x), count a (factors x) • {a}) := by
+    simp only [prod_sum, prod_nsmul, prod_singleton]
+  _ = prod (factors x) := by rw [toFinset_sum_count_nsmul_eq (factors x)]
+  _ ~ᵤ x := factors_prod hx
+
 end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
@@ -743,6 +752,16 @@ theorem dvd_of_mem_normalizedFactors {a p : α} (H : p ∈ normalizedFactors a)
   · exact dvd_trans (Multiset.dvd_prod H) (Associated.dvd (normalizedFactors_prod hcases))
 #align unique_factorization_monoid.dvd_of_mem_normalized_factors UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
 
+theorem mem_normalizedFactors_iff [Unique αˣ] {p x : α} (hx : x ≠ 0) :
+    p ∈ normalizedFactors x ↔ Prime p ∧ p ∣ x := by
+  constructor
+  · intro h
+    exact ⟨prime_of_normalized_factor p h, dvd_of_mem_normalizedFactors h⟩
+  · rintro ⟨hprime, hdvd⟩
+    obtain ⟨q, hqmem, hqeq⟩ := exists_mem_normalizedFactors_of_dvd hx hprime.irreducible hdvd
+    rw [associated_iff_eq] at hqeq
+    exact hqeq ▸ hqmem
+
 theorem exists_associated_prime_pow_of_unique_normalized_factor {p r : α}
     (h : ∀ {m}, m ∈ normalizedFactors r → m = p) (hr : r ≠ 0) : ∃ i : ℕ, Associated (p ^ i) r := by
   use Multiset.card.toFun (normalizedFactors r)
@@ -792,6 +811,23 @@ theorem dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors {x y : α} (hx : x
         (mt (dvd_iff_normalizedFactors_le_normalizedFactors hy hx).mp h.not_le)
 #align unique_factorization_monoid.dvd_not_unit_iff_normalized_factors_lt_normalized_factors UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors
 
+theorem normalizedFactors_multiset_prod (s : Multiset α) (hs : 0 ∉ s) :
+    normalizedFactors (s.prod) = (s.map normalizedFactors).sum := by
+  cases subsingleton_or_nontrivial α
+  · obtain rfl : s = 0
+    · apply Multiset.eq_zero_of_forall_not_mem
+      intro _
+      convert hs
+    simp
+  induction s using Multiset.induction with
+  | empty => simp
+  | cons IH =>
+    rw [Multiset.prod_cons, Multiset.map_cons, Multiset.sum_cons, normalizedFactors_mul, IH]
+    · exact fun h ↦ hs (Multiset.mem_cons_of_mem h)
+    · exact fun h ↦ hs (h ▸ Multiset.mem_cons_self _ _)
+    · apply Multiset.prod_ne_zero
+      exact fun h ↦ hs (Multiset.mem_cons_of_mem h)
+
 end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
fix: attribute [simp] ... in -> attribute [local simp] ... in (#7678)

Mathlib.Logic.Unique contains the line attribute [simp] eq_iff_true_of_subsingleton in ...:

https://github.com/leanprover-community/mathlib4/blob/96a11c7aac574c00370c2b3dab483cb676405c5d/Mathlib/Logic/Unique.lean#L255-L256

Despite what the in part may imply, this adds the lemma to the simp set "globally", including for downstream files; it is likely that attribute [local simp] eq_iff_true_of_subsingleton in ... was meant instead (or maybe scoped simp, but I think "scoped" refers to the current namespace). Indeed, the relevant lemma is not marked with @[simp] for possible slowness: https://github.com/leanprover/std4/blob/846e9e1d6bb534774d1acd2dc430e70987da3c18/Std/Logic.lean#L749. Adding it to the simp set causes the example at https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Regression.20in.20simp to slow down.

This PR changes this and fixes the relevant downstream simps. There was also one ocurrence of attribute [simp] FullSubcategory.comp_def FullSubcategory.id_def in in Mathlib.CategoryTheory.Monoidal.Subcategory but that was much easier to fix.

https://github.com/leanprover-community/mathlib4/blob/bc49eb9ba756a233370b4b68bcdedd60402f71ed/Mathlib/CategoryTheory/Monoidal/Subcategory.lean#L118-L119

Diff
@@ -1847,7 +1847,7 @@ theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible
     exact eq_pow_count_factors_of_dvd_pow hp h
   · have hph := pow_ne_zero (@Nat.find (fun n => a ∣ p ^ n) _ ⟨n, h⟩) hp.ne_zero
     cases' subsingleton_or_nontrivial α with hα hα
-    · simp at hph
+    · simp [eq_iff_true_of_subsingleton] at hph
     convert count_le_count_of_le hph hp (@Nat.find_spec (fun n => a ∣ p ^ n) _ ⟨n, h⟩)
     rw [count_pow hp.ne_zero hp, count_self hp, mul_one]
 #align associates.count_factors_eq_find_of_dvd_pow Associates.count_factors_eq_find_of_dvd_pow
feat: Shorthands for well-foundedness of < and > (#7865)

We already have WellFoundedLT/WellFoundedGT as wrappers around IsWellFounded, but we didn't have the corresponding wrapper lemmas.

Diff
@@ -280,8 +280,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
     classical
       refine'
         RelHomClass.wellFounded
-          (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop))
-          (WithTop.wellFounded_lt Nat.lt_wfRel.wf)
+          (RelHom.mk _ _ : (DvdNotUnit : α → α → Prop) →r ((· < ·) : ℕ∞ → ℕ∞ → Prop)) wellFounded_lt
       · intro a
         by_cases h : a = 0
         · exact ⊤
chore: exactly 4 spaces in theorems (#7328)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -986,8 +986,8 @@ the number of times it divides `x`.
 See also `multiplicity_eq_count_normalizedFactors` if `n` is given by `multiplicity p x`.
 -/
 theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p)
-  (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
-  (normalizedFactors x).count p = n := by
+    (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+    (normalizedFactors x).count p = n := by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
   · simp [hx0] at hlt
@@ -1004,8 +1004,8 @@ the number of times it divides `x`. This is a slightly more general version of
 See also `multiplicity_eq_count_normalizedFactors` if `n` is given by `multiplicity p x`.
 -/
 theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Irreducible p)
-  (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
-  (normalizedFactors x).count p = n := by
+    (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+    (normalizedFactors x).count p = n := by
   rcases hp with (rfl | hp)
   · cases n
     · exact count_eq_zero.2 (zero_not_mem_normalizedFactors _)
chore(Order/RelIso): golf, fix NS (#7114)
  • Rename Surjective.wellFounded_iff to Function.Surjective.wellFounded_iff.
  • Golf the proof.
Diff
@@ -56,20 +56,14 @@ variable [CommMonoidWithZero α]
 
 open Associates Nat
 
-theorem of_wfDvdMonoid_associates (h : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
-  ⟨by
-    refine' (Surjective.wellFounded_iff mk_surjective _).2 wellFounded_dvdNotUnit
-    intros
-    rw [mk_dvdNotUnit_mk_iff]⟩
+theorem of_wfDvdMonoid_associates (_ : WfDvdMonoid (Associates α)) : WfDvdMonoid α :=
+  ⟨(mk_surjective.wellFounded_iff mk_dvdNotUnit_mk_iff.symm).2 wellFounded_dvdNotUnit⟩
 #align wf_dvd_monoid.of_wf_dvd_monoid_associates WfDvdMonoid.of_wfDvdMonoid_associates
 
 variable [WfDvdMonoid α]
 
 instance wfDvdMonoid_associates : WfDvdMonoid (Associates α) :=
-  ⟨by
-    refine' (Surjective.wellFounded_iff mk_surjective _).1 wellFounded_dvdNotUnit
-    intros
-    rw [mk_dvdNotUnit_mk_iff]⟩
+  ⟨(mk_surjective.wellFounded_iff mk_dvdNotUnit_mk_iff.symm).1 wellFounded_dvdNotUnit⟩
 #align wf_dvd_monoid.wf_dvd_monoid_associates WfDvdMonoid.wfDvdMonoid_associates
 
 theorem wellFounded_associates : WellFounded ((· < ·) : Associates α → Associates α → Prop) :=
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -300,7 +300,7 @@ theorem WfDvdMonoid.of_exists_prime_factors : WfDvdMonoid α :=
         erw [WithTop.coe_lt_coe]
         have cne0 : c ≠ 0 := by
           refine' mt (fun con => _) h
-          rw [b_eq, con, MulZeroClass.mul_zero]
+          rw [b_eq, con, mul_zero]
         calc
           Multiset.card (Classical.choose (pf a ane0)) <
               _ + Multiset.card (Classical.choose (pf c cne0)) :=
@@ -866,7 +866,7 @@ theorem dvd_of_dvd_mul_left_of_no_prime_factors {a b c : R} (ha : a ≠ 0) :
     (∀ {d}, d ∣ a → d ∣ c → ¬Prime d) → a ∣ b * c → a ∣ b := by
   refine' induction_on_prime c _ _ _
   · intro no_factors
-    simp only [dvd_zero, MulZeroClass.mul_zero, forall_prop_of_true]
+    simp only [dvd_zero, mul_zero, forall_prop_of_true]
     haveI := Classical.propDecidable
     exact
       isUnit_iff_forall_dvd.mp
@@ -1135,14 +1135,14 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
     f (a * b) = f a * f b := by
   letI := Classical.decEq α
   by_cases ha0 : a = 0
-  · rw [ha0, MulZeroClass.zero_mul, h0, MulZeroClass.zero_mul]
+  · rw [ha0, zero_mul, h0, zero_mul]
   by_cases hb0 : b = 0
-  · rw [hb0, MulZeroClass.mul_zero, h0, MulZeroClass.mul_zero]
+  · rw [hb0, mul_zero, h0, mul_zero]
   by_cases hf1 : f 1 = 0
   · calc
       f (a * b) = f (a * b * 1) := by rw [mul_one]
-      _ = 0 := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
-      _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
+      _ = 0 := by simp only [h1 isUnit_one, hf1, mul_zero]
+      _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, mul_zero]
       _ = f a * f b := by rw [mul_one]
   haveI : Nontrivial α := ⟨⟨_, _, ha0⟩⟩
   letI : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid
@@ -1379,7 +1379,7 @@ theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)}
           congr
           refine' associated_iff_eq.mp (factors_prod fun hc => _).symm
           refine' not_irreducible_zero (hq _ _)
-          rw [← prod_eq_zero_iff, eqc, hc, MulZeroClass.mul_zero])
+          rw [← prod_eq_zero_iff, eqc, hc, mul_zero])
     prod_le_prod
 #align associates.prod_le_prod_iff_le Associates.prod_le_prod_iff_le
 
@@ -1836,12 +1836,12 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
     Nat.eq_zero_of_le_zero <| by
       convert count_le_count_of_le hph hq h
       symm
-      rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', MulZeroClass.mul_zero]
+      rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', mul_zero]
   intro q hq
   rw [count_pow hp.ne_zero hq]
   by_cases h : q = p
   · rw [h, count_self hp, mul_one]
-  · rw [count_eq_zero_of_ne hq hp h, MulZeroClass.mul_zero, eq_zero_of_ne q hq h]
+  · rw [count_eq_zero_of_ne hq hp h, mul_zero, eq_zero_of_ne q hq h]
 #align associates.eq_pow_count_factors_of_dvd_pow Associates.eq_pow_count_factors_of_dvd_pow
 
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -27,7 +27,7 @@ import Mathlib.RingTheory.Multiplicity
 -/
 
 
-variable {α : Type _}
+variable {α : Type*}
 
 local infixl:50 " ~ᵤ " => Associated
 
@@ -35,7 +35,7 @@ local infixl:50 " ~ᵤ " => Associated
 condition on divisibility and to the ascending chain condition on
 principal ideals in an integral domain.
   -/
-class WfDvdMonoid (α : Type _) [CommMonoidWithZero α] : Prop where
+class WfDvdMonoid (α : Type*) [CommMonoidWithZero α] : Prop where
   wellFounded_dvdNotUnit : WellFounded (@DvdNotUnit α _)
 #align wf_dvd_monoid WfDvdMonoid
 
@@ -171,7 +171,7 @@ To define a UFD using the definition in terms of multisets
 of prime factors, use the definition `of_exists_prime_factors`
 
 -/
-class UniqueFactorizationMonoid (α : Type _) [CancelCommMonoidWithZero α] extends WfDvdMonoid α :
+class UniqueFactorizationMonoid (α : Type*) [CancelCommMonoidWithZero α] extends WfDvdMonoid α :
   Prop where
   irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
 #align unique_factorization_monoid UniqueFactorizationMonoid
@@ -350,7 +350,7 @@ theorem UniqueFactorizationMonoid.iff_exists_prime_factors [CancelCommMonoidWith
 
 section
 
-variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero β]
+variable {β : Type*} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero β]
 
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β := by
@@ -556,7 +556,7 @@ noncomputable def normalizedFactors (a : α) : Multiset α :=
 /-- An arbitrary choice of factors of `x : M` is exactly the (unique) normalized set of factors,
 if `M` has a trivial group of units. -/
 @[simp]
-theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [DecidableEq M]
+theorem factors_eq_normalizedFactors {M : Type*} [CancelCommMonoidWithZero M] [DecidableEq M]
     [UniqueFactorizationMonoid M] [Unique Mˣ] (x : M) : factors x = normalizedFactors x := by
   unfold normalizedFactors
   convert (Multiset.map_id (factors x)).symm
@@ -847,7 +847,7 @@ end UniqueFactorizationMonoid
 
 namespace UniqueFactorizationMonoid
 
-variable {R : Type _} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
+variable {R : Type*} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R]
 
 theorem no_factors_of_no_prime_factors {a b : R} (ha : a ≠ 0)
     (h : ∀ {d}, d ∣ a → d ∣ b → ¬Prime d) : ∀ {d}, d ∣ a → d ∣ b → IsUnit d := fun {d} =>
@@ -1040,7 +1040,7 @@ section Multiplicative
 
 variable [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α]
 
-variable {β : Type _} [CancelCommMonoidWithZero β]
+variable {β : Type*} [CancelCommMonoidWithZero β]
 
 open BigOperators
 
@@ -1891,12 +1891,12 @@ section
 
 open Associates UniqueFactorizationMonoid
 
-theorem Associates.quot_out {α : Type _} [CommMonoid α] (a : Associates α) :
+theorem Associates.quot_out {α : Type*} [CommMonoid α] (a : Associates α) :
     Associates.mk (Quot.out a) = a := by rw [← quot_mk_eq_mk, Quot.out_eq]
 #align associates.quot_out Associates.quot_out
 
 /-- `toGCDMonoid` constructs a GCD monoid out of a unique factorization domain. -/
-noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type _) [CancelCommMonoidWithZero α]
+noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type*) [CancelCommMonoidWithZero α]
     [UniqueFactorizationMonoid α] [DecidableEq (Associates α)] [DecidableEq α] : GCDMonoid α where
   gcd a b := Quot.out (Associates.mk a ⊓ Associates.mk b : Associates α)
   lcm a b := Quot.out (Associates.mk a ⊔ Associates.mk b : Associates α)
@@ -1927,7 +1927,7 @@ noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type _) [CancelCom
 
 /-- `toNormalizedGCDMonoid` constructs a GCD monoid out of a normalization on a
   unique factorization domain. -/
-noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type _)
+noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
     [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [NormalizationMonoid α]
     [DecidableEq (Associates α)] [DecidableEq α] : NormalizedGCDMonoid α :=
   { ‹NormalizationMonoid α› with
@@ -1955,7 +1955,7 @@ namespace UniqueFactorizationMonoid
 
 /-- If `y` is a nonzero element of a unique factorization monoid with finitely
 many units (e.g. `ℤ`, `Ideal (ring_of_integers K)`), it has finitely many divisors. -/
-noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
+noncomputable def fintypeSubtypeDvd {M : Type*} [CancelCommMonoidWithZero M]
     [UniqueFactorizationMonoid M] [Fintype Mˣ] (y : M) (hy : y ≠ 0) : Fintype { x // x ∣ y } := by
   haveI : Nontrivial M := ⟨⟨y, 0, hy⟩⟩
   haveI : NormalizationMonoid M := UniqueFactorizationMonoid.normalizationMonoid
fix: let use provide last constructor argument, introduce mathlib3-like flattening use! (#5350)

Changes:

  • use now by default discharges with try with_reducible use_discharger with a custom discharger tactic rather than try with_reducible rfl, which makes it be closer to exists and the use in mathlib3. It doesn't go so far as to do try with_reducible trivial since that involves the contradiction tactic.
  • this discharger is configurable with use (discharger := tacticSeq...)
  • the use evaluation loop will try refining after constructor failure, so it can be used to fill in all arguments rather than all but the last, like in mathlib3 (closes #5072) but with the caveat that it only works so long as the last argument is not an inductive type (like Eq).
  • adds use!, which is nearly the same as the mathlib3 use and fills in constructor arguments along the nodes and leaves of the nested constructor expressions. This version tries refining before applying constructors, so it can be used like exact for the last argument.

The difference between mathlib3 use and this use! is that (1) use! uses a different tactic to discharge goals (mathlib3 used trivial', which did reducible refl, but also contradiction, which we don't emulate) (2) it does not rewrite using exists_prop. Regarding 2, this feature seems to be less useful now that bounded existentials encode the bound using a conjunction rather than with nested existentials. We do have exists_prop as part of use_discharger however.

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -1025,16 +1025,12 @@ theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x
     ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
   classical
     let n := (normalizedFactors a₀).count (normalize x)
-    obtain ⟨a, ha1, ha2⟩ :=
-      @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (PartENat.ne_top_iff.mpr _))
+    obtain ⟨a, ha1, ha2⟩ := @exists_eq_pow_mul_and_not_dvd R _ _ x a₀
+      (ne_top_iff_finite.mp (PartENat.ne_top_iff.mpr
+        -- Porting note: this was a hole that was filled at the end of the proof with `use`:
+        ⟨n, multiplicity_eq_count_normalizedFactors hx h⟩))
     simp_rw [← (multiplicity_eq_count_normalizedFactors hx h).symm] at ha1
-    use n
-    use a
-    use ha2
-    rw [ha1]
-    congr
-    use n
-    exact multiplicity_eq_count_normalizedFactors hx h
+    use n, a, ha2, ha1
 #align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
 
 
fix(Algebra): some instance names (#6125)
Diff
@@ -1556,7 +1556,7 @@ noncomputable instance : Inf (Associates α) :=
   ⟨fun a b => (a.factors ⊓ b.factors).prod⟩
 
 noncomputable instance : Lattice (Associates α) :=
-  { Associates.instPartialOrderAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero with
+  { Associates.instPartialOrder with
     sup := (· ⊔ ·)
     inf := (· ⊓ ·)
     sup_le := fun _ _ c hac hbc =>
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
-
-! This file was ported from Lean 3 source module ring_theory.unique_factorization_domain
-! leanprover-community/mathlib commit 570e9f4877079b3a923135b3027ac3be8695ab8c
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.BigOperators.Associated
 import Mathlib.Algebra.GCDMonoid.Basic
@@ -14,6 +9,8 @@ import Mathlib.Data.Finsupp.Multiset
 import Mathlib.RingTheory.Noetherian
 import Mathlib.RingTheory.Multiplicity
 
+#align_import ring_theory.unique_factorization_domain from "leanprover-community/mathlib"@"570e9f4877079b3a923135b3027ac3be8695ab8c"
+
 /-!
 
 # Unique factorization
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1853,7 +1853,7 @@ theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible
 
 theorem count_factors_eq_find_of_dvd_pow {a p : Associates α} (hp : Irreducible p)
     [∀ n : ℕ, Decidable (a ∣ p ^ n)] {n : ℕ} (h : a ∣ p ^ n) :
-    @Nat.find (fun n => a ∣ p ^ n) _ ⟨n, h⟩  = p.count a.factors := by
+    @Nat.find (fun n => a ∣ p ^ n) _ ⟨n, h⟩ = p.count a.factors := by
   apply le_antisymm
   · refine' Nat.find_le ⟨1, _⟩
     rw [mul_one]
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -1266,7 +1266,7 @@ theorem prod_mono : ∀ {a b : FactorSet α}, a ≤ b → a.prod ≤ b.prod
 theorem FactorSet.prod_eq_zero_iff [Nontrivial α] (p : FactorSet α) : p.prod = 0 ↔ p = ⊤ := by
   induction p using WithTop.recTopCoe
   · simp only [iff_self_iff, eq_self_iff_true, Associates.prod_top]
-  . rw [prod_coe, Multiset.prod_eq_zero_iff, Multiset.mem_map, eq_false WithTop.coe_ne_top,
+  · rw [prod_coe, Multiset.prod_eq_zero_iff, Multiset.mem_map, eq_false WithTop.coe_ne_top,
       iff_false_iff, not_exists]
     exact fun a => not_and_of_not_right _ a.prop.ne_zero
 #align associates.factor_set.prod_eq_zero_iff Associates.FactorSet.prod_eq_zero_iff
chore: fix align linebreaks (#5683)

The result of running

find . -type f -name "*.lean" -exec sed -i -E 'N;s/^#align ([^[:space:]]+)\n *([^[:space:]]+)$/#align \1 \2/' {} \;

Hopefully for the last time...

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -986,8 +986,7 @@ theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha :
       le_multiplicity_iff_replicate_le_normalizedFactors ha hb, ← le_count_iff_replicate_le]
     simp
   rw [le_multiplicity_iff_replicate_le_normalizedFactors ha hb, ← le_count_iff_replicate_le]
-#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors
-  UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors
+#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors
 
 
 /-- The number of times an irreducible factor `p` appears in `normalizedFactors x` is defined by
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -357,7 +357,7 @@ variable {β : Type _} [CancelCommMonoidWithZero α] [CancelCommMonoidWithZero 
 
 theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactorizationMonoid α) :
     UniqueFactorizationMonoid β := by
-  rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα⊢
+  rw [UniqueFactorizationMonoid.iff_exists_prime_factors] at hα ⊢
   intro a ha
   obtain ⟨w, hp, u, h⟩ :=
     hα (e.symm a) fun h =>
@@ -1491,7 +1491,7 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
     a.factors = b.factors := by
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
-  rw [h_sa, h_sb] at h⊢
+  rw [h_sa, h_sb] at h ⊢
   rw [Option.some_inj]
   have h_count : ∀ (p : Associates α) (hp : Irreducible p),
       sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ := by
@@ -1513,7 +1513,7 @@ theorem count_le_count_of_factors_le {a b p : Associates α} (hb : b ≠ 0) (hp
   · simp_all
   obtain ⟨sa, h_sa⟩ := factors_eq_some_iff_ne_zero.mpr ha
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
-  rw [h_sa, h_sb] at h⊢
+  rw [h_sa, h_sb] at h ⊢
   rw [count_some hp, count_some hp]; rw [WithTop.some_le_some] at h
   exact Multiset.count_le_of_le _ h
 #align associates.count_le_count_of_factors_le Associates.count_le_count_of_factors_le
@@ -1587,7 +1587,7 @@ theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p 
     exact dvd_zero p
   obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha0
   rw [← Associates.factors_prod a]
-  rw [← ha', factors_mk a0 nza] at hm⊢
+  rw [← ha', factors_mk a0 nza] at hm ⊢
   rw [prod_coe]
   apply Multiset.dvd_prod; apply Multiset.mem_map.mpr
   exact ⟨⟨p, hp⟩, mem_factorSet_some.mp hm, rfl⟩
@@ -1873,7 +1873,7 @@ theorem eq_pow_of_mul_eq_pow [Nontrivial α] {a b c : Associates α} (ha : a ≠
   classical
     by_cases hk0 : k = 0
     · use 1
-      rw [hk0, pow_zero] at h⊢
+      rw [hk0, pow_zero] at h ⊢
       apply (mul_eq_one_iff.1 h).1
     · refine' is_pow_of_dvd_count ha _
       intro p hp
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -979,7 +979,7 @@ See also `count_normalizedFactors_eq` which expands the definition of `multiplic
 to produce a specification for `count (normalizedFactors _) _`..
 -/
 theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha : Irreducible a)
-(hb : b ≠ 0) : multiplicity a b = (normalizedFactors b).count (normalize a) := by
+    (hb : b ≠ 0) : multiplicity a b = (normalizedFactors b).count (normalize a) := by
   apply le_antisymm
   · apply PartENat.le_of_lt_add_one
     rw [← Nat.cast_one, ← Nat.cast_add, lt_iff_not_ge, ge_iff_le,
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -128,7 +128,7 @@ theorem not_unit_iff_exists_factors_eq (a : α) (hn0 : a ≠ 0) :
     classical
       refine' ⟨(f.erase b).cons (b * u), fun a ha => _, _, Multiset.cons_ne_zero⟩
       · obtain rfl | ha := Multiset.mem_cons.1 ha
-        exacts[Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
+        exacts [Associated.irreducible ⟨u, rfl⟩ (hi b h), hi a (Multiset.mem_of_mem_erase ha)]
       · rw [Multiset.prod_cons, mul_comm b, mul_assoc, Multiset.prod_erase h, mul_comm],
     fun ⟨f, hi, he, hne⟩ =>
     let ⟨b, h⟩ := Multiset.exists_mem_of_ne_zero hne
chore: fix many typos (#4535)

Run codespell Mathlib and keep some suggestions.

Diff
@@ -1203,7 +1203,7 @@ variable [CancelCommMonoidWithZero α]
 `Multiset α` produced by `normalizedFactors` are only unique up to associated elements, while the
 multisets in `FactorSet α` are unique by equality and restricted to irreducible elements. This
 gives us a representation of each element as a unique multisets (or the added ⊤ for 0), which has a
-complete lattice struture. Infimum is the greatest common divisor and supremum is the least common
+complete lattice structure. Infimum is the greatest common divisor and supremum is the least common
 multiple.
 -/
 @[reducible]
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -1973,7 +1973,7 @@ noncomputable def fintypeSubtypeDvd {M : Type _} [CancelCommMonoidWithZero M]
   -- and has image exactly the divisors of `y`.
   refine'
     Fintype.ofFinset
-      (((normalizedFactors y).powerset.toFinset.product (Finset.univ : Finset Mˣ)).image fun s =>
+      (((normalizedFactors y).powerset.toFinset ×ˢ (Finset.univ : Finset Mˣ)).image fun s =>
         (s.snd : M) * s.fst.prod)
       fun x => _
   simp only [exists_prop, Finset.mem_image, Finset.mem_product, Finset.mem_univ, and_true_iff,
feat(RingTheory/UniqueFactorizationDomain) : add lemma max_power_factor as in #18830 (#3558)

Add lemma max_powerFactor needed in leanprover-community/mathlib#18830 and modified there.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Jens Wagemaker, Aaron Anderson
 
 ! This file was ported from Lean 3 source module ring_theory.unique_factorization_domain
-! leanprover-community/mathlib commit f694c7dead66f5d4c80f446c796a5aad14707f0e
+! leanprover-community/mathlib commit 570e9f4877079b3a923135b3027ac3be8695ab8c
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -947,14 +947,15 @@ theorem pow_eq_pow_iff {a : R} (ha0 : a ≠ 0) (ha1 : ¬IsUnit a) {i j : ℕ} :
 
 section multiplicity
 
-variable [Nontrivial R] [NormalizationMonoid R] [DecidableEq R]
+variable [Nontrivial R] [NormalizationMonoid R]
 
 variable [dec_dvd : DecidableRel (Dvd.dvd : R → R → Prop)]
 
 open multiplicity Multiset
 
-theorem le_multiplicity_iff_replicate_le_normalizedFactors {a b : R} {n : ℕ} (ha : Irreducible a)
-    (hb : b ≠ 0) : ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b := by
+theorem le_multiplicity_iff_replicate_le_normalizedFactors [DecidableEq R] {a b : R} {n : ℕ}
+    (ha : Irreducible a) (hb : b ≠ 0) :
+    ↑n ≤ multiplicity a b ↔ replicate n (normalize a) ≤ normalizedFactors b := by
   rw [← pow_dvd_iff_le_multiplicity]
   revert b
   induction' n with n ih; · simp
@@ -977,15 +978,16 @@ the normalized factor occurs in the `normalizedFactors`.
 See also `count_normalizedFactors_eq` which expands the definition of `multiplicity`
 to produce a specification for `count (normalizedFactors _) _`..
 -/
-theorem multiplicity_eq_count_normalizedFactors {a b : R} (ha : Irreducible a) (hb : b ≠ 0) :
-    multiplicity a b = (normalizedFactors b).count (normalize a) := by
+theorem multiplicity_eq_count_normalizedFactors [DecidableEq R] {a b : R} (ha : Irreducible a)
+(hb : b ≠ 0) : multiplicity a b = (normalizedFactors b).count (normalize a) := by
   apply le_antisymm
   · apply PartENat.le_of_lt_add_one
     rw [← Nat.cast_one, ← Nat.cast_add, lt_iff_not_ge, ge_iff_le,
       le_multiplicity_iff_replicate_le_normalizedFactors ha hb, ← le_count_iff_replicate_le]
     simp
   rw [le_multiplicity_iff_replicate_le_normalizedFactors ha hb, ← le_count_iff_replicate_le]
-#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors
+#align unique_factorization_monoid.multiplicity_eq_count_normalized_factors
+  UniqueFactorizationMonoid.multiplicity_eq_count_normalizedFactors
 
 
 /-- The number of times an irreducible factor `p` appears in `normalizedFactors x` is defined by
@@ -993,8 +995,9 @@ the number of times it divides `x`.
 
 See also `multiplicity_eq_count_normalizedFactors` if `n` is given by `multiplicity p x`.
 -/
-theorem count_normalizedFactors_eq {p x : R} (hp : Irreducible p) (hnorm : normalize p = p) {n : ℕ}
-    (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) : (normalizedFactors x).count p = n := by
+theorem count_normalizedFactors_eq [DecidableEq R] {p x : R} (hp : Irreducible p)
+  (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+  (normalizedFactors x).count p = n := by
   letI : DecidableRel ((· ∣ ·) : R → R → Prop) := fun _ _ => Classical.propDecidable _
   by_cases hx0 : x = 0
   · simp [hx0] at hlt
@@ -1010,8 +1013,9 @@ the number of times it divides `x`. This is a slightly more general version of
 
 See also `multiplicity_eq_count_normalizedFactors` if `n` is given by `multiplicity p x`.
 -/
-theorem count_normalizedFactors_eq' {p x : R} (hp : p = 0 ∨ Irreducible p) (hnorm : normalize p = p)
-    {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) : (normalizedFactors x).count p = n := by
+theorem count_normalizedFactors_eq' [DecidableEq R] {p x : R} (hp : p = 0 ∨ Irreducible p)
+  (hnorm : normalize p = p) {n : ℕ} (hle : p ^ n ∣ x) (hlt : ¬p ^ (n + 1) ∣ x) :
+  (normalizedFactors x).count p = n := by
   rcases hp with (rfl | hp)
   · cases n
     · exact count_eq_zero.2 (zero_not_mem_normalizedFactors _)
@@ -1020,6 +1024,24 @@ theorem count_normalizedFactors_eq' {p x : R} (hp : p = 0 ∨ Irreducible p) (hn
   · exact count_normalizedFactors_eq hp hnorm hle hlt
 #align unique_factorization_monoid.count_normalized_factors_eq' UniqueFactorizationMonoid.count_normalizedFactors_eq'
 
+
+theorem max_power_factor {a₀ : R} {x : R} (h : a₀ ≠ 0) (hx : Irreducible x) :
+    ∃ n : ℕ, ∃ a : R, ¬x ∣ a ∧ a₀ = x ^ n * a := by
+  classical
+    let n := (normalizedFactors a₀).count (normalize x)
+    obtain ⟨a, ha1, ha2⟩ :=
+      @exists_eq_pow_mul_and_not_dvd R _ _ x a₀ (ne_top_iff_finite.mp (PartENat.ne_top_iff.mpr _))
+    simp_rw [← (multiplicity_eq_count_normalizedFactors hx h).symm] at ha1
+    use n
+    use a
+    use ha2
+    rw [ha1]
+    congr
+    use n
+    exact multiplicity_eq_count_normalizedFactors hx h
+#align unique_factorization_monoid.max_power_factor UniqueFactorizationMonoid.max_power_factor
+
+
 end multiplicity
 
 section Multiplicative
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -115,8 +115,7 @@ theorem exists_factors (a : α) :
     (fun u hu _ => ⟨0, fun _ h => False.elim (Multiset.not_mem_zero _ h), hu.unit, one_mul _⟩)
     fun a i ha0 hi ih _ =>
     let ⟨s, hs⟩ := ih ha0
-    ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b),
-      by
+    ⟨i ::ₘ s, fun b H => (Multiset.mem_cons.1 H).elim (fun h => h.symm ▸ hi) (hs.1 b), by
       rw [s.prod_cons i]
       exact hs.2.mul_left i⟩
 #align wf_dvd_monoid.exists_factors WfDvdMonoid.exists_factors
@@ -367,12 +366,12 @@ theorem MulEquiv.uniqueFactorizationMonoid (e : α ≃* β) (hα : UniqueFactori
         simp [← h]
   exact
     ⟨w.map e, fun b hb =>
-      let ⟨c, hc, he⟩ := Multiset.mem_map.1 hb
-      he ▸ e.prime_iff.1 (hp c hc),
-      Units.map e.toMonoidHom u,
+        let ⟨c, hc, he⟩ := Multiset.mem_map.1 hb
+        he ▸ e.prime_iff.1 (hp c hc),
+        Units.map e.toMonoidHom u,
       by
-      erw [Multiset.prod_hom, ← e.map_mul, h]
-      simp⟩
+        erw [Multiset.prod_hom, ← e.map_mul, h]
+        simp⟩
 #align mul_equiv.unique_factorization_monoid MulEquiv.uniqueFactorizationMonoid
 
 theorem MulEquiv.uniqueFactorizationMonoid_iff (e : α ≃* β) :
@@ -402,8 +401,7 @@ theorem irreducible_iff_prime_of_exists_unique_irreducible_factors [CancelCommMo
         cases' eif x hx0 with fx hfx
         cases' eif a ha0 with fa hfa
         cases' eif b hb0 with fb hfb
-        have h : Multiset.Rel Associated (p ::ₘ fx) (fa + fb) :=
-          by
+        have h : Multiset.Rel Associated (p ::ₘ fx) (fa + fb) := by
           apply uif
           · exact fun i hi => (Multiset.mem_cons.1 hi).elim (fun hip => hip.symm ▸ hpi) (hfx.1 _)
           · exact fun i hi => (Multiset.mem_add.1 hi).elim (hfa.1 _) (hfb.1 _)
@@ -569,8 +567,8 @@ theorem factors_eq_normalizedFactors {M : Type _} [CancelCommMonoidWithZero M] [
   exact normalize_eq p
 #align unique_factorization_monoid.factors_eq_normalized_factors UniqueFactorizationMonoid.factors_eq_normalizedFactors
 
-theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) : Associated (normalizedFactors a).prod a :=
-  by
+theorem normalizedFactors_prod {a : α} (ane0 : a ≠ 0) :
+    Associated (normalizedFactors a).prod a := by
   rw [normalizedFactors, factors, dif_neg ane0]
   refine' Associated.trans _ (Classical.choose_spec (exists_prime_factors a ane0)).2
   rw [← Associates.mk_eq_mk_iff_associated, ← Associates.prod_mk, ← Associates.prod_mk,
@@ -593,8 +591,8 @@ theorem irreducible_of_normalized_factor {a : α} :
   (prime_of_normalized_factor x h).irreducible
 #align unique_factorization_monoid.irreducible_of_normalized_factor UniqueFactorizationMonoid.irreducible_of_normalized_factor
 
-theorem normalize_normalized_factor {a : α} : ∀ x : α, x ∈ normalizedFactors a → normalize x = x :=
-  by
+theorem normalize_normalized_factor {a : α} :
+    ∀ x : α, x ∈ normalizedFactors a → normalize x = x := by
   rw [normalizedFactors, factors]
   split_ifs with h; · simp
   intro x hx
@@ -834,10 +832,8 @@ protected noncomputable def normalizationMonoid : NormalizationMonoid α :=
       dsimp
       by_cases hx : x = 0
       · simp [hx]
-      have h :
-        Associates.mkMonoidHom ∘ Classical.choose mk_surjective.hasRightInverse =
-          (id : Associates α → Associates α) :=
-        by
+      have h : Associates.mkMonoidHom ∘ Classical.choose mk_surjective.hasRightInverse =
+          (id : Associates α → Associates α) := by
         ext x
         rw [Function.comp_apply, mkMonoidHom_apply,
           Classical.choose_spec mk_surjective.hasRightInverse x]
@@ -1080,8 +1076,7 @@ theorem induction_on_coprime {P : α → Prop} (a : α) (h0 : P 0) (h1 : ∀ {x}
     (hpr : ∀ {p} (i : ℕ), Prime p → P (p ^ i))
     (hcp : ∀ {x y}, (∀ p, p ∣ x → p ∣ y → IsUnit p) → P x → P y → P (x * y)) : P a := by
   letI := Classical.decEq α
-  have P_of_associated : ∀ {x y}, Associated x y → P x → P y :=
-    by
+  have P_of_associated : ∀ {x y}, Associated x y → P x → P y := by
     rintro x y ⟨u, rfl⟩ hx
     exact hcp (fun p _ hpx => isUnit_of_dvd_unit hpx u.isUnit) hx (h1 u.isUnit)
   by_cases ha0 : a = 0
@@ -1135,20 +1130,15 @@ theorem multiplicative_of_coprime (f : α → β) (a b : α) (h0 : f 0 = 0)
       _ = 0 := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
       _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]
       _ = f a * f b := by rw [mul_one]
-
   haveI : Nontrivial α := ⟨⟨_, _, ha0⟩⟩
   letI : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid
   suffices
-    f
-        (∏ p in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
-          p ^ ((normalizedFactors a).count p + (normalizedFactors b).count p)) =
-      f
-          (∏ p in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
-            p ^ (normalizedFactors a).count p) *
-        f
-          (∏ p : α in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
-            p ^ (normalizedFactors b).count p)
-    by
+      f (∏ p in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
+        p ^ ((normalizedFactors a).count p + (normalizedFactors b).count p)) =
+      f (∏ p in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
+        p ^ (normalizedFactors a).count p) *
+      f (∏ p : α in (normalizedFactors a).toFinset ∪ (normalizedFactors b).toFinset,
+        p ^ (normalizedFactors b).count p) by
     obtain ⟨ua, a_eq⟩ := normalizedFactors_prod ha0
     obtain ⟨ub, b_eq⟩ := normalizedFactors_prod hb0
     rw [← a_eq, ← b_eq, mul_right_comm (Multiset.prod (normalizedFactors a)) ua
@@ -1481,8 +1471,8 @@ theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠
   obtain ⟨sb, h_sb⟩ := factors_eq_some_iff_ne_zero.mpr hb
   rw [h_sa, h_sb] at h⊢
   rw [Option.some_inj]
-  have h_count : ∀ (p : Associates α) (hp : Irreducible p), sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ :=
-    by
+  have h_count : ∀ (p : Associates α) (hp : Irreducible p),
+      sa.count ⟨p, hp⟩ = sb.count ⟨p, hp⟩ := by
     intro p hp
     rw [← count_some, ← count_some, h p hp]
   apply Multiset.toFinsupp.injective
@@ -1562,15 +1552,14 @@ noncomputable instance : Lattice (Associates α) :=
     inf_le_right := fun _ b => le_trans (prod_mono inf_le_right) (le_of_eq (factors_prod b)) }
 
 theorem sup_mul_inf (a b : Associates α) : (a ⊔ b) * (a ⊓ b) = a * b :=
-  show (a.factors ⊔ b.factors).prod * (a.factors ⊓ b.factors).prod = a * b
-    by
+  show (a.factors ⊔ b.factors).prod * (a.factors ⊓ b.factors).prod = a * b by
     nontriviality α
     refine' eq_of_factors_eq_factors _
     rw [← prod_add, prod_factors, factors_mul, FactorSet.sup_add_inf_eq_add]
 #align associates.sup_mul_inf Associates.sup_mul_inf
 
-theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) : p ∣ a :=
-  by
+theorem dvd_of_mem_factors {a p : Associates α} {hp : Irreducible p} (hm : p ∈ factors a) :
+    p ∣ a := by
   by_cases ha0 : a = 0
   · rw [ha0]
     exact dvd_zero p
@@ -1782,8 +1771,8 @@ theorem factors_one [Nontrivial α] : factors (1 : Associates α) = 0 := by
 #align associates.factors_one Associates.factors_one
 
 @[simp]
-theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} : (a ^ k).factors = k • a.factors :=
-  by
+theorem pow_factors [Nontrivial α] {a : Associates α} {k : ℕ} :
+    (a ^ k).factors = k • a.factors := by
   induction' k with n h
   · rw [zero_nsmul, pow_zero]
     exact factors_one
@@ -1897,16 +1886,13 @@ noncomputable def UniqueFactorizationMonoid.toGCDMonoid (α : Type _) [CancelCom
     [UniqueFactorizationMonoid α] [DecidableEq (Associates α)] [DecidableEq α] : GCDMonoid α where
   gcd a b := Quot.out (Associates.mk a ⊓ Associates.mk b : Associates α)
   lcm a b := Quot.out (Associates.mk a ⊔ Associates.mk b : Associates α)
-  gcd_dvd_left a b :=
-    by
+  gcd_dvd_left a b := by
     rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le]
     exact inf_le_left
-  gcd_dvd_right a b :=
-    by
+  gcd_dvd_right a b := by
     rw [← mk_dvd_mk, (Associates.mk a ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le]
     exact inf_le_right
-  dvd_gcd {a b c} hac hab :=
-    by
+  dvd_gcd {a b c} hac hab := by
     rw [← mk_dvd_mk, (Associates.mk c ⊓ Associates.mk b).quot_out, congr_fun₂ dvd_eq_le, le_inf_iff,
       mk_le_mk_iff_dvd_iff, mk_le_mk_iff_dvd_iff]
     exact ⟨hac, hab⟩
feat: port RingTheory.UniqueFactorizationDomain (#3003)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Dependencies 8 + 468

469 files ported (98.3%)
194534 lines ported (98.4%)
Show graph

The unported dependencies are