ring_theory.witt_vector.frobenius
⟷
Mathlib.RingTheory.WittVector.Frobenius
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -229,7 +229,7 @@ theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
+ simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.natCast_self, MulZeroClass.zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -189,7 +189,7 @@ theorem map_frobeniusPoly (n : ℕ) :
mul_assoc (↑p) (↑p ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc, ← add_sub,
add_right_inj, frobenius_poly_aux_eq, RingHom.map_sub, map_X, mul_sub, sub_eq_add_neg,
add_comm _ (C ↑p * X (n + 1)), ← add_sub, add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm]
- simp only [RingHom.map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
+ simp only [map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
apply sum_congr rfl
intro i hi
rw [mem_range] at hi
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -211,7 +211,7 @@ theorem map_frobeniusPoly (n : ℕ) :
simp only [← RingHom.map_pow, ← C_mul]
rw [C_inj]
simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_natCast, Nat.cast_mul, Int.cast_mul]
- rw [Rat.coe_nat_div _ _ (map_frobenius_poly.key₁ p (n - i) j hj)]
+ rw [Rat.natCast_div _ _ (map_frobenius_poly.key₁ p (n - i) j hj)]
simp only [Nat.cast_pow, pow_add, pow_one]
suffices
((p ^ (n - i)).choose (j + 1) * p ^ (j - v p ⟨j + 1, j.succ_pos⟩) * p * p ^ n : ℚ) =
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -177,7 +177,7 @@ theorem map_frobeniusPoly (n : ℕ) :
MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_mul, RingHom.map_pow, map_C, map_X, eq_intCast,
- Int.cast_ofNat, frobenius_poly_rat]
+ Int.cast_natCast, frobenius_poly_rat]
apply Nat.strong_induction_on n; clear n
intro n IH
rw [xInTermsOfW_eq]
@@ -210,7 +210,7 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [← C_eq_coe_nat]
simp only [← RingHom.map_pow, ← C_mul]
rw [C_inj]
- simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_ofNat, Nat.cast_mul, Int.cast_mul]
+ simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_natCast, Nat.cast_mul, Int.cast_mul]
rw [Rat.coe_nat_div _ _ (map_frobenius_poly.key₁ p (n - i) j hj)]
simp only [Nat.cast_pow, pow_add, pow_one]
suffices
@@ -229,7 +229,7 @@ theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
+ simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import Data.Nat.Multiplicity
-import Data.Zmod.Algebra
+import Data.ZMod.Algebra
import RingTheory.WittVector.Basic
import RingTheory.WittVector.IsPoly
import FieldTheory.PerfectClosure
@@ -185,7 +185,7 @@ theorem map_frobeniusPoly (n : ℕ) :
have h1 : ↑p ^ n * ⅟ (↑p : ℚ) ^ n = 1 := by rw [← mul_pow, mul_invOf_self, one_pow]
rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_C_mul_X_pow, sum_range_succ,
sum_range_succ, tsub_self, add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul, add_mul,
- add_mul, mul_right_comm, mul_right_comm (C (↑p ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
+ add_mul, mul_right_comm, mul_right_comm (C (↑p ^ (n + 1))), ← C_mul, ← C_mul, pow_succ',
mul_assoc (↑p) (↑p ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc, ← add_sub,
add_right_inj, frobenius_poly_aux_eq, RingHom.map_sub, map_X, mul_sub, sub_eq_add_neg,
add_comm _ (C ↑p * X (n + 1)), ← add_sub, add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm]
@@ -197,7 +197,7 @@ theorem map_frobeniusPoly (n : ℕ) :
clear IH
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right,
one_mul, Nat.cast_one, mul_one, mul_add, add_mul, Nat.succ_sub (le_of_lt hi),
- Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel, mul_sum, sum_mul]
+ Nat.succ_eq_add_one (n - i), pow_succ', pow_mul, add_sub_cancel_right, mul_sum, sum_mul]
apply sum_congr rfl
intro j hj
rw [mem_range] at hj
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -192,7 +192,7 @@ theorem map_frobeniusPoly (n : ℕ) :
simp only [RingHom.map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
apply sum_congr rfl
intro i hi
- rw [mem_range] at hi
+ rw [mem_range] at hi
rw [← IH i hi]
clear IH
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right,
@@ -200,7 +200,7 @@ theorem map_frobeniusPoly (n : ℕ) :
Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel, mul_sum, sum_mul]
apply sum_congr rfl
intro j hj
- rw [mem_range] at hj
+ rw [mem_range] at hj
rw [RingHom.map_mul, RingHom.map_mul, RingHom.map_pow, RingHom.map_pow, RingHom.map_pow,
RingHom.map_pow, RingHom.map_pow, map_C, map_X, mul_pow]
rw [mul_comm (C ↑p ^ i), mul_comm _ ((X i ^ p) ^ _), mul_comm (C ↑p ^ (j + 1)), mul_comm (C ↑p)]
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -167,7 +167,7 @@ theorem map_frobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n -
tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))]
have hle : p ^ m ≤ j + 1 := h ▸ Nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _)
exact
- ⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj),
+ ⟨(pow_le_pow_iff_right hp.1.one_lt).1 (hle.trans hj),
Nat.le_of_lt_succ ((Nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
#align witt_vector.map_frobenius_poly.key₂ WittVector.map_frobeniusPoly.key₂
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,11 +3,11 @@ Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
-import Mathbin.Data.Nat.Multiplicity
-import Mathbin.Data.Zmod.Algebra
-import Mathbin.RingTheory.WittVector.Basic
-import Mathbin.RingTheory.WittVector.IsPoly
-import Mathbin.FieldTheory.PerfectClosure
+import Data.Nat.Multiplicity
+import Data.Zmod.Algebra
+import RingTheory.WittVector.Basic
+import RingTheory.WittVector.IsPoly
+import FieldTheory.PerfectClosure
#align_import ring_theory.witt_vector.frobenius from "leanprover-community/mathlib"@"9240e8be927a0955b9a82c6c85ef499ee3a626b8"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -224,13 +224,13 @@ theorem map_frobeniusPoly (n : ℕ) :
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
-/
-#print WittVector.frobeniusPoly_zMod /-
-theorem frobeniusPoly_zMod (n : ℕ) :
+#print WittVector.frobeniusPoly_zmod /-
+theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
-#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zMod
+#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
-/
#print WittVector.bind₁_frobeniusPoly_wittPolynomial /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,11 +2,6 @@
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 9240e8be927a0955b9a82c6c85ef499ee3a626b8
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.Nat.Multiplicity
import Mathbin.Data.Zmod.Algebra
@@ -14,6 +9,8 @@ import Mathbin.RingTheory.WittVector.Basic
import Mathbin.RingTheory.WittVector.IsPoly
import Mathbin.FieldTheory.PerfectClosure
+#align_import ring_theory.witt_vector.frobenius from "leanprover-community/mathlib"@"9240e8be927a0955b9a82c6c85ef499ee3a626b8"
+
/-!
## The Frobenius operator
mathlib commit https://github.com/leanprover-community/mathlib/commit/9240e8be927a0955b9a82c6c85ef499ee3a626b8
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 0723536a0522d24fc2f159a096fb3304bef77472
+! leanprover-community/mathlib commit 9240e8be927a0955b9a82c6c85ef499ee3a626b8
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -17,6 +17,9 @@ import Mathbin.FieldTheory.PerfectClosure
/-!
## The Frobenius operator
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
If `R` has characteristic `p`, then there is a ring endomorphism `frobenius R p`
that raises `r : R` to the power `p`.
By applying `witt_vector.map` to `frobenius R p`, we obtain a ring endomorphism `𝕎 R →+* 𝕎 R`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/8b981918a93bc45a8600de608cde7944a80d92b9
@@ -183,7 +183,7 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [xInTermsOfW_eq]
simp only [AlgHom.map_sum, AlgHom.map_sub, AlgHom.map_mul, AlgHom.map_pow, bind₁_C_right]
have h1 : ↑p ^ n * ⅟ (↑p : ℚ) ^ n = 1 := by rw [← mul_pow, mul_invOf_self, one_pow]
- rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_c_mul_x_pow, sum_range_succ,
+ rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_C_mul_X_pow, sum_range_succ,
sum_range_succ, tsub_self, add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul, add_mul,
add_mul, mul_right_comm, mul_right_comm (C (↑p ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
mul_assoc (↑p) (↑p ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc, ← add_sub,
mathlib commit https://github.com/leanprover-community/mathlib/commit/8b981918a93bc45a8600de608cde7944a80d92b9
@@ -66,6 +66,7 @@ open scoped BigOperators
variable (p)
+#print WittVector.frobeniusPolyRat /-
/-- The rational polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`.
These polynomials actually have integral coefficients,
@@ -73,13 +74,16 @@ see `frobenius_poly` and `map_frobenius_poly`. -/
def frobeniusPolyRat (n : ℕ) : MvPolynomial ℕ ℚ :=
bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1) (xInTermsOfW p ℚ n)
#align witt_vector.frobenius_poly_rat WittVector.frobeniusPolyRat
+-/
+#print WittVector.bind₁_frobeniusPolyRat_wittPolynomial /-
theorem bind₁_frobeniusPolyRat_wittPolynomial (n : ℕ) :
bind₁ (frobeniusPolyRat p) (wittPolynomial p ℚ n) = wittPolynomial p ℚ (n + 1) :=
by
delta frobenius_poly_rat
rw [← bind₁_bind₁, bind₁_xInTermsOfW_wittPolynomial, bind₁_X_right]
#align witt_vector.bind₁_frobenius_poly_rat_witt_polynomial WittVector.bind₁_frobeniusPolyRat_wittPolynomial
+-/
/-- An auxiliary definition, to avoid an excessive amount of finiteness proofs
for `multiplicity p n`. -/
@@ -88,6 +92,7 @@ private def pnat_multiplicity (n : ℕ+) : ℕ :=
local notation "v" => pnatMultiplicity
+#print WittVector.frobeniusPolyAux /-
/-- An auxiliary polynomial over the integers, that satisfies
`p * (frobenius_poly_aux p n) + X n ^ p = frobenius_poly p n`.
This makes it easy to show that `frobenius_poly p n` is congruent to `X n ^ p`
@@ -104,7 +109,9 @@ noncomputable def frobeniusPolyAux : ℕ → MvPolynomial ℕ ℤ
↑p ^ (j - v p ⟨j + 1, Nat.succ_pos j⟩) :
ℕ)
#align witt_vector.frobenius_poly_aux WittVector.frobeniusPolyAux
+-/
+#print WittVector.frobeniusPolyAux_eq /-
theorem frobeniusPolyAux_eq (n : ℕ) :
frobeniusPolyAux p n =
X (n + 1) -
@@ -117,13 +124,17 @@ theorem frobeniusPolyAux_eq (n : ℕ) :
ℕ) :=
by rw [frobenius_poly_aux, ← Fin.sum_univ_eq_sum_range]
#align witt_vector.frobenius_poly_aux_eq WittVector.frobeniusPolyAux_eq
+-/
+#print WittVector.frobeniusPoly /-
/-- The polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`. -/
def frobeniusPoly (n : ℕ) : MvPolynomial ℕ ℤ :=
X n ^ p + C ↑p * frobeniusPolyAux p n
#align witt_vector.frobenius_poly WittVector.frobeniusPoly
+-/
+#print WittVector.map_frobeniusPoly.key₁ /-
/-
Our next goal is to prove
```
@@ -134,16 +145,18 @@ This lemma has a rather long proof, but it mostly boils down to applying inducti
and then using the following two key facts at the right point.
-/
/-- A key divisibility fact for the proof of `witt_vector.map_frobenius_poly`. -/
-theorem MapFrobeniusPoly.key₁ (n j : ℕ) (hj : j < p ^ n) :
+theorem map_frobeniusPoly.key₁ (n j : ℕ) (hj : j < p ^ n) :
p ^ (n - v p ⟨j + 1, j.succ_pos⟩) ∣ (p ^ n).choose (j + 1) :=
by
apply multiplicity.pow_dvd_of_le_multiplicity
rw [hp.out.multiplicity_choose_prime_pow hj j.succ_ne_zero]
rfl
-#align witt_vector.map_frobenius_poly.key₁ WittVector.MapFrobeniusPoly.key₁
+#align witt_vector.map_frobenius_poly.key₁ WittVector.map_frobeniusPoly.key₁
+-/
+#print WittVector.map_frobeniusPoly.key₂ /-
/-- A key numerical identity needed for the proof of `witt_vector.map_frobenius_poly`. -/
-theorem MapFrobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n - i)) :
+theorem map_frobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n - i)) :
j - v p ⟨j + 1, j.succ_pos⟩ + n = i + j + (n - i - v p ⟨j + 1, j.succ_pos⟩) :=
by
generalize h : v p ⟨j + 1, j.succ_pos⟩ = m
@@ -156,8 +169,10 @@ theorem MapFrobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n -
exact
⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj),
Nat.le_of_lt_succ ((Nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
-#align witt_vector.map_frobenius_poly.key₂ WittVector.MapFrobeniusPoly.key₂
+#align witt_vector.map_frobenius_poly.key₂ WittVector.map_frobeniusPoly.key₂
+-/
+#print WittVector.map_frobeniusPoly /-
theorem map_frobeniusPoly (n : ℕ) :
MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n :=
by
@@ -207,14 +222,18 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi.le hj]
ring
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
+-/
+#print WittVector.frobeniusPoly_zMod /-
theorem frobeniusPoly_zMod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zMod
+-/
+#print WittVector.bind₁_frobeniusPoly_wittPolynomial /-
@[simp]
theorem bind₁_frobeniusPoly_wittPolynomial (n : ℕ) :
bind₁ (frobeniusPoly p) (wittPolynomial p ℤ n) = wittPolynomial p ℤ (n + 1) :=
@@ -223,22 +242,28 @@ theorem bind₁_frobeniusPoly_wittPolynomial (n : ℕ) :
simp only [map_bind₁, map_frobenius_poly, bind₁_frobenius_poly_rat_witt_polynomial,
map_wittPolynomial]
#align witt_vector.bind₁_frobenius_poly_witt_polynomial WittVector.bind₁_frobeniusPoly_wittPolynomial
+-/
variable {p}
+#print WittVector.frobeniusFun /-
/-- `frobenius_fun` is the function underlying the ring endomorphism
`frobenius : 𝕎 R →+* frobenius 𝕎 R`. -/
def frobeniusFun (x : 𝕎 R) : 𝕎 R :=
mk' p fun n => MvPolynomial.aeval x.coeff (frobeniusPoly p n)
#align witt_vector.frobenius_fun WittVector.frobeniusFun
+-/
+#print WittVector.coeff_frobeniusFun /-
theorem coeff_frobeniusFun (x : 𝕎 R) (n : ℕ) :
coeff (frobeniusFun x) n = MvPolynomial.aeval x.coeff (frobeniusPoly p n) := by
rw [frobenius_fun, coeff_mk]
#align witt_vector.coeff_frobenius_fun WittVector.coeff_frobeniusFun
+-/
variable (p)
+#print WittVector.frobeniusFun_isPoly /-
/-- `frobenius_fun` is tautologically a polynomial function.
See also `frobenius_is_poly`. -/
@@ -246,16 +271,20 @@ See also `frobenius_is_poly`. -/
theorem frobeniusFun_isPoly : IsPoly p fun R _Rcr => @frobeniusFun p R _ _Rcr :=
⟨⟨frobeniusPoly p, by intros; funext n; apply coeff_frobenius_fun⟩⟩
#align witt_vector.frobenius_fun_is_poly WittVector.frobeniusFun_isPoly
+-/
variable {p}
+#print WittVector.ghostComponent_frobeniusFun /-
@[ghost_simps]
theorem ghostComponent_frobeniusFun (n : ℕ) (x : 𝕎 R) :
ghostComponent n (frobeniusFun x) = ghostComponent (n + 1) x := by
simp only [ghost_component_apply, frobenius_fun, coeff_mk, ← bind₁_frobenius_poly_witt_polynomial,
aeval_bind₁]
#align witt_vector.ghost_component_frobenius_fun WittVector.ghostComponent_frobeniusFun
+-/
+#print WittVector.frobenius /-
/-- If `R` has characteristic `p`, then there is a ring endomorphism
that raises `r : R` to the power `p`.
By applying `witt_vector.map` to this endomorphism,
@@ -280,30 +309,38 @@ def frobenius : 𝕎 R →+* 𝕎 R where
map_add' := by ghost_calc _ _ <;> ghost_simp
map_mul' := by ghost_calc _ _ <;> ghost_simp
#align witt_vector.frobenius WittVector.frobenius
+-/
+#print WittVector.coeff_frobenius /-
theorem coeff_frobenius (x : 𝕎 R) (n : ℕ) :
coeff (frobenius x) n = MvPolynomial.aeval x.coeff (frobeniusPoly p n) :=
coeff_frobeniusFun _ _
#align witt_vector.coeff_frobenius WittVector.coeff_frobenius
+-/
+#print WittVector.ghostComponent_frobenius /-
@[ghost_simps]
theorem ghostComponent_frobenius (n : ℕ) (x : 𝕎 R) :
ghostComponent n (frobenius x) = ghostComponent (n + 1) x :=
ghostComponent_frobeniusFun _ _
#align witt_vector.ghost_component_frobenius WittVector.ghostComponent_frobenius
+-/
variable (p)
+#print WittVector.frobenius_isPoly /-
/-- `frobenius` is tautologically a polynomial function. -/
@[is_poly]
theorem frobenius_isPoly : IsPoly p fun R _Rcr => @frobenius p R _ _Rcr :=
frobeniusFun_isPoly _
#align witt_vector.frobenius_is_poly WittVector.frobenius_isPoly
+-/
section CharP
variable [CharP R p]
+#print WittVector.coeff_frobenius_charP /-
@[simp]
theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x.coeff n ^ p :=
by
@@ -322,20 +359,26 @@ theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x
· rw [frobenius_poly_zmod]
· rw [AlgHom.map_pow, aeval_X]
#align witt_vector.coeff_frobenius_char_p WittVector.coeff_frobenius_charP
+-/
+#print WittVector.frobenius_eq_map_frobenius /-
theorem frobenius_eq_map_frobenius : @frobenius p R _ _ = map (frobenius R p) :=
by
ext x n
simp only [coeff_frobenius_char_p, map_coeff, frobenius_def]
#align witt_vector.frobenius_eq_map_frobenius WittVector.frobenius_eq_map_frobenius
+-/
+#print WittVector.frobenius_zmodp /-
@[simp]
theorem frobenius_zmodp (x : 𝕎 (ZMod p)) : frobenius x = x := by
simp only [ext_iff, coeff_frobenius_char_p, ZMod.pow_card, eq_self_iff_true, forall_const]
#align witt_vector.frobenius_zmodp WittVector.frobenius_zmodp
+-/
variable (p R)
+#print WittVector.frobeniusEquiv /-
/-- `witt_vector.frobenius` as an equiv. -/
@[simps (config := { fullyApplied := false })]
def frobeniusEquiv [PerfectRing R p] : WittVector p R ≃+* WittVector p R :=
@@ -349,11 +392,14 @@ def frobeniusEquiv [PerfectRing R p] : WittVector p R ≃+* WittVector p R :=
right_inv := fun f =>
ext fun n => by rw [frobenius_eq_map_frobenius]; exact frobenius_pthRoot _ }
#align witt_vector.frobenius_equiv WittVector.frobeniusEquiv
+-/
+#print WittVector.frobenius_bijective /-
theorem frobenius_bijective [PerfectRing R p] :
Function.Bijective (@WittVector.frobenius p R _ _) :=
(frobeniusEquiv p R).Bijective
#align witt_vector.frobenius_bijective WittVector.frobenius_bijective
+-/
end CharP
mathlib commit https://github.com/leanprover-community/mathlib/commit/0723536a0522d24fc2f159a096fb3304bef77472
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 2196ab363eb097c008d4497125e0dde23fb36db2
+! leanprover-community/mathlib commit 0723536a0522d24fc2f159a096fb3304bef77472
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -308,6 +308,7 @@ variable [CharP R p]
theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x.coeff n ^ p :=
by
rw [coeff_frobenius]
+ letI : Algebra (ZMod p) R := ZMod.algebra _ _
-- outline of the calculation, proofs follow below
calc
aeval (fun k => x.coeff k) (frobenius_poly p n) =
mathlib commit https://github.com/leanprover-community/mathlib/commit/2a0ce625dbb0ffbc7d1316597de0b25c1ec75303
@@ -324,7 +324,7 @@ theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x
theorem frobenius_eq_map_frobenius : @frobenius p R _ _ = map (frobenius R p) :=
by
- ext (x n)
+ ext x n
simp only [coeff_frobenius_char_p, map_coeff, frobenius_def]
#align witt_vector.frobenius_eq_map_frobenius WittVector.frobenius_eq_map_frobenius
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -55,7 +55,6 @@ namespace WittVector
variable {p : ℕ} {R S : Type _} [hp : Fact p.Prime] [CommRing R] [CommRing S]
--- mathport name: expr𝕎
local notation "𝕎" => WittVector p
-- type as `\bbW`
@@ -67,8 +66,6 @@ open scoped BigOperators
variable (p)
-include hp
-
/-- The rational polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`.
These polynomials actually have integral coefficients,
@@ -89,7 +86,6 @@ for `multiplicity p n`. -/
private def pnat_multiplicity (n : ℕ+) : ℕ :=
(multiplicity p n).get <| multiplicity.finite_nat_iff.mpr <| ⟨ne_of_gt hp.1.one_lt, n.2⟩
--- mathport name: exprv
local notation "v" => pnatMultiplicity
/-- An auxiliary polynomial over the integers, that satisfies
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -320,7 +320,6 @@ theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x
_
_ = aeval (fun k => x.coeff k) (X n ^ p : MvPolynomial ℕ (ZMod p)) := _
_ = x.coeff n ^ p := _
-
· conv_rhs => rw [aeval_eq_eval₂_hom, eval₂_hom_map_hom]
apply eval₂_hom_congr (RingHom.ext_int _ _) rfl rfl
· rw [frobenius_poly_zmod]
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -247,9 +247,9 @@ variable (p)
See also `frobenius_is_poly`. -/
@[is_poly]
-theorem frobeniusFunIsPoly : IsPoly p fun R _Rcr => @frobeniusFun p R _ _Rcr :=
+theorem frobeniusFun_isPoly : IsPoly p fun R _Rcr => @frobeniusFun p R _ _Rcr :=
⟨⟨frobeniusPoly p, by intros; funext n; apply coeff_frobenius_fun⟩⟩
-#align witt_vector.frobenius_fun_is_poly WittVector.frobeniusFunIsPoly
+#align witt_vector.frobenius_fun_is_poly WittVector.frobeniusFun_isPoly
variable {p}
@@ -300,9 +300,9 @@ variable (p)
/-- `frobenius` is tautologically a polynomial function. -/
@[is_poly]
-theorem frobeniusIsPoly : IsPoly p fun R _Rcr => @frobenius p R _ _Rcr :=
- frobeniusFunIsPoly _
-#align witt_vector.frobenius_is_poly WittVector.frobeniusIsPoly
+theorem frobenius_isPoly : IsPoly p fun R _Rcr => @frobenius p R _ _Rcr :=
+ frobeniusFun_isPoly _
+#align witt_vector.frobenius_is_poly WittVector.frobenius_isPoly
section CharP
mathlib commit https://github.com/leanprover-community/mathlib/commit/13361559d66b84f80b6d5a1c4a26aa5054766725
@@ -233,7 +233,7 @@ variable {p}
/-- `frobenius_fun` is the function underlying the ring endomorphism
`frobenius : 𝕎 R →+* frobenius 𝕎 R`. -/
def frobeniusFun (x : 𝕎 R) : 𝕎 R :=
- mk p fun n => MvPolynomial.aeval x.coeff (frobeniusPoly p n)
+ mk' p fun n => MvPolynomial.aeval x.coeff (frobeniusPoly p n)
#align witt_vector.frobenius_fun WittVector.frobeniusFun
theorem coeff_frobeniusFun (x : 𝕎 R) (n : ℕ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -181,7 +181,7 @@ theorem map_frobeniusPoly (n : ℕ) :
simp only [RingHom.map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
apply sum_congr rfl
intro i hi
- rw [mem_range] at hi
+ rw [mem_range] at hi
rw [← IH i hi]
clear IH
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right,
@@ -189,7 +189,7 @@ theorem map_frobeniusPoly (n : ℕ) :
Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel, mul_sum, sum_mul]
apply sum_congr rfl
intro j hj
- rw [mem_range] at hj
+ rw [mem_range] at hj
rw [RingHom.map_mul, RingHom.map_mul, RingHom.map_pow, RingHom.map_pow, RingHom.map_pow,
RingHom.map_pow, RingHom.map_pow, map_C, map_X, mul_pow]
rw [mul_comm (C ↑p ^ i), mul_comm _ ((X i ^ p) ^ _), mul_comm (C ↑p ^ (j + 1)), mul_comm (C ↑p)]
@@ -206,7 +206,7 @@ theorem map_frobeniusPoly (n : ℕ) :
((p ^ (n - i)).choose (j + 1) * p ^ (j - v p ⟨j + 1, j.succ_pos⟩) * p * p ^ n : ℚ) =
p ^ j * p * ((p ^ (n - i)).choose (j + 1) * p ^ i) * p ^ (n - i - v p ⟨j + 1, j.succ_pos⟩)
by
- have aux : ∀ k : ℕ, (p ^ k : ℚ) ≠ 0 := by intro ; apply pow_ne_zero; exact_mod_cast hp.1.NeZero
+ have aux : ∀ k : ℕ, (p ^ k : ℚ) ≠ 0 := by intro; apply pow_ne_zero; exact_mod_cast hp.1.NeZero
simpa [aux, -one_div, field_simps] using this.symm
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi.le hj]
ring
@@ -248,7 +248,7 @@ variable (p)
See also `frobenius_is_poly`. -/
@[is_poly]
theorem frobeniusFunIsPoly : IsPoly p fun R _Rcr => @frobeniusFun p R _ _Rcr :=
- ⟨⟨frobeniusPoly p, by intros ; funext n; apply coeff_frobenius_fun⟩⟩
+ ⟨⟨frobeniusPoly p, by intros; funext n; apply coeff_frobenius_fun⟩⟩
#align witt_vector.frobenius_fun_is_poly WittVector.frobeniusFunIsPoly
variable {p}
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -63,7 +63,7 @@ noncomputable section
open MvPolynomial Finset
-open BigOperators
+open scoped BigOperators
variable (p)
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -167,8 +167,7 @@ theorem map_frobeniusPoly (n : ℕ) :
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_mul, RingHom.map_pow, map_C, map_X, eq_intCast,
Int.cast_ofNat, frobenius_poly_rat]
- apply Nat.strong_induction_on n
- clear n
+ apply Nat.strong_induction_on n; clear n
intro n IH
rw [xInTermsOfW_eq]
simp only [AlgHom.map_sum, AlgHom.map_sub, AlgHom.map_mul, AlgHom.map_pow, bind₁_C_right]
@@ -207,10 +206,7 @@ theorem map_frobeniusPoly (n : ℕ) :
((p ^ (n - i)).choose (j + 1) * p ^ (j - v p ⟨j + 1, j.succ_pos⟩) * p * p ^ n : ℚ) =
p ^ j * p * ((p ^ (n - i)).choose (j + 1) * p ^ i) * p ^ (n - i - v p ⟨j + 1, j.succ_pos⟩)
by
- have aux : ∀ k : ℕ, (p ^ k : ℚ) ≠ 0 := by
- intro
- apply pow_ne_zero
- exact_mod_cast hp.1.NeZero
+ have aux : ∀ k : ℕ, (p ^ k : ℚ) ≠ 0 := by intro ; apply pow_ne_zero; exact_mod_cast hp.1.NeZero
simpa [aux, -one_div, field_simps] using this.symm
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi.le hj]
ring
@@ -252,10 +248,7 @@ variable (p)
See also `frobenius_is_poly`. -/
@[is_poly]
theorem frobeniusFunIsPoly : IsPoly p fun R _Rcr => @frobeniusFun p R _ _Rcr :=
- ⟨⟨frobeniusPoly p, by
- intros
- funext n
- apply coeff_frobenius_fun⟩⟩
+ ⟨⟨frobeniusPoly p, by intros ; funext n; apply coeff_frobenius_fun⟩⟩
#align witt_vector.frobenius_fun_is_poly WittVector.frobeniusFunIsPoly
variable {p}
@@ -356,14 +349,9 @@ def frobeniusEquiv [PerfectRing R p] : WittVector p R ≃+* WittVector p R :=
R) with
toFun := WittVector.frobenius
invFun := map (pthRoot R p)
- left_inv := fun f =>
- ext fun n => by
- rw [frobenius_eq_map_frobenius]
- exact pthRoot_frobenius _
+ left_inv := fun f => ext fun n => by rw [frobenius_eq_map_frobenius]; exact pthRoot_frobenius _
right_inv := fun f =>
- ext fun n => by
- rw [frobenius_eq_map_frobenius]
- exact frobenius_pthRoot _ }
+ ext fun n => by rw [frobenius_eq_map_frobenius]; exact frobenius_pthRoot _ }
#align witt_vector.frobenius_equiv WittVector.frobeniusEquiv
theorem frobenius_bijective [PerfectRing R p] :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -88,7 +88,6 @@ theorem bind₁_frobeniusPolyRat_wittPolynomial (n : ℕ) :
for `multiplicity p n`. -/
private def pnat_multiplicity (n : ℕ+) : ℕ :=
(multiplicity p n).get <| multiplicity.finite_nat_iff.mpr <| ⟨ne_of_gt hp.1.one_lt, n.2⟩
-#align witt_vector.pnat_multiplicity witt_vector.pnat_multiplicity
-- mathport name: exprv
local notation "v" => pnatMultiplicity
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a313d8bba1bad05faba71a4a4e9742ab5bd9efd
@@ -99,12 +99,12 @@ This makes it easy to show that `frobenius_poly p n` is congruent to `X n ^ p`
modulo `p`. -/
noncomputable def frobeniusPolyAux : ℕ → MvPolynomial ℕ ℤ
| n =>
- x (n + 1) -
+ X (n + 1) -
∑ i : Fin n,
have := i.is_lt
∑ j in range (p ^ (n - i)),
- (x i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobenius_poly_aux i ^ (j + 1) *
- c
+ (X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobenius_poly_aux i ^ (j + 1) *
+ C
↑((p ^ (n - i)).choose (j + 1) / p ^ (n - i - v p ⟨j + 1, Nat.succ_pos j⟩) *
↑p ^ (j - v p ⟨j + 1, Nat.succ_pos j⟩) :
ℕ)
@@ -112,11 +112,11 @@ noncomputable def frobeniusPolyAux : ℕ → MvPolynomial ℕ ℤ
theorem frobeniusPolyAux_eq (n : ℕ) :
frobeniusPolyAux p n =
- x (n + 1) -
+ X (n + 1) -
∑ i in range n,
∑ j in range (p ^ (n - i)),
- (x i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
- c
+ (X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
+ C
↑((p ^ (n - i)).choose (j + 1) / p ^ (n - i - v p ⟨j + 1, Nat.succ_pos j⟩) *
↑p ^ (j - v p ⟨j + 1, Nat.succ_pos j⟩) :
ℕ) :=
@@ -126,7 +126,7 @@ theorem frobeniusPolyAux_eq (n : ℕ) :
/-- The polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`. -/
def frobeniusPoly (n : ℕ) : MvPolynomial ℕ ℤ :=
- x n ^ p + c ↑p * frobeniusPolyAux p n
+ X n ^ p + C ↑p * frobeniusPolyAux p n
#align witt_vector.frobenius_poly WittVector.frobeniusPoly
/-
@@ -218,7 +218,7 @@ theorem map_frobeniusPoly (n : ℕ) :
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
theorem frobeniusPoly_zMod (n : ℕ) :
- MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = x n ^ p :=
+ MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
mathlib commit https://github.com/leanprover-community/mathlib/commit/2196ab363eb097c008d4497125e0dde23fb36db2
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 114ff8a4a7935cb7531062200bff375e7b1d6d85
+! leanprover-community/mathlib commit 2196ab363eb097c008d4497125e0dde23fb36db2
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -179,7 +179,7 @@ theorem map_frobeniusPoly (n : ℕ) :
add_mul, mul_right_comm, mul_right_comm (C (↑p ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
mul_assoc (↑p) (↑p ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc, ← add_sub,
add_right_inj, frobenius_poly_aux_eq, RingHom.map_sub, map_X, mul_sub, sub_eq_add_neg,
- add_comm _ (C ↑p * X (n + 1)), ← add_sub, add_right_inj, neg_eq_iff_neg_eq, neg_sub]
+ add_comm _ (C ↑p * X (n + 1)), ← add_sub, add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm]
simp only [RingHom.map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
apply sum_congr rfl
intro i hi
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -221,7 +221,7 @@ theorem frobeniusPoly_zMod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = x n ^ p :=
by
rw [frobenius_poly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
+ simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zMod
@[simp]
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 114ff8a4a7935cb7531062200bff375e7b1d6d85
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -143,45 +143,24 @@ theorem MapFrobeniusPoly.key₁ (n j : ℕ) (hj : j < p ^ n) :
p ^ (n - v p ⟨j + 1, j.succ_pos⟩) ∣ (p ^ n).choose (j + 1) :=
by
apply multiplicity.pow_dvd_of_le_multiplicity
- have aux : (multiplicity p ((p ^ n).choose (j + 1))).Dom :=
- by
- rw [← multiplicity.finite_iff_dom, multiplicity.finite_nat_iff]
- exact ⟨hp.1.ne_one, Nat.choose_pos hj⟩
- rw [← PartENat.natCast_get aux, PartENat.coe_le_coe, tsub_le_iff_left, ← PartENat.coe_le_coe,
- Nat.cast_add, pnat_multiplicity, PartENat.natCast_get, PartENat.natCast_get, add_comm]
- exact (hp.1.multiplicity_choose_prime_pow hj j.succ_pos).ge
+ rw [hp.out.multiplicity_choose_prime_pow hj j.succ_ne_zero]
+ rfl
#align witt_vector.map_frobenius_poly.key₁ WittVector.MapFrobeniusPoly.key₁
/-- A key numerical identity needed for the proof of `witt_vector.map_frobenius_poly`. -/
-theorem MapFrobeniusPoly.key₂ {n i j : ℕ} (hi : i < n) (hj : j < p ^ (n - i)) :
+theorem MapFrobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n - i)) :
j - v p ⟨j + 1, j.succ_pos⟩ + n = i + j + (n - i - v p ⟨j + 1, j.succ_pos⟩) :=
by
generalize h : v p ⟨j + 1, j.succ_pos⟩ = m
- suffices m ≤ n - i ∧ m ≤ j by
- rw [tsub_add_eq_add_tsub this.2, add_comm i j,
- add_tsub_assoc_of_le (this.1.trans (Nat.sub_le n i)), add_assoc, tsub_right_comm, add_comm i,
- tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi.le).mp this.1))]
- constructor
- · rw [← h, ← PartENat.coe_le_coe, pnat_multiplicity, PartENat.natCast_get, ←
- hp.1.multiplicity_choose_prime_pow hj j.succ_pos]
- apply le_add_left
- rfl
- · obtain ⟨c, hc⟩ : p ^ m ∣ j + 1 := by
- rw [← h]
- exact multiplicity.pow_multiplicity_dvd _
- obtain ⟨c, rfl⟩ : ∃ k : ℕ, c = k + 1 :=
- by
- apply Nat.exists_eq_succ_of_ne_zero
- rintro rfl
- simpa only using hc
- rw [mul_add, mul_one] at hc
- apply Nat.le_of_lt_succ
- calc
- m < p ^ m := Nat.lt_pow_self hp.1.one_lt m
- _ ≤ j + 1 := by
- rw [← tsub_eq_of_eq_add_rev hc]
- apply Nat.sub_le
-
+ rsuffices ⟨h₁, h₂⟩ : m ≤ n - i ∧ m ≤ j
+ ·
+ rw [tsub_add_eq_add_tsub h₂, add_comm i j, add_tsub_assoc_of_le (h₁.trans (Nat.sub_le n i)),
+ add_assoc, tsub_right_comm, add_comm i,
+ tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))]
+ have hle : p ^ m ≤ j + 1 := h ▸ Nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _)
+ exact
+ ⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj),
+ Nat.le_of_lt_succ ((Nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
#align witt_vector.map_frobenius_poly.key₂ WittVector.MapFrobeniusPoly.key₂
theorem map_frobeniusPoly (n : ℕ) :
@@ -234,7 +213,7 @@ theorem map_frobeniusPoly (n : ℕ) :
apply pow_ne_zero
exact_mod_cast hp.1.NeZero
simpa [aux, -one_div, field_simps] using this.symm
- rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi hj]
+ rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi.le hj]
ring
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
nat_cast
/int_cast
/rat_cast
to natCast
/intCast
/ratCast
(#11486)
Now that I am defining NNRat.cast
, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast
/intCast
/ratCast
over nat_cast
/int_cast
/rat_cast
, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.
@@ -198,7 +198,7 @@ theorem map_frobeniusPoly (n : ℕ) :
theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p := by
rw [frobeniusPoly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
+ simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.natCast_self, zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
@[simp]
@@ -181,7 +181,7 @@ theorem map_frobeniusPoly (n : ℕ) :
simp only [← RingHom.map_pow, ← C_mul]
rw [C_inj]
simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_natCast, Nat.cast_mul, Int.cast_mul]
- rw [Rat.coe_nat_div _ _ (map_frobeniusPoly.key₁ p (n - i) j hj)]
+ rw [Rat.natCast_div _ _ (map_frobeniusPoly.key₁ p (n - i) j hj)]
simp only [Nat.cast_pow, pow_add, pow_one]
suffices
(((p ^ (n - i)).choose (j + 1): ℚ) * (p : ℚ) ^ (j - v p ⟨j + 1, j.succ_pos⟩) * ↑p * (p ^ n : ℚ))
OfNat
and Nat.cast
lemmas (#11861)
This renames
Int.cast_ofNat
to Int.cast_natCast
Int.int_cast_ofNat
to Int.cast_ofNat
I think the history here is that this lemma was previously about Int.ofNat
, before we globally fixed the simp-normal form to be Nat.cast
.
Since the Int.cast_ofNat
name is repurposed, it can't be deprecated. Int.int_cast_ofNat
is such a wonky name that it was probably never used.
@@ -145,7 +145,7 @@ theorem map_frobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n -
theorem map_frobeniusPoly (n : ℕ) :
MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n := by
rw [frobeniusPoly, RingHom.map_add, RingHom.map_mul, RingHom.map_pow, map_C, map_X, eq_intCast,
- Int.cast_ofNat, frobeniusPolyRat]
+ Int.cast_natCast, frobeniusPolyRat]
refine Nat.strong_induction_on n ?_; clear n
intro n IH
rw [xInTermsOfW_eq]
@@ -180,7 +180,7 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [← C_eq_coe_nat]
simp only [← RingHom.map_pow, ← C_mul]
rw [C_inj]
- simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_ofNat, Nat.cast_mul, Int.cast_mul]
+ simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_natCast, Nat.cast_mul, Int.cast_mul]
rw [Rat.coe_nat_div _ _ (map_frobeniusPoly.key₁ p (n - i) j hj)]
simp only [Nat.cast_pow, pow_add, pow_one]
suffices
@@ -198,7 +198,7 @@ theorem map_frobeniusPoly (n : ℕ) :
theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p := by
rw [frobeniusPoly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
+ simp only [Int.cast_natCast, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
@[simp]
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -153,7 +153,7 @@ theorem map_frobeniusPoly (n : ℕ) :
have h1 : (p : ℚ) ^ n * ⅟ (p : ℚ) ^ n = 1 := by rw [← mul_pow, mul_invOf_self, one_pow]
rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_C_mul_X_pow, sum_range_succ,
sum_range_succ, tsub_self, add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul, add_mul,
- add_mul, mul_right_comm, mul_right_comm (C ((p : ℚ) ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
+ add_mul, mul_right_comm, mul_right_comm (C ((p : ℚ) ^ (n + 1))), ← C_mul, ← C_mul, pow_succ',
mul_assoc (p : ℚ) ((p : ℚ) ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc,
← add_sub, add_right_inj, frobeniusPolyAux_eq, RingHom.map_sub, map_X, mul_sub, sub_eq_add_neg,
add_comm _ (C (p : ℚ) * X (n + 1)), ← add_sub,
@@ -166,7 +166,7 @@ theorem map_frobeniusPoly (n : ℕ) :
clear IH
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right,
one_mul, Nat.cast_one, mul_one, mul_add, add_mul, Nat.succ_sub (le_of_lt hi),
- Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel_right, mul_sum, sum_mul]
+ Nat.succ_eq_add_one (n - i), pow_succ', pow_mul, add_sub_cancel_right, mul_sum, sum_mul]
apply sum_congr rfl
intro j hj
rw [mem_range] at hj
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -166,7 +166,7 @@ theorem map_frobeniusPoly (n : ℕ) :
clear IH
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right,
one_mul, Nat.cast_one, mul_one, mul_add, add_mul, Nat.succ_sub (le_of_lt hi),
- Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel, mul_sum, sum_mul]
+ Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel_right, mul_sum, sum_mul]
apply sum_congr rfl
intro j hj
rw [mem_range] at hj
The names for lemmas about monotonicity of (a ^ ·)
and (· ^ n)
were a mess. This PR tidies up everything related by following the naming convention for (a * ·)
and (· * b)
. Namely, (a ^ ·)
is pow_right
and (· ^ n)
is pow_left
in lemma names. All lemma renames follow the corresponding multiplication lemma names closely.
Algebra.GroupPower.Order
pow_mono
→ pow_right_mono
pow_le_pow
→ pow_le_pow_right
pow_le_pow_of_le_left
→ pow_le_pow_left
pow_lt_pow_of_lt_left
→ pow_lt_pow_left
strictMonoOn_pow
→ pow_left_strictMonoOn
pow_strictMono_right
→ pow_right_strictMono
pow_lt_pow
→ pow_lt_pow_right
pow_lt_pow_iff
→ pow_lt_pow_iff_right
pow_le_pow_iff
→ pow_le_pow_iff_right
self_lt_pow
→ lt_self_pow
strictAnti_pow
→ pow_right_strictAnti
pow_lt_pow_iff_of_lt_one
→ pow_lt_pow_iff_right_of_lt_one
pow_lt_pow_of_lt_one
→ pow_lt_pow_right_of_lt_one
lt_of_pow_lt_pow
→ lt_of_pow_lt_pow_left
le_of_pow_le_pow
→ le_of_pow_le_pow_left
pow_lt_pow₀
→ pow_lt_pow_right₀
Algebra.GroupPower.CovariantClass
pow_le_pow_of_le_left'
→ pow_le_pow_left'
nsmul_le_nsmul_of_le_right
→ nsmul_le_nsmul_right
pow_lt_pow'
→ pow_lt_pow_right'
nsmul_lt_nsmul
→ nsmul_lt_nsmul_left
pow_strictMono_left
→ pow_right_strictMono'
nsmul_strictMono_right
→ nsmul_left_strictMono
StrictMono.pow_right'
→ StrictMono.pow_const
StrictMono.nsmul_left
→ StrictMono.const_nsmul
pow_strictMono_right'
→ pow_left_strictMono
nsmul_strictMono_left
→ nsmul_right_strictMono
Monotone.pow_right
→ Monotone.pow_const
Monotone.nsmul_left
→ Monotone.const_nsmul
lt_of_pow_lt_pow'
→ lt_of_pow_lt_pow_left'
lt_of_nsmul_lt_nsmul
→ lt_of_nsmul_lt_nsmul_right
pow_le_pow'
→ pow_le_pow_right'
nsmul_le_nsmul
→ nsmul_le_nsmul_left
pow_le_pow_of_le_one'
→ pow_le_pow_right_of_le_one'
nsmul_le_nsmul_of_nonpos
→ nsmul_le_nsmul_left_of_nonpos
le_of_pow_le_pow'
→ le_of_pow_le_pow_left'
le_of_nsmul_le_nsmul'
→ le_of_nsmul_le_nsmul_right'
pow_le_pow_iff'
→ pow_le_pow_iff_right'
nsmul_le_nsmul_iff
→ nsmul_le_nsmul_iff_left
pow_lt_pow_iff'
→ pow_lt_pow_iff_right'
nsmul_lt_nsmul_iff
→ nsmul_lt_nsmul_iff_left
Data.Nat.Pow
Nat.pow_lt_pow_of_lt_left
→ Nat.pow_lt_pow_left
Nat.pow_le_iff_le_left
→ Nat.pow_le_pow_iff_left
Nat.pow_lt_iff_lt_left
→ Nat.pow_lt_pow_iff_left
pow_le_pow_iff_left
pow_lt_pow_iff_left
pow_right_injective
pow_right_inj
Nat.pow_le_pow_left
to have the correct name since Nat.pow_le_pow_of_le_left
is in Std.Nat.pow_le_pow_right
to have the correct name since Nat.pow_le_pow_of_le_right
is in Std.self_le_pow
was a duplicate of le_self_pow
.Nat.pow_lt_pow_of_lt_right
is defeq to pow_lt_pow_right
.Nat.pow_right_strictMono
is defeq to pow_right_strictMono
.Nat.pow_le_iff_le_right
is defeq to pow_le_pow_iff_right
.Nat.pow_lt_iff_lt_right
is defeq to pow_lt_pow_iff_right
.0 < n
or 1 ≤ n
to n ≠ 0
.Nat
lemmas have been protected
.@@ -138,7 +138,7 @@ theorem map_frobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n -
add_assoc, tsub_right_comm, add_comm i,
tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))]
have hle : p ^ m ≤ j + 1 := h ▸ Nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _)
- exact ⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj),
+ exact ⟨(pow_le_pow_iff_right hp.1.one_lt).1 (hle.trans hj),
Nat.le_of_lt_succ ((Nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
#align witt_vector.map_frobenius_poly.key₂ WittVector.map_frobeniusPoly.key₂
bitwise_of_ne_zero
, since it wasn't used, and could cause loops in an inconsistent context.@@ -189,7 +189,7 @@ theorem map_frobeniusPoly (n : ℕ) :
(p : ℚ) ^ (n - i - v p ⟨j + 1, j.succ_pos⟩) by
have aux : ∀ k : ℕ, (p : ℚ)^ k ≠ 0 := by
intro; apply pow_ne_zero; exact mod_cast hp.1.ne_zero
- simpa [aux, -one_div, field_simps] using this.symm
+ simpa [aux, -one_div, -pow_eq_zero_iff', field_simps] using this.symm
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add,
map_frobeniusPoly.key₂ p hi.le hj, Nat.cast_mul, Nat.cast_pow]
ring
exact_mod_cast
tactic with mod_cast
elaborator where possible (#8404)
We still have the exact_mod_cast
tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast
are the ones that don't work using the term elaborator by itself.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -188,7 +188,7 @@ theorem map_frobeniusPoly (n : ℕ) :
= (p : ℚ) ^ j * p * ↑((p ^ (n - i)).choose (j + 1) * p ^ i) *
(p : ℚ) ^ (n - i - v p ⟨j + 1, j.succ_pos⟩) by
have aux : ∀ k : ℕ, (p : ℚ)^ k ≠ 0 := by
- intro; apply pow_ne_zero; exact_mod_cast hp.1.ne_zero
+ intro; apply pow_ne_zero; exact mod_cast hp.1.ne_zero
simpa [aux, -one_div, field_simps] using this.symm
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add,
map_frobeniusPoly.key₂ p hi.le hj, Nat.cast_mul, Nat.cast_pow]
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -190,7 +190,7 @@ theorem map_frobeniusPoly (n : ℕ) :
have aux : ∀ k : ℕ, (p : ℚ)^ k ≠ 0 := by
intro; apply pow_ne_zero; exact_mod_cast hp.1.ne_zero
simpa [aux, -one_div, field_simps] using this.symm
- rw [mul_comm _ (p : ℚ), mul_assoc, Nat.cast_pow, mul_assoc, ← pow_add,
+ rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add,
map_frobeniusPoly.key₂ p hi.le hj, Nat.cast_mul, Nat.cast_pow]
ring
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
@@ -156,7 +156,7 @@ theorem map_frobeniusPoly (n : ℕ) :
add_mul, mul_right_comm, mul_right_comm (C ((p : ℚ) ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
mul_assoc (p : ℚ) ((p : ℚ) ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc,
← add_sub, add_right_inj, frobeniusPolyAux_eq, RingHom.map_sub, map_X, mul_sub, sub_eq_add_neg,
- add_comm _ (C (p : ℚ) * X (n + 1)), ← add_sub, show (Int.castRingHom ℚ) ↑p = (p : ℚ) from rfl,
+ add_comm _ (C (p : ℚ) * X (n + 1)), ← add_sub,
add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm]
simp only [map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
apply sum_congr rfl
@@ -172,8 +172,7 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [mem_range] at hj
rw [RingHom.map_mul, RingHom.map_mul, RingHom.map_pow, RingHom.map_pow, RingHom.map_pow,
RingHom.map_pow, RingHom.map_pow, map_C, map_X, mul_pow]
- rw [mul_comm (C (p : ℚ) ^ i), mul_comm _ ((X i ^ p) ^ _),
- show (Int.castRingHom ℚ) ↑p = (p : ℚ) from rfl, mul_comm (C (p : ℚ) ^ (j + 1)),
+ rw [mul_comm (C (p : ℚ) ^ i), mul_comm _ ((X i ^ p) ^ _), mul_comm (C (p : ℚ) ^ (j + 1)),
mul_comm (C (p : ℚ))]
simp only [mul_assoc]
apply congr_arg
Use .asFn
and .lemmasOnly
as simps
configuration options.
For reference, these are defined here:
@@ -322,7 +322,7 @@ theorem frobenius_zmodp (x : 𝕎 (ZMod p)) : frobenius x = x := by
variable (R)
/-- `WittVector.frobenius` as an equiv. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
def frobeniusEquiv [PerfectRing R p] : WittVector p R ≃+* WittVector p R :=
{ (WittVector.frobenius : WittVector p R →+* WittVector p R) with
toFun := WittVector.frobenius
@@ -116,7 +116,7 @@ def frobeniusPoly (n : ℕ) : MvPolynomial ℕ ℤ :=
Our next goal is to prove
```
lemma map_frobeniusPoly (n : ℕ) :
- MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n
+ MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n
```
This lemma has a rather long proof, but it mostly boils down to applying induction,
and then using the following two key facts at the right point.
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -199,7 +199,7 @@ theorem map_frobeniusPoly (n : ℕ) :
theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p := by
rw [frobeniusPoly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
- simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
+ simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
@[simp]
The main changes are:
PerfectRing
typeclass with a Prop
-valued (non-constructive) version,PerfectField
,@@ -7,7 +7,7 @@ import Mathlib.Data.Nat.Multiplicity
import Mathlib.Data.ZMod.Algebra
import Mathlib.RingTheory.WittVector.Basic
import Mathlib.RingTheory.WittVector.IsPoly
-import Mathlib.FieldTheory.PerfectClosure
+import Mathlib.FieldTheory.Perfect
#align_import ring_theory.witt_vector.frobenius from "leanprover-community/mathlib"@"0723536a0522d24fc2f159a096fb3304bef77472"
@@ -326,10 +326,13 @@ variable (R)
def frobeniusEquiv [PerfectRing R p] : WittVector p R ≃+* WittVector p R :=
{ (WittVector.frobenius : WittVector p R →+* WittVector p R) with
toFun := WittVector.frobenius
- invFun := map (pthRoot R p)
- left_inv := fun f => ext fun n => by rw [frobenius_eq_map_frobenius]; exact pthRoot_frobenius _
- right_inv := fun f =>
- ext fun n => by rw [frobenius_eq_map_frobenius]; exact frobenius_pthRoot _ }
+ invFun := map (_root_.frobeniusEquiv R p).symm
+ left_inv := fun f => ext fun n => by
+ rw [frobenius_eq_map_frobenius]
+ exact frobeniusEquiv_symm_apply_frobenius R p _
+ right_inv := fun f => ext fun n => by
+ rw [frobenius_eq_map_frobenius]
+ exact frobenius_apply_frobeniusEquiv_symm R p _ }
#align witt_vector.frobenius_equiv WittVector.frobeniusEquiv
theorem frobenius_bijective [PerfectRing R p] :
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -50,7 +50,7 @@ and bundle it into `WittVector.frobenius`.
namespace WittVector
-variable {p : ℕ} {R S : Type _} [hp : Fact p.Prime] [CommRing R] [CommRing S]
+variable {p : ℕ} {R S : Type*} [hp : Fact p.Prime] [CommRing R] [CommRing S]
local notation "𝕎" => WittVector p -- type as `\bbW`
@@ -196,11 +196,11 @@ theorem map_frobeniusPoly (n : ℕ) :
ring
#align witt_vector.map_frobenius_poly WittVector.map_frobeniusPoly
-theorem frobeniusPoly_zMod (n : ℕ) :
+theorem frobeniusPoly_zmod (n : ℕ) :
MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n) = X n ^ p := by
rw [frobeniusPoly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, MulZeroClass.zero_mul, C_0]
-#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zMod
+#align witt_vector.frobenius_poly_zmod WittVector.frobeniusPoly_zmod
@[simp]
theorem bind₁_frobeniusPoly_wittPolynomial (n : ℕ) :
@@ -305,7 +305,7 @@ theorem coeff_frobenius_charP (x : 𝕎 R) (n : ℕ) : coeff (frobenius x) n = x
_ = x.coeff n ^ p := ?_
· conv_rhs => rw [aeval_eq_eval₂Hom, eval₂Hom_map_hom]
apply eval₂Hom_congr (RingHom.ext_int _ _) rfl rfl
- · rw [frobeniusPoly_zMod]
+ · rw [frobeniusPoly_zmod]
· rw [map_pow, aeval_X]
#align witt_vector.coeff_frobenius_char_p WittVector.coeff_frobenius_charP
@@ -2,11 +2,6 @@
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module ring_theory.witt_vector.frobenius
-! leanprover-community/mathlib commit 0723536a0522d24fc2f159a096fb3304bef77472
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.Nat.Multiplicity
import Mathlib.Data.ZMod.Algebra
@@ -14,6 +9,8 @@ import Mathlib.RingTheory.WittVector.Basic
import Mathlib.RingTheory.WittVector.IsPoly
import Mathlib.FieldTheory.PerfectClosure
+#align_import ring_theory.witt_vector.frobenius from "leanprover-community/mathlib"@"0723536a0522d24fc2f159a096fb3304bef77472"
+
/-!
## The Frobenius operator
@@ -137,7 +137,7 @@ theorem map_frobeniusPoly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n -
j - v p ⟨j + 1, j.succ_pos⟩ + n = i + j + (n - i - v p ⟨j + 1, j.succ_pos⟩) := by
generalize h : v p ⟨j + 1, j.succ_pos⟩ = m
rsuffices ⟨h₁, h₂⟩ : m ≤ n - i ∧ m ≤ j
- · rw [tsub_add_eq_add_tsub h₂, add_comm i j, add_tsub_assoc_of_le (h₁.trans (Nat.sub_le n i)),
+ · rw [tsub_add_eq_add_tsub h₂, add_comm i j, add_tsub_assoc_of_le (h₁.trans (Nat.sub_le n i)),
add_assoc, tsub_right_comm, add_comm i,
tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))]
have hle : p ^ m ≤ j + 1 := h ▸ Nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _)
@@ -256,7 +256,7 @@ def frobenius : 𝕎 R →+* 𝕎 R where
toFun := frobeniusFun
map_zero' := by
-- Porting note: removing the placeholders give an error
- refine IsPoly.ext (@IsPoly.comp p _ _ (frobeniusFun_isPoly p) WittVector.zeroIsPoly)
+ refine IsPoly.ext (@IsPoly.comp p _ _ (frobeniusFun_isPoly p) WittVector.zeroIsPoly)
(@IsPoly.comp p _ _ WittVector.zeroIsPoly
(frobeniusFun_isPoly p)) ?_ _ 0
simp only [Function.comp_apply, map_zero, forall_const]
@@ -154,7 +154,7 @@ theorem map_frobeniusPoly (n : ℕ) :
rw [xInTermsOfW_eq]
simp only [AlgHom.map_sum, AlgHom.map_sub, AlgHom.map_mul, AlgHom.map_pow, bind₁_C_right]
have h1 : (p : ℚ) ^ n * ⅟ (p : ℚ) ^ n = 1 := by rw [← mul_pow, mul_invOf_self, one_pow]
- rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_c_mul_x_pow, sum_range_succ,
+ rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_C_mul_X_pow, sum_range_succ,
sum_range_succ, tsub_self, add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul, add_mul,
add_mul, mul_right_comm, mul_right_comm (C ((p : ℚ) ^ (n + 1))), ← C_mul, ← C_mul, pow_succ,
mul_assoc (p : ℚ) ((p : ℚ) ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc,
The unported dependencies are