topology.alexandroffMathlib.Topology.Compactification.OnePoint

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -455,7 +455,7 @@ theorem ultrafilter_le_nhds_infty {f : Ultrafilter (OnePoint X)} :
 #print OnePoint.tendsto_nhds_infty' /-
 theorem tendsto_nhds_infty' {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ coe) (coclosedCompact X) l := by
-  simp [nhds_infty_eq, and_comm']
+  simp [nhds_infty_eq, and_comm]
 #align alexandroff.tendsto_nhds_infty' OnePoint.tendsto_nhds_infty'
 -/
 
@@ -465,7 +465,7 @@ theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α}
       ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
   tendsto_nhds_infty'.trans <| by
     simp only [tendsto_pure_left, has_basis_coclosed_compact.tendsto_left_iff, forall_and,
-      and_assoc', exists_prop]
+      and_assoc, exists_prop]
 #align alexandroff.tendsto_nhds_infty OnePoint.tendsto_nhds_infty
 -/
 
@@ -481,7 +481,7 @@ theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : OnePoint X →
     ContinuousAt f ∞ ↔
       ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
   continuousAt_infty'.trans <| by
-    simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc']
+    simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc]
 #align alexandroff.continuous_at_infty OnePoint.continuousAt_infty
 -/
 
Diff
@@ -594,7 +594,7 @@ instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (OnePoint X) :=
     ∀ z : X, ∃ u v : Set (OnePoint X), IsOpen u ∧ IsOpen v ∧ ↑z ∈ u ∧ ∞ ∈ v ∧ Disjoint u v :=
     by
     intro z
-    rcases exists_open_with_compact_closure z with ⟨u, hu, huy', Hu⟩
+    rcases exists_isOpen_mem_isCompact_closure z with ⟨u, hu, huy', Hu⟩
     exact
       ⟨coe '' u, (coe '' closure u)ᶜ, is_open_image_coe.2 hu,
         is_open_compl_image_coe.2 ⟨isClosed_closure, Hu⟩, mem_image_of_mem _ huy',
Diff
@@ -620,7 +620,7 @@ theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X
     ¬Continuous (@CofiniteTopology.of (OnePoint X)).symm :=
   by
   inhabit X
-  simp only [continuous_iff_continuousAt, ContinuousAt, not_forall]
+  simp only [continuous_iff_continuousAt, ContinuousAt, Classical.not_forall]
   use CofiniteTopology.of ↑(default : X)
   simpa [nhds_coe_eq, nhds_discrete, CofiniteTopology.nhds_eq] using
     (finite_singleton ((default : X) : OnePoint X)).infinite_compl
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Yourong Zang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yourong Zang, Yury Kudryashov
 -/
-import Mathbin.Data.Fintype.Option
-import Mathbin.Topology.Separation
-import Mathbin.Topology.Sets.Opens
+import Data.Fintype.Option
+import Topology.Separation
+import Topology.Sets.Opens
 
 #align_import topology.alexandroff from "leanprover-community/mathlib"@"ac34df03f74e6f797efd6991df2e3b7f7d8d33e0"
 
@@ -235,7 +235,7 @@ instance : TopologicalSpace (OnePoint X)
     suffices IsOpen (coe ⁻¹' ⋃₀ S : Set X) by
       refine' ⟨_, this⟩
       rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩
-      refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.is_closed_compl _
+      refine' IsCompact.of_isClosed_subset ((ho s hsS).1 hs) this.is_closed_compl _
       exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS)
     rw [preimage_sUnion]
     exact isOpen_biUnion fun s hs => (ho s hs).2
Diff
@@ -599,7 +599,7 @@ instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (OnePoint X) :=
       ⟨coe '' u, (coe '' closure u)ᶜ, is_open_image_coe.2 hu,
         is_open_compl_image_coe.2 ⟨isClosed_closure, Hu⟩, mem_image_of_mem _ huy',
         mem_compl infty_not_mem_image_coe, (image_subset _ subset_closure).disjoint_compl_right⟩
-  refine' @normalOfCompactT2 _ _ _ ⟨fun x y hxy => _⟩
+  refine' @T4Space.of_compactSpace_t2Space _ _ _ ⟨fun x y hxy => _⟩
   induction x using OnePoint.rec <;> induction y using OnePoint.rec
   · exact (hxy rfl).elim
   · rcases key y with ⟨u, v, hu, hv, hxu, hyv, huv⟩
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Yourong Zang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yourong Zang, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.alexandroff
-! leanprover-community/mathlib commit ac34df03f74e6f797efd6991df2e3b7f7d8d33e0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Fintype.Option
 import Mathbin.Topology.Separation
 import Mathbin.Topology.Sets.Opens
 
+#align_import topology.alexandroff from "leanprover-community/mathlib"@"ac34df03f74e6f797efd6991df2e3b7f7d8d33e0"
+
 /-!
 # The Alexandroff Compactification
 
Diff
@@ -79,7 +79,6 @@ def infty : OnePoint X :=
 #align alexandroff.infty OnePoint.infty
 -/
 
--- mathport name: alexandroff.infty
 scoped notation "∞" => OnePoint.infty
 
 instance : CoeTC X (OnePoint X) :=
@@ -133,32 +132,44 @@ protected def rec (C : OnePoint X → Sort _) (h₁ : C ∞) (h₂ : ∀ x : X,
 #align alexandroff.rec OnePoint.rec
 -/
 
+#print OnePoint.isCompl_range_coe_infty /-
 theorem isCompl_range_coe_infty : IsCompl (range (coe : X → OnePoint X)) {∞} :=
   isCompl_range_some_none X
 #align alexandroff.is_compl_range_coe_infty OnePoint.isCompl_range_coe_infty
+-/
 
+#print OnePoint.range_coe_union_infty /-
 @[simp]
 theorem range_coe_union_infty : range (coe : X → OnePoint X) ∪ {∞} = univ :=
   range_some_union_none X
 #align alexandroff.range_coe_union_infty OnePoint.range_coe_union_infty
+-/
 
+#print OnePoint.range_coe_inter_infty /-
 @[simp]
 theorem range_coe_inter_infty : range (coe : X → OnePoint X) ∩ {∞} = ∅ :=
   range_some_inter_none X
 #align alexandroff.range_coe_inter_infty OnePoint.range_coe_inter_infty
+-/
 
+#print OnePoint.compl_range_coe /-
 @[simp]
 theorem compl_range_coe : range (coe : X → OnePoint X)ᶜ = {∞} :=
   compl_range_some X
 #align alexandroff.compl_range_coe OnePoint.compl_range_coe
+-/
 
+#print OnePoint.compl_infty /-
 theorem compl_infty : ({∞}ᶜ : Set (OnePoint X)) = range (coe : X → OnePoint X) :=
   (@isCompl_range_coe_infty X).symm.compl_eq
 #align alexandroff.compl_infty OnePoint.compl_infty
+-/
 
+#print OnePoint.compl_image_coe /-
 theorem compl_image_coe (s : Set X) : (coe '' s : Set (OnePoint X))ᶜ = coe '' sᶜ ∪ {∞} := by
   rw [coe_injective.compl_image_eq, compl_range_coe]
 #align alexandroff.compl_image_coe OnePoint.compl_image_coe
+-/
 
 #print OnePoint.ne_infty_iff_exists /-
 theorem ne_infty_iff_exists {x : OnePoint X} : x ≠ ∞ ↔ ∃ y : X, (y : OnePoint X) = x := by
@@ -234,59 +245,79 @@ instance : TopologicalSpace (OnePoint X)
 
 variable {s : Set (OnePoint X)} {t : Set X}
 
+#print OnePoint.isOpen_def /-
 theorem isOpen_def :
     IsOpen s ↔ (∞ ∈ s → IsCompact ((coe ⁻¹' s : Set X)ᶜ)) ∧ IsOpen (coe ⁻¹' s : Set X) :=
   Iff.rfl
 #align alexandroff.is_open_def OnePoint.isOpen_def
+-/
 
+#print OnePoint.isOpen_iff_of_mem' /-
 theorem isOpen_iff_of_mem' (h : ∞ ∈ s) :
     IsOpen s ↔ IsCompact ((coe ⁻¹' s : Set X)ᶜ) ∧ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
 #align alexandroff.is_open_iff_of_mem' OnePoint.isOpen_iff_of_mem'
+-/
 
+#print OnePoint.isOpen_iff_of_mem /-
 theorem isOpen_iff_of_mem (h : ∞ ∈ s) :
     IsOpen s ↔ IsClosed ((coe ⁻¹' s : Set X)ᶜ) ∧ IsCompact ((coe ⁻¹' s : Set X)ᶜ) := by
   simp only [is_open_iff_of_mem' h, isClosed_compl_iff, and_comm]
 #align alexandroff.is_open_iff_of_mem OnePoint.isOpen_iff_of_mem
+-/
 
+#print OnePoint.isOpen_iff_of_not_mem /-
 theorem isOpen_iff_of_not_mem (h : ∞ ∉ s) : IsOpen s ↔ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
 #align alexandroff.is_open_iff_of_not_mem OnePoint.isOpen_iff_of_not_mem
+-/
 
+#print OnePoint.isClosed_iff_of_mem /-
 theorem isClosed_iff_of_mem (h : ∞ ∈ s) : IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) :=
   by
   have : ∞ ∉ sᶜ := fun H => H h
   rw [← isOpen_compl_iff, is_open_iff_of_not_mem this, ← isOpen_compl_iff, preimage_compl]
 #align alexandroff.is_closed_iff_of_mem OnePoint.isClosed_iff_of_mem
+-/
 
+#print OnePoint.isClosed_iff_of_not_mem /-
 theorem isClosed_iff_of_not_mem (h : ∞ ∉ s) :
     IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) ∧ IsCompact (coe ⁻¹' s : Set X) := by
   rw [← isOpen_compl_iff, is_open_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl]
 #align alexandroff.is_closed_iff_of_not_mem OnePoint.isClosed_iff_of_not_mem
+-/
 
+#print OnePoint.isOpen_image_coe /-
 @[simp]
 theorem isOpen_image_coe {s : Set X} : IsOpen (coe '' s : Set (OnePoint X)) ↔ IsOpen s := by
   rw [is_open_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective]
 #align alexandroff.is_open_image_coe OnePoint.isOpen_image_coe
+-/
 
+#print OnePoint.isOpen_compl_image_coe /-
 theorem isOpen_compl_image_coe {s : Set X} :
     IsOpen ((coe '' s : Set (OnePoint X))ᶜ) ↔ IsClosed s ∧ IsCompact s :=
   by
   rw [is_open_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective]
   exact infty_not_mem_image_coe
 #align alexandroff.is_open_compl_image_coe OnePoint.isOpen_compl_image_coe
+-/
 
+#print OnePoint.isClosed_image_coe /-
 @[simp]
 theorem isClosed_image_coe {s : Set X} :
     IsClosed (coe '' s : Set (OnePoint X)) ↔ IsClosed s ∧ IsCompact s := by
   rw [← isOpen_compl_iff, is_open_compl_image_coe]
 #align alexandroff.is_closed_image_coe OnePoint.isClosed_image_coe
+-/
 
+#print OnePoint.opensOfCompl /-
 /-- An open set in `alexandroff X` constructed from a closed compact set in `X` -/
 def opensOfCompl (s : Set X) (h₁ : IsClosed s) (h₂ : IsCompact s) :
     TopologicalSpace.Opens (OnePoint X) :=
   ⟨(coe '' s)ᶜ, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩
 #align alexandroff.opens_of_compl OnePoint.opensOfCompl
+-/
 
 #print OnePoint.infty_mem_opensOfCompl /-
 theorem infty_mem_opensOfCompl {s : Set X} (h₁ : IsClosed s) (h₂ : IsCompact s) :
@@ -295,49 +326,70 @@ theorem infty_mem_opensOfCompl {s : Set X} (h₁ : IsClosed s) (h₂ : IsCompact
 #align alexandroff.infty_mem_opens_of_compl OnePoint.infty_mem_opensOfCompl
 -/
 
+#print OnePoint.continuous_coe /-
 @[continuity]
 theorem continuous_coe : Continuous (coe : X → OnePoint X) :=
   continuous_def.mpr fun s hs => hs.right
 #align alexandroff.continuous_coe OnePoint.continuous_coe
+-/
 
+#print OnePoint.isOpenMap_coe /-
 theorem isOpenMap_coe : IsOpenMap (coe : X → OnePoint X) := fun s => isOpen_image_coe.2
 #align alexandroff.is_open_map_coe OnePoint.isOpenMap_coe
+-/
 
+#print OnePoint.openEmbedding_coe /-
 theorem openEmbedding_coe : OpenEmbedding (coe : X → OnePoint X) :=
   openEmbedding_of_continuous_injective_open continuous_coe coe_injective isOpenMap_coe
 #align alexandroff.open_embedding_coe OnePoint.openEmbedding_coe
+-/
 
+#print OnePoint.isOpen_range_coe /-
 theorem isOpen_range_coe : IsOpen (range (coe : X → OnePoint X)) :=
   openEmbedding_coe.open_range
 #align alexandroff.is_open_range_coe OnePoint.isOpen_range_coe
+-/
 
+#print OnePoint.isClosed_infty /-
 theorem isClosed_infty : IsClosed ({∞} : Set (OnePoint X)) := by
   rw [← compl_range_coe, isClosed_compl_iff]; exact is_open_range_coe
 #align alexandroff.is_closed_infty OnePoint.isClosed_infty
+-/
 
+#print OnePoint.nhds_coe_eq /-
 theorem nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → OnePoint X) (𝓝 x) :=
   (openEmbedding_coe.map_nhds_eq x).symm
 #align alexandroff.nhds_coe_eq OnePoint.nhds_coe_eq
+-/
 
+#print OnePoint.nhdsWithin_coe_image /-
 theorem nhdsWithin_coe_image (s : Set X) (x : X) :
     𝓝[coe '' s] (x : OnePoint X) = map coe (𝓝[s] x) :=
   (openEmbedding_coe.toEmbedding.map_nhdsWithin_eq _ _).symm
 #align alexandroff.nhds_within_coe_image OnePoint.nhdsWithin_coe_image
+-/
 
+#print OnePoint.nhdsWithin_coe /-
 theorem nhdsWithin_coe (s : Set (OnePoint X)) (x : X) : 𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) :=
   (openEmbedding_coe.map_nhdsWithin_preimage_eq _ _).symm
 #align alexandroff.nhds_within_coe OnePoint.nhdsWithin_coe
+-/
 
+#print OnePoint.comap_coe_nhds /-
 theorem comap_coe_nhds (x : X) : comap (coe : X → OnePoint X) (𝓝 x) = 𝓝 x :=
   (openEmbedding_coe.to_inducing.nhds_eq_comap x).symm
 #align alexandroff.comap_coe_nhds OnePoint.comap_coe_nhds
+-/
 
+#print OnePoint.nhdsWithin_compl_coe_neBot /-
 /-- If `x` is not an isolated point of `X`, then `x : alexandroff X` is not an isolated point
 of `alexandroff X`. -/
 instance nhdsWithin_compl_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] : NeBot (𝓝[≠] (x : OnePoint X)) :=
   by simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe
 #align alexandroff.nhds_within_compl_coe_ne_bot OnePoint.nhdsWithin_compl_coe_neBot
+-/
 
+#print OnePoint.nhdsWithin_compl_infty_eq /-
 theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map coe (coclosedCompact X) :=
   by
   refine' (nhdsWithin_basis_open ∞ _).ext (has_basis_coclosed_compact.map _) _ _
@@ -348,22 +400,30 @@ theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map coe (cocl
     refine' ⟨_, ⟨mem_compl infty_not_mem_image_coe, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩, _⟩
     simp [compl_image_coe, ← diff_eq, subset_preimage_image]
 #align alexandroff.nhds_within_compl_infty_eq OnePoint.nhdsWithin_compl_infty_eq
+-/
 
+#print OnePoint.nhdsWithin_compl_infty_neBot /-
 /-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/
 instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : OnePoint X)) := by
   rw [nhds_within_compl_infty_eq]; infer_instance
 #align alexandroff.nhds_within_compl_infty_ne_bot OnePoint.nhdsWithin_compl_infty_neBot
+-/
 
+#print OnePoint.nhdsWithin_compl_neBot /-
 instance (priority := 900) nhdsWithin_compl_neBot [∀ x : X, NeBot (𝓝[≠] x)] [NoncompactSpace X]
     (x : OnePoint X) : NeBot (𝓝[≠] x) :=
   OnePoint.rec _ OnePoint.nhdsWithin_compl_infty_neBot
     (fun y => OnePoint.nhdsWithin_compl_coe_neBot y) x
 #align alexandroff.nhds_within_compl_ne_bot OnePoint.nhdsWithin_compl_neBot
+-/
 
+#print OnePoint.nhds_infty_eq /-
 theorem nhds_infty_eq : 𝓝 (∞ : OnePoint X) = map coe (coclosedCompact X) ⊔ pure ∞ := by
   rw [← nhds_within_compl_infty_eq, nhdsWithin_compl_singleton_sup_pure]
 #align alexandroff.nhds_infty_eq OnePoint.nhds_infty_eq
+-/
 
+#print OnePoint.hasBasis_nhds_infty /-
 theorem hasBasis_nhds_infty :
     (𝓝 (∞ : OnePoint X)).HasBasis (fun s : Set X => IsClosed s ∧ IsCompact s) fun s =>
       coe '' sᶜ ∪ {∞} :=
@@ -371,28 +431,38 @@ theorem hasBasis_nhds_infty :
   rw [nhds_infty_eq]
   exact (has_basis_coclosed_compact.map _).sup_pure _
 #align alexandroff.has_basis_nhds_infty OnePoint.hasBasis_nhds_infty
+-/
 
+#print OnePoint.comap_coe_nhds_infty /-
 @[simp]
 theorem comap_coe_nhds_infty : comap (coe : X → OnePoint X) (𝓝 ∞) = coclosedCompact X := by
   simp [nhds_infty_eq, comap_sup, comap_map coe_injective]
 #align alexandroff.comap_coe_nhds_infty OnePoint.comap_coe_nhds_infty
+-/
 
+#print OnePoint.le_nhds_infty /-
 theorem le_nhds_infty {f : Filter (OnePoint X)} :
     f ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' sᶜ ∪ {∞} ∈ f := by
   simp only [has_basis_nhds_infty.ge_iff, and_imp]
 #align alexandroff.le_nhds_infty OnePoint.le_nhds_infty
+-/
 
+#print OnePoint.ultrafilter_le_nhds_infty /-
 theorem ultrafilter_le_nhds_infty {f : Ultrafilter (OnePoint X)} :
     (f : Filter (OnePoint X)) ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' s ∉ f := by
   simp only [le_nhds_infty, ← compl_image_coe, Ultrafilter.mem_coe,
     Ultrafilter.compl_mem_iff_not_mem]
 #align alexandroff.ultrafilter_le_nhds_infty OnePoint.ultrafilter_le_nhds_infty
+-/
 
+#print OnePoint.tendsto_nhds_infty' /-
 theorem tendsto_nhds_infty' {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ coe) (coclosedCompact X) l := by
   simp [nhds_infty_eq, and_comm']
 #align alexandroff.tendsto_nhds_infty' OnePoint.tendsto_nhds_infty'
+-/
 
+#print OnePoint.tendsto_nhds_infty /-
 theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔
       ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
@@ -400,24 +470,32 @@ theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α}
     simp only [tendsto_pure_left, has_basis_coclosed_compact.tendsto_left_iff, forall_and,
       and_assoc', exists_prop]
 #align alexandroff.tendsto_nhds_infty OnePoint.tendsto_nhds_infty
+-/
 
+#print OnePoint.continuousAt_infty' /-
 theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔ Tendsto (f ∘ coe) (coclosedCompact X) (𝓝 (f ∞)) :=
   tendsto_nhds_infty'.trans <| and_iff_right (tendsto_pure_nhds _ _)
 #align alexandroff.continuous_at_infty' OnePoint.continuousAt_infty'
+-/
 
+#print OnePoint.continuousAt_infty /-
 theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔
       ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
   continuousAt_infty'.trans <| by
     simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc']
 #align alexandroff.continuous_at_infty OnePoint.continuousAt_infty
+-/
 
+#print OnePoint.continuousAt_coe /-
 theorem continuousAt_coe {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} :
     ContinuousAt f x ↔ ContinuousAt (f ∘ coe) x := by
   rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]
 #align alexandroff.continuous_at_coe OnePoint.continuousAt_coe
+-/
 
+#print OnePoint.denseRange_coe /-
 /-- If `X` is not a compact space, then the natural embedding `X → alexandroff X` has dense range.
 -/
 theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → OnePoint X) :=
@@ -425,38 +503,53 @@ theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → OnePoint X)
   rw [DenseRange, ← compl_infty]
   exact dense_compl_singleton _
 #align alexandroff.dense_range_coe OnePoint.denseRange_coe
+-/
 
+#print OnePoint.denseEmbedding_coe /-
 theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding (coe : X → OnePoint X) :=
   { openEmbedding_coe with dense := denseRange_coe }
 #align alexandroff.dense_embedding_coe OnePoint.denseEmbedding_coe
+-/
 
+#print OnePoint.specializes_coe /-
 @[simp]
 theorem specializes_coe {x y : X} : (x : OnePoint X) ⤳ y ↔ x ⤳ y :=
   openEmbedding_coe.to_inducing.specializes_iff
 #align alexandroff.specializes_coe OnePoint.specializes_coe
+-/
 
+#print OnePoint.inseparable_coe /-
 @[simp]
 theorem inseparable_coe {x y : X} : Inseparable (x : OnePoint X) y ↔ Inseparable x y :=
   openEmbedding_coe.to_inducing.inseparable_iff
 #align alexandroff.inseparable_coe OnePoint.inseparable_coe
+-/
 
+#print OnePoint.not_specializes_infty_coe /-
 theorem not_specializes_infty_coe {x : X} : ¬Specializes ∞ (x : OnePoint X) :=
   isClosed_infty.not_specializes rfl (coe_ne_infty x)
 #align alexandroff.not_specializes_infty_coe OnePoint.not_specializes_infty_coe
+-/
 
+#print OnePoint.not_inseparable_infty_coe /-
 theorem not_inseparable_infty_coe {x : X} : ¬Inseparable ∞ (x : OnePoint X) := fun h =>
   not_specializes_infty_coe h.Specializes
 #align alexandroff.not_inseparable_infty_coe OnePoint.not_inseparable_infty_coe
+-/
 
+#print OnePoint.not_inseparable_coe_infty /-
 theorem not_inseparable_coe_infty {x : X} : ¬Inseparable (x : OnePoint X) ∞ := fun h =>
   not_specializes_infty_coe h.specializes'
 #align alexandroff.not_inseparable_coe_infty OnePoint.not_inseparable_coe_infty
+-/
 
+#print OnePoint.inseparable_iff /-
 theorem inseparable_iff {x y : OnePoint X} :
     Inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ Inseparable x' y' := by
   induction x using OnePoint.rec <;> induction y using OnePoint.rec <;>
     simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe]
 #align alexandroff.inseparable_iff OnePoint.inseparable_iff
+-/
 
 /-!
 ### Compactness and separation properties
@@ -523,6 +616,7 @@ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (OnePoint X)
   to_preconnectedSpace := denseEmbedding_coe.to_denseInducing.PreconnectedSpace
   to_nonempty := inferInstance
 
+#print OnePoint.not_continuous_cofiniteTopology_of_symm /-
 /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
 `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
 theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X] :
@@ -534,6 +628,7 @@ theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X
   simpa [nhds_coe_eq, nhds_discrete, CofiniteTopology.nhds_eq] using
     (finite_singleton ((default : X) : OnePoint X)).infinite_compl
 #align alexandroff.not_continuous_cofinite_topology_of_symm OnePoint.not_continuous_cofiniteTopology_of_symm
+-/
 
 end OnePoint
 
Diff
@@ -478,7 +478,7 @@ instance : CompactSpace (OnePoint X)
       by
       rw [nhds_infty_eq]
       exact (tendsto_map.mono_left cocompact_le_coclosed_compact).mono_right le_sup_left
-    convert← this.is_compact_insert_range_of_cocompact continuous_coe
+    convert ← this.is_compact_insert_range_of_cocompact continuous_coe
     exact insert_none_range_some X
 
 /-- The one point compactification of a `t0_space` space is a `t0_space`. -/
Diff
@@ -486,7 +486,7 @@ instance [T0Space X] : T0Space (OnePoint X) :=
   by
   refine' ⟨fun x y hxy => _⟩
   rcases inseparable_iff.1 hxy with (⟨rfl, rfl⟩ | ⟨x, rfl, y, rfl, h⟩)
-  exacts[rfl, congr_arg coe h.eq]
+  exacts [rfl, congr_arg coe h.eq]
 
 /-- The one point compactification of a `t1_space` space is a `t1_space`. -/
 instance [T1Space X] : T1Space (OnePoint X)
@@ -546,7 +546,7 @@ Let `α = alexandroff ℕ` be the one-point compactification of `ℕ`, and let `
 `id : α → β` is a continuous equivalence that is not a homeomorphism.
 -/
 theorem Continuous.homeoOfEquivCompactToT2.t1_counterexample :
-    ∃ (α β : Type)(Iα : TopologicalSpace α)(Iβ : TopologicalSpace β),
+    ∃ (α β : Type) (Iα : TopologicalSpace α) (Iβ : TopologicalSpace β),
       CompactSpace α ∧ T1Space β ∧ ∃ f : α ≃ β, Continuous f ∧ ¬Continuous f.symm :=
   ⟨OnePoint ℕ, CofiniteTopology (OnePoint ℕ), inferInstance, inferInstance, inferInstance,
     inferInstance, CofiniteTopology.of, CofiniteTopology.continuous_of,
Diff
@@ -56,144 +56,144 @@ In this section we define `alexandroff X` to be the disjoint union of `X` and `
 
 variable {X : Type _}
 
-#print Alexandroff /-
+#print OnePoint /-
 /-- The Alexandroff extension of an arbitrary topological space `X` -/
-def Alexandroff (X : Type _) :=
+def OnePoint (X : Type _) :=
   Option X
-#align alexandroff Alexandroff
+#align alexandroff OnePoint
 -/
 
 /-- The repr uses the notation from the `alexandroff` locale. -/
-instance [Repr X] : Repr (Alexandroff X) :=
+instance [Repr X] : Repr (OnePoint X) :=
   ⟨fun o =>
     match o with
     | none => "∞"
     | some a => "↑" ++ repr a⟩
 
-namespace Alexandroff
+namespace OnePoint
 
-#print Alexandroff.infty /-
+#print OnePoint.infty /-
 /-- The point at infinity -/
-def infty : Alexandroff X :=
+def infty : OnePoint X :=
   none
-#align alexandroff.infty Alexandroff.infty
+#align alexandroff.infty OnePoint.infty
 -/
 
 -- mathport name: alexandroff.infty
-scoped notation "∞" => Alexandroff.infty
+scoped notation "∞" => OnePoint.infty
 
-instance : CoeTC X (Alexandroff X) :=
+instance : CoeTC X (OnePoint X) :=
   ⟨Option.some⟩
 
-instance : Inhabited (Alexandroff X) :=
+instance : Inhabited (OnePoint X) :=
   ⟨∞⟩
 
-instance [Fintype X] : Fintype (Alexandroff X) :=
+instance [Fintype X] : Fintype (OnePoint X) :=
   Option.fintype
 
-#print Alexandroff.infinite /-
-instance infinite [Infinite X] : Infinite (Alexandroff X) :=
+#print OnePoint.infinite /-
+instance infinite [Infinite X] : Infinite (OnePoint X) :=
   Option.infinite
-#align alexandroff.infinite Alexandroff.infinite
+#align alexandroff.infinite OnePoint.infinite
 -/
 
-#print Alexandroff.coe_injective /-
-theorem coe_injective : Function.Injective (coe : X → Alexandroff X) :=
+#print OnePoint.coe_injective /-
+theorem coe_injective : Function.Injective (coe : X → OnePoint X) :=
   Option.some_injective X
-#align alexandroff.coe_injective Alexandroff.coe_injective
+#align alexandroff.coe_injective OnePoint.coe_injective
 -/
 
-#print Alexandroff.coe_eq_coe /-
+#print OnePoint.coe_eq_coe /-
 @[norm_cast]
-theorem coe_eq_coe {x y : X} : (x : Alexandroff X) = y ↔ x = y :=
+theorem coe_eq_coe {x y : X} : (x : OnePoint X) = y ↔ x = y :=
   coe_injective.eq_iff
-#align alexandroff.coe_eq_coe Alexandroff.coe_eq_coe
+#align alexandroff.coe_eq_coe OnePoint.coe_eq_coe
 -/
 
-#print Alexandroff.coe_ne_infty /-
+#print OnePoint.coe_ne_infty /-
 @[simp]
-theorem coe_ne_infty (x : X) : (x : Alexandroff X) ≠ ∞ :=
+theorem coe_ne_infty (x : X) : (x : OnePoint X) ≠ ∞ :=
   fun.
-#align alexandroff.coe_ne_infty Alexandroff.coe_ne_infty
+#align alexandroff.coe_ne_infty OnePoint.coe_ne_infty
 -/
 
-#print Alexandroff.infty_ne_coe /-
+#print OnePoint.infty_ne_coe /-
 @[simp]
-theorem infty_ne_coe (x : X) : ∞ ≠ (x : Alexandroff X) :=
+theorem infty_ne_coe (x : X) : ∞ ≠ (x : OnePoint X) :=
   fun.
-#align alexandroff.infty_ne_coe Alexandroff.infty_ne_coe
+#align alexandroff.infty_ne_coe OnePoint.infty_ne_coe
 -/
 
-#print Alexandroff.rec /-
+#print OnePoint.rec /-
 /-- Recursor for `alexandroff` using the preferred forms `∞` and `↑x`. -/
 @[elab_as_elim]
-protected def rec (C : Alexandroff X → Sort _) (h₁ : C ∞) (h₂ : ∀ x : X, C x) :
-    ∀ z : Alexandroff X, C z :=
+protected def rec (C : OnePoint X → Sort _) (h₁ : C ∞) (h₂ : ∀ x : X, C x) :
+    ∀ z : OnePoint X, C z :=
   Option.rec h₁ h₂
-#align alexandroff.rec Alexandroff.rec
+#align alexandroff.rec OnePoint.rec
 -/
 
-theorem isCompl_range_coe_infty : IsCompl (range (coe : X → Alexandroff X)) {∞} :=
+theorem isCompl_range_coe_infty : IsCompl (range (coe : X → OnePoint X)) {∞} :=
   isCompl_range_some_none X
-#align alexandroff.is_compl_range_coe_infty Alexandroff.isCompl_range_coe_infty
+#align alexandroff.is_compl_range_coe_infty OnePoint.isCompl_range_coe_infty
 
 @[simp]
-theorem range_coe_union_infty : range (coe : X → Alexandroff X) ∪ {∞} = univ :=
+theorem range_coe_union_infty : range (coe : X → OnePoint X) ∪ {∞} = univ :=
   range_some_union_none X
-#align alexandroff.range_coe_union_infty Alexandroff.range_coe_union_infty
+#align alexandroff.range_coe_union_infty OnePoint.range_coe_union_infty
 
 @[simp]
-theorem range_coe_inter_infty : range (coe : X → Alexandroff X) ∩ {∞} = ∅ :=
+theorem range_coe_inter_infty : range (coe : X → OnePoint X) ∩ {∞} = ∅ :=
   range_some_inter_none X
-#align alexandroff.range_coe_inter_infty Alexandroff.range_coe_inter_infty
+#align alexandroff.range_coe_inter_infty OnePoint.range_coe_inter_infty
 
 @[simp]
-theorem compl_range_coe : range (coe : X → Alexandroff X)ᶜ = {∞} :=
+theorem compl_range_coe : range (coe : X → OnePoint X)ᶜ = {∞} :=
   compl_range_some X
-#align alexandroff.compl_range_coe Alexandroff.compl_range_coe
+#align alexandroff.compl_range_coe OnePoint.compl_range_coe
 
-theorem compl_infty : ({∞}ᶜ : Set (Alexandroff X)) = range (coe : X → Alexandroff X) :=
+theorem compl_infty : ({∞}ᶜ : Set (OnePoint X)) = range (coe : X → OnePoint X) :=
   (@isCompl_range_coe_infty X).symm.compl_eq
-#align alexandroff.compl_infty Alexandroff.compl_infty
+#align alexandroff.compl_infty OnePoint.compl_infty
 
-theorem compl_image_coe (s : Set X) : (coe '' s : Set (Alexandroff X))ᶜ = coe '' sᶜ ∪ {∞} := by
+theorem compl_image_coe (s : Set X) : (coe '' s : Set (OnePoint X))ᶜ = coe '' sᶜ ∪ {∞} := by
   rw [coe_injective.compl_image_eq, compl_range_coe]
-#align alexandroff.compl_image_coe Alexandroff.compl_image_coe
+#align alexandroff.compl_image_coe OnePoint.compl_image_coe
 
-#print Alexandroff.ne_infty_iff_exists /-
-theorem ne_infty_iff_exists {x : Alexandroff X} : x ≠ ∞ ↔ ∃ y : X, (y : Alexandroff X) = x := by
-  induction x using Alexandroff.rec <;> simp
-#align alexandroff.ne_infty_iff_exists Alexandroff.ne_infty_iff_exists
+#print OnePoint.ne_infty_iff_exists /-
+theorem ne_infty_iff_exists {x : OnePoint X} : x ≠ ∞ ↔ ∃ y : X, (y : OnePoint X) = x := by
+  induction x using OnePoint.rec <;> simp
+#align alexandroff.ne_infty_iff_exists OnePoint.ne_infty_iff_exists
 -/
 
-#print Alexandroff.canLift /-
-instance canLift : CanLift (Alexandroff X) X coe fun x => x ≠ ∞ :=
+#print OnePoint.canLift /-
+instance canLift : CanLift (OnePoint X) X coe fun x => x ≠ ∞ :=
   WithTop.canLift
-#align alexandroff.can_lift Alexandroff.canLift
+#align alexandroff.can_lift OnePoint.canLift
 -/
 
-#print Alexandroff.not_mem_range_coe_iff /-
-theorem not_mem_range_coe_iff {x : Alexandroff X} : x ∉ range (coe : X → Alexandroff X) ↔ x = ∞ :=
-  by rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff]
-#align alexandroff.not_mem_range_coe_iff Alexandroff.not_mem_range_coe_iff
+#print OnePoint.not_mem_range_coe_iff /-
+theorem not_mem_range_coe_iff {x : OnePoint X} : x ∉ range (coe : X → OnePoint X) ↔ x = ∞ := by
+  rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff]
+#align alexandroff.not_mem_range_coe_iff OnePoint.not_mem_range_coe_iff
 -/
 
-#print Alexandroff.infty_not_mem_range_coe /-
-theorem infty_not_mem_range_coe : ∞ ∉ range (coe : X → Alexandroff X) :=
+#print OnePoint.infty_not_mem_range_coe /-
+theorem infty_not_mem_range_coe : ∞ ∉ range (coe : X → OnePoint X) :=
   not_mem_range_coe_iff.2 rfl
-#align alexandroff.infty_not_mem_range_coe Alexandroff.infty_not_mem_range_coe
+#align alexandroff.infty_not_mem_range_coe OnePoint.infty_not_mem_range_coe
 -/
 
-#print Alexandroff.infty_not_mem_image_coe /-
-theorem infty_not_mem_image_coe {s : Set X} : ∞ ∉ (coe : X → Alexandroff X) '' s :=
+#print OnePoint.infty_not_mem_image_coe /-
+theorem infty_not_mem_image_coe {s : Set X} : ∞ ∉ (coe : X → OnePoint X) '' s :=
   not_mem_subset (image_subset_range _ _) infty_not_mem_range_coe
-#align alexandroff.infty_not_mem_image_coe Alexandroff.infty_not_mem_image_coe
+#align alexandroff.infty_not_mem_image_coe OnePoint.infty_not_mem_image_coe
 -/
 
-#print Alexandroff.coe_preimage_infty /-
+#print OnePoint.coe_preimage_infty /-
 @[simp]
-theorem coe_preimage_infty : (coe : X → Alexandroff X) ⁻¹' {∞} = ∅ := by ext; simp
-#align alexandroff.coe_preimage_infty Alexandroff.coe_preimage_infty
+theorem coe_preimage_infty : (coe : X → OnePoint X) ⁻¹' {∞} = ∅ := by ext; simp
+#align alexandroff.coe_preimage_infty OnePoint.coe_preimage_infty
 -/
 
 /-!
@@ -212,11 +212,10 @@ that `coe` has dense range, so it is a dense embedding.
 
 variable [TopologicalSpace X]
 
-instance : TopologicalSpace (Alexandroff X)
+instance : TopologicalSpace (OnePoint X)
     where
   IsOpen s :=
-    (∞ ∈ s → IsCompact (((coe : X → Alexandroff X) ⁻¹' s)ᶜ)) ∧
-      IsOpen ((coe : X → Alexandroff X) ⁻¹' s)
+    (∞ ∈ s → IsCompact (((coe : X → OnePoint X) ⁻¹' s)ᶜ)) ∧ IsOpen ((coe : X → OnePoint X) ⁻¹' s)
   isOpen_univ := by simp
   isOpen_inter s t := by
     rintro ⟨hms, hs⟩ ⟨hmt, ht⟩
@@ -233,114 +232,113 @@ instance : TopologicalSpace (Alexandroff X)
     rw [preimage_sUnion]
     exact isOpen_biUnion fun s hs => (ho s hs).2
 
-variable {s : Set (Alexandroff X)} {t : Set X}
+variable {s : Set (OnePoint X)} {t : Set X}
 
 theorem isOpen_def :
     IsOpen s ↔ (∞ ∈ s → IsCompact ((coe ⁻¹' s : Set X)ᶜ)) ∧ IsOpen (coe ⁻¹' s : Set X) :=
   Iff.rfl
-#align alexandroff.is_open_def Alexandroff.isOpen_def
+#align alexandroff.is_open_def OnePoint.isOpen_def
 
 theorem isOpen_iff_of_mem' (h : ∞ ∈ s) :
     IsOpen s ↔ IsCompact ((coe ⁻¹' s : Set X)ᶜ) ∧ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
-#align alexandroff.is_open_iff_of_mem' Alexandroff.isOpen_iff_of_mem'
+#align alexandroff.is_open_iff_of_mem' OnePoint.isOpen_iff_of_mem'
 
 theorem isOpen_iff_of_mem (h : ∞ ∈ s) :
     IsOpen s ↔ IsClosed ((coe ⁻¹' s : Set X)ᶜ) ∧ IsCompact ((coe ⁻¹' s : Set X)ᶜ) := by
   simp only [is_open_iff_of_mem' h, isClosed_compl_iff, and_comm]
-#align alexandroff.is_open_iff_of_mem Alexandroff.isOpen_iff_of_mem
+#align alexandroff.is_open_iff_of_mem OnePoint.isOpen_iff_of_mem
 
 theorem isOpen_iff_of_not_mem (h : ∞ ∉ s) : IsOpen s ↔ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
-#align alexandroff.is_open_iff_of_not_mem Alexandroff.isOpen_iff_of_not_mem
+#align alexandroff.is_open_iff_of_not_mem OnePoint.isOpen_iff_of_not_mem
 
 theorem isClosed_iff_of_mem (h : ∞ ∈ s) : IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) :=
   by
   have : ∞ ∉ sᶜ := fun H => H h
   rw [← isOpen_compl_iff, is_open_iff_of_not_mem this, ← isOpen_compl_iff, preimage_compl]
-#align alexandroff.is_closed_iff_of_mem Alexandroff.isClosed_iff_of_mem
+#align alexandroff.is_closed_iff_of_mem OnePoint.isClosed_iff_of_mem
 
 theorem isClosed_iff_of_not_mem (h : ∞ ∉ s) :
     IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) ∧ IsCompact (coe ⁻¹' s : Set X) := by
   rw [← isOpen_compl_iff, is_open_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl]
-#align alexandroff.is_closed_iff_of_not_mem Alexandroff.isClosed_iff_of_not_mem
+#align alexandroff.is_closed_iff_of_not_mem OnePoint.isClosed_iff_of_not_mem
 
 @[simp]
-theorem isOpen_image_coe {s : Set X} : IsOpen (coe '' s : Set (Alexandroff X)) ↔ IsOpen s := by
+theorem isOpen_image_coe {s : Set X} : IsOpen (coe '' s : Set (OnePoint X)) ↔ IsOpen s := by
   rw [is_open_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective]
-#align alexandroff.is_open_image_coe Alexandroff.isOpen_image_coe
+#align alexandroff.is_open_image_coe OnePoint.isOpen_image_coe
 
 theorem isOpen_compl_image_coe {s : Set X} :
-    IsOpen ((coe '' s : Set (Alexandroff X))ᶜ) ↔ IsClosed s ∧ IsCompact s :=
+    IsOpen ((coe '' s : Set (OnePoint X))ᶜ) ↔ IsClosed s ∧ IsCompact s :=
   by
   rw [is_open_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective]
   exact infty_not_mem_image_coe
-#align alexandroff.is_open_compl_image_coe Alexandroff.isOpen_compl_image_coe
+#align alexandroff.is_open_compl_image_coe OnePoint.isOpen_compl_image_coe
 
 @[simp]
 theorem isClosed_image_coe {s : Set X} :
-    IsClosed (coe '' s : Set (Alexandroff X)) ↔ IsClosed s ∧ IsCompact s := by
+    IsClosed (coe '' s : Set (OnePoint X)) ↔ IsClosed s ∧ IsCompact s := by
   rw [← isOpen_compl_iff, is_open_compl_image_coe]
-#align alexandroff.is_closed_image_coe Alexandroff.isClosed_image_coe
+#align alexandroff.is_closed_image_coe OnePoint.isClosed_image_coe
 
 /-- An open set in `alexandroff X` constructed from a closed compact set in `X` -/
 def opensOfCompl (s : Set X) (h₁ : IsClosed s) (h₂ : IsCompact s) :
-    TopologicalSpace.Opens (Alexandroff X) :=
+    TopologicalSpace.Opens (OnePoint X) :=
   ⟨(coe '' s)ᶜ, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩
-#align alexandroff.opens_of_compl Alexandroff.opensOfCompl
+#align alexandroff.opens_of_compl OnePoint.opensOfCompl
 
-#print Alexandroff.infty_mem_opensOfCompl /-
+#print OnePoint.infty_mem_opensOfCompl /-
 theorem infty_mem_opensOfCompl {s : Set X} (h₁ : IsClosed s) (h₂ : IsCompact s) :
     ∞ ∈ opensOfCompl s h₁ h₂ :=
   mem_compl infty_not_mem_image_coe
-#align alexandroff.infty_mem_opens_of_compl Alexandroff.infty_mem_opensOfCompl
+#align alexandroff.infty_mem_opens_of_compl OnePoint.infty_mem_opensOfCompl
 -/
 
 @[continuity]
-theorem continuous_coe : Continuous (coe : X → Alexandroff X) :=
+theorem continuous_coe : Continuous (coe : X → OnePoint X) :=
   continuous_def.mpr fun s hs => hs.right
-#align alexandroff.continuous_coe Alexandroff.continuous_coe
+#align alexandroff.continuous_coe OnePoint.continuous_coe
 
-theorem isOpenMap_coe : IsOpenMap (coe : X → Alexandroff X) := fun s => isOpen_image_coe.2
-#align alexandroff.is_open_map_coe Alexandroff.isOpenMap_coe
+theorem isOpenMap_coe : IsOpenMap (coe : X → OnePoint X) := fun s => isOpen_image_coe.2
+#align alexandroff.is_open_map_coe OnePoint.isOpenMap_coe
 
-theorem openEmbedding_coe : OpenEmbedding (coe : X → Alexandroff X) :=
+theorem openEmbedding_coe : OpenEmbedding (coe : X → OnePoint X) :=
   openEmbedding_of_continuous_injective_open continuous_coe coe_injective isOpenMap_coe
-#align alexandroff.open_embedding_coe Alexandroff.openEmbedding_coe
+#align alexandroff.open_embedding_coe OnePoint.openEmbedding_coe
 
-theorem isOpen_range_coe : IsOpen (range (coe : X → Alexandroff X)) :=
+theorem isOpen_range_coe : IsOpen (range (coe : X → OnePoint X)) :=
   openEmbedding_coe.open_range
-#align alexandroff.is_open_range_coe Alexandroff.isOpen_range_coe
+#align alexandroff.is_open_range_coe OnePoint.isOpen_range_coe
 
-theorem isClosed_infty : IsClosed ({∞} : Set (Alexandroff X)) := by
+theorem isClosed_infty : IsClosed ({∞} : Set (OnePoint X)) := by
   rw [← compl_range_coe, isClosed_compl_iff]; exact is_open_range_coe
-#align alexandroff.is_closed_infty Alexandroff.isClosed_infty
+#align alexandroff.is_closed_infty OnePoint.isClosed_infty
 
-theorem nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → Alexandroff X) (𝓝 x) :=
+theorem nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → OnePoint X) (𝓝 x) :=
   (openEmbedding_coe.map_nhds_eq x).symm
-#align alexandroff.nhds_coe_eq Alexandroff.nhds_coe_eq
+#align alexandroff.nhds_coe_eq OnePoint.nhds_coe_eq
 
 theorem nhdsWithin_coe_image (s : Set X) (x : X) :
-    𝓝[coe '' s] (x : Alexandroff X) = map coe (𝓝[s] x) :=
+    𝓝[coe '' s] (x : OnePoint X) = map coe (𝓝[s] x) :=
   (openEmbedding_coe.toEmbedding.map_nhdsWithin_eq _ _).symm
-#align alexandroff.nhds_within_coe_image Alexandroff.nhdsWithin_coe_image
+#align alexandroff.nhds_within_coe_image OnePoint.nhdsWithin_coe_image
 
-theorem nhdsWithin_coe (s : Set (Alexandroff X)) (x : X) : 𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) :=
+theorem nhdsWithin_coe (s : Set (OnePoint X)) (x : X) : 𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) :=
   (openEmbedding_coe.map_nhdsWithin_preimage_eq _ _).symm
-#align alexandroff.nhds_within_coe Alexandroff.nhdsWithin_coe
+#align alexandroff.nhds_within_coe OnePoint.nhdsWithin_coe
 
-theorem comap_coe_nhds (x : X) : comap (coe : X → Alexandroff X) (𝓝 x) = 𝓝 x :=
+theorem comap_coe_nhds (x : X) : comap (coe : X → OnePoint X) (𝓝 x) = 𝓝 x :=
   (openEmbedding_coe.to_inducing.nhds_eq_comap x).symm
-#align alexandroff.comap_coe_nhds Alexandroff.comap_coe_nhds
+#align alexandroff.comap_coe_nhds OnePoint.comap_coe_nhds
 
 /-- If `x` is not an isolated point of `X`, then `x : alexandroff X` is not an isolated point
 of `alexandroff X`. -/
-instance nhdsWithin_compl_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] :
-    NeBot (𝓝[≠] (x : Alexandroff X)) := by
-  simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe
-#align alexandroff.nhds_within_compl_coe_ne_bot Alexandroff.nhdsWithin_compl_coe_neBot
+instance nhdsWithin_compl_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] : NeBot (𝓝[≠] (x : OnePoint X)) :=
+  by simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe
+#align alexandroff.nhds_within_compl_coe_ne_bot OnePoint.nhdsWithin_compl_coe_neBot
 
-theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : Alexandroff X) = map coe (coclosedCompact X) :=
+theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map coe (coclosedCompact X) :=
   by
   refine' (nhdsWithin_basis_open ∞ _).ext (has_basis_coclosed_compact.map _) _ _
   · rintro s ⟨hs, hso⟩
@@ -349,116 +347,116 @@ theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : Alexandroff X) = map coe (c
   · rintro s ⟨h₁, h₂⟩
     refine' ⟨_, ⟨mem_compl infty_not_mem_image_coe, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩, _⟩
     simp [compl_image_coe, ← diff_eq, subset_preimage_image]
-#align alexandroff.nhds_within_compl_infty_eq Alexandroff.nhdsWithin_compl_infty_eq
+#align alexandroff.nhds_within_compl_infty_eq OnePoint.nhdsWithin_compl_infty_eq
 
 /-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/
-instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : Alexandroff X)) := by
+instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : OnePoint X)) := by
   rw [nhds_within_compl_infty_eq]; infer_instance
-#align alexandroff.nhds_within_compl_infty_ne_bot Alexandroff.nhdsWithin_compl_infty_neBot
+#align alexandroff.nhds_within_compl_infty_ne_bot OnePoint.nhdsWithin_compl_infty_neBot
 
 instance (priority := 900) nhdsWithin_compl_neBot [∀ x : X, NeBot (𝓝[≠] x)] [NoncompactSpace X]
-    (x : Alexandroff X) : NeBot (𝓝[≠] x) :=
-  Alexandroff.rec _ Alexandroff.nhdsWithin_compl_infty_neBot
-    (fun y => Alexandroff.nhdsWithin_compl_coe_neBot y) x
-#align alexandroff.nhds_within_compl_ne_bot Alexandroff.nhdsWithin_compl_neBot
+    (x : OnePoint X) : NeBot (𝓝[≠] x) :=
+  OnePoint.rec _ OnePoint.nhdsWithin_compl_infty_neBot
+    (fun y => OnePoint.nhdsWithin_compl_coe_neBot y) x
+#align alexandroff.nhds_within_compl_ne_bot OnePoint.nhdsWithin_compl_neBot
 
-theorem nhds_infty_eq : 𝓝 (∞ : Alexandroff X) = map coe (coclosedCompact X) ⊔ pure ∞ := by
+theorem nhds_infty_eq : 𝓝 (∞ : OnePoint X) = map coe (coclosedCompact X) ⊔ pure ∞ := by
   rw [← nhds_within_compl_infty_eq, nhdsWithin_compl_singleton_sup_pure]
-#align alexandroff.nhds_infty_eq Alexandroff.nhds_infty_eq
+#align alexandroff.nhds_infty_eq OnePoint.nhds_infty_eq
 
 theorem hasBasis_nhds_infty :
-    (𝓝 (∞ : Alexandroff X)).HasBasis (fun s : Set X => IsClosed s ∧ IsCompact s) fun s =>
+    (𝓝 (∞ : OnePoint X)).HasBasis (fun s : Set X => IsClosed s ∧ IsCompact s) fun s =>
       coe '' sᶜ ∪ {∞} :=
   by
   rw [nhds_infty_eq]
   exact (has_basis_coclosed_compact.map _).sup_pure _
-#align alexandroff.has_basis_nhds_infty Alexandroff.hasBasis_nhds_infty
+#align alexandroff.has_basis_nhds_infty OnePoint.hasBasis_nhds_infty
 
 @[simp]
-theorem comap_coe_nhds_infty : comap (coe : X → Alexandroff X) (𝓝 ∞) = coclosedCompact X := by
+theorem comap_coe_nhds_infty : comap (coe : X → OnePoint X) (𝓝 ∞) = coclosedCompact X := by
   simp [nhds_infty_eq, comap_sup, comap_map coe_injective]
-#align alexandroff.comap_coe_nhds_infty Alexandroff.comap_coe_nhds_infty
+#align alexandroff.comap_coe_nhds_infty OnePoint.comap_coe_nhds_infty
 
-theorem le_nhds_infty {f : Filter (Alexandroff X)} :
+theorem le_nhds_infty {f : Filter (OnePoint X)} :
     f ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' sᶜ ∪ {∞} ∈ f := by
   simp only [has_basis_nhds_infty.ge_iff, and_imp]
-#align alexandroff.le_nhds_infty Alexandroff.le_nhds_infty
+#align alexandroff.le_nhds_infty OnePoint.le_nhds_infty
 
-theorem ultrafilter_le_nhds_infty {f : Ultrafilter (Alexandroff X)} :
-    (f : Filter (Alexandroff X)) ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' s ∉ f := by
+theorem ultrafilter_le_nhds_infty {f : Ultrafilter (OnePoint X)} :
+    (f : Filter (OnePoint X)) ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' s ∉ f := by
   simp only [le_nhds_infty, ← compl_image_coe, Ultrafilter.mem_coe,
     Ultrafilter.compl_mem_iff_not_mem]
-#align alexandroff.ultrafilter_le_nhds_infty Alexandroff.ultrafilter_le_nhds_infty
+#align alexandroff.ultrafilter_le_nhds_infty OnePoint.ultrafilter_le_nhds_infty
 
-theorem tendsto_nhds_infty' {α : Type _} {f : Alexandroff X → α} {l : Filter α} :
+theorem tendsto_nhds_infty' {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ coe) (coclosedCompact X) l := by
   simp [nhds_infty_eq, and_comm']
-#align alexandroff.tendsto_nhds_infty' Alexandroff.tendsto_nhds_infty'
+#align alexandroff.tendsto_nhds_infty' OnePoint.tendsto_nhds_infty'
 
-theorem tendsto_nhds_infty {α : Type _} {f : Alexandroff X → α} {l : Filter α} :
+theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔
       ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
   tendsto_nhds_infty'.trans <| by
     simp only [tendsto_pure_left, has_basis_coclosed_compact.tendsto_left_iff, forall_and,
       and_assoc', exists_prop]
-#align alexandroff.tendsto_nhds_infty Alexandroff.tendsto_nhds_infty
+#align alexandroff.tendsto_nhds_infty OnePoint.tendsto_nhds_infty
 
-theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} :
+theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔ Tendsto (f ∘ coe) (coclosedCompact X) (𝓝 (f ∞)) :=
   tendsto_nhds_infty'.trans <| and_iff_right (tendsto_pure_nhds _ _)
-#align alexandroff.continuous_at_infty' Alexandroff.continuousAt_infty'
+#align alexandroff.continuous_at_infty' OnePoint.continuousAt_infty'
 
-theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} :
+theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔
       ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
   continuousAt_infty'.trans <| by
     simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc']
-#align alexandroff.continuous_at_infty Alexandroff.continuousAt_infty
+#align alexandroff.continuous_at_infty OnePoint.continuousAt_infty
 
-theorem continuousAt_coe {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} {x : X} :
+theorem continuousAt_coe {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} :
     ContinuousAt f x ↔ ContinuousAt (f ∘ coe) x := by
   rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]
-#align alexandroff.continuous_at_coe Alexandroff.continuousAt_coe
+#align alexandroff.continuous_at_coe OnePoint.continuousAt_coe
 
 /-- If `X` is not a compact space, then the natural embedding `X → alexandroff X` has dense range.
 -/
-theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → Alexandroff X) :=
+theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → OnePoint X) :=
   by
   rw [DenseRange, ← compl_infty]
   exact dense_compl_singleton _
-#align alexandroff.dense_range_coe Alexandroff.denseRange_coe
+#align alexandroff.dense_range_coe OnePoint.denseRange_coe
 
-theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding (coe : X → Alexandroff X) :=
+theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding (coe : X → OnePoint X) :=
   { openEmbedding_coe with dense := denseRange_coe }
-#align alexandroff.dense_embedding_coe Alexandroff.denseEmbedding_coe
+#align alexandroff.dense_embedding_coe OnePoint.denseEmbedding_coe
 
 @[simp]
-theorem specializes_coe {x y : X} : (x : Alexandroff X) ⤳ y ↔ x ⤳ y :=
+theorem specializes_coe {x y : X} : (x : OnePoint X) ⤳ y ↔ x ⤳ y :=
   openEmbedding_coe.to_inducing.specializes_iff
-#align alexandroff.specializes_coe Alexandroff.specializes_coe
+#align alexandroff.specializes_coe OnePoint.specializes_coe
 
 @[simp]
-theorem inseparable_coe {x y : X} : Inseparable (x : Alexandroff X) y ↔ Inseparable x y :=
+theorem inseparable_coe {x y : X} : Inseparable (x : OnePoint X) y ↔ Inseparable x y :=
   openEmbedding_coe.to_inducing.inseparable_iff
-#align alexandroff.inseparable_coe Alexandroff.inseparable_coe
+#align alexandroff.inseparable_coe OnePoint.inseparable_coe
 
-theorem not_specializes_infty_coe {x : X} : ¬Specializes ∞ (x : Alexandroff X) :=
+theorem not_specializes_infty_coe {x : X} : ¬Specializes ∞ (x : OnePoint X) :=
   isClosed_infty.not_specializes rfl (coe_ne_infty x)
-#align alexandroff.not_specializes_infty_coe Alexandroff.not_specializes_infty_coe
+#align alexandroff.not_specializes_infty_coe OnePoint.not_specializes_infty_coe
 
-theorem not_inseparable_infty_coe {x : X} : ¬Inseparable ∞ (x : Alexandroff X) := fun h =>
+theorem not_inseparable_infty_coe {x : X} : ¬Inseparable ∞ (x : OnePoint X) := fun h =>
   not_specializes_infty_coe h.Specializes
-#align alexandroff.not_inseparable_infty_coe Alexandroff.not_inseparable_infty_coe
+#align alexandroff.not_inseparable_infty_coe OnePoint.not_inseparable_infty_coe
 
-theorem not_inseparable_coe_infty {x : X} : ¬Inseparable (x : Alexandroff X) ∞ := fun h =>
+theorem not_inseparable_coe_infty {x : X} : ¬Inseparable (x : OnePoint X) ∞ := fun h =>
   not_specializes_infty_coe h.specializes'
-#align alexandroff.not_inseparable_coe_infty Alexandroff.not_inseparable_coe_infty
+#align alexandroff.not_inseparable_coe_infty OnePoint.not_inseparable_coe_infty
 
-theorem inseparable_iff {x y : Alexandroff X} :
+theorem inseparable_iff {x y : OnePoint X} :
     Inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ Inseparable x' y' := by
-  induction x using Alexandroff.rec <;> induction y using Alexandroff.rec <;>
+  induction x using OnePoint.rec <;> induction y using OnePoint.rec <;>
     simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe]
-#align alexandroff.inseparable_iff Alexandroff.inseparable_iff
+#align alexandroff.inseparable_iff OnePoint.inseparable_iff
 
 /-!
 ### Compactness and separation properties
@@ -473,10 +471,10 @@ Finally, if the original space `X` is *not* compact and is a preconnected space,
 
 
 /-- For any topological space `X`, its one point compactification is a compact space. -/
-instance : CompactSpace (Alexandroff X)
+instance : CompactSpace (OnePoint X)
     where isCompact_univ :=
     by
-    have : tendsto (coe : X → Alexandroff X) (cocompact X) (𝓝 ∞) :=
+    have : tendsto (coe : X → OnePoint X) (cocompact X) (𝓝 ∞) :=
       by
       rw [nhds_infty_eq]
       exact (tendsto_map.mono_left cocompact_le_coclosed_compact).mono_right le_sup_left
@@ -484,26 +482,26 @@ instance : CompactSpace (Alexandroff X)
     exact insert_none_range_some X
 
 /-- The one point compactification of a `t0_space` space is a `t0_space`. -/
-instance [T0Space X] : T0Space (Alexandroff X) :=
+instance [T0Space X] : T0Space (OnePoint X) :=
   by
   refine' ⟨fun x y hxy => _⟩
   rcases inseparable_iff.1 hxy with (⟨rfl, rfl⟩ | ⟨x, rfl, y, rfl, h⟩)
   exacts[rfl, congr_arg coe h.eq]
 
 /-- The one point compactification of a `t1_space` space is a `t1_space`. -/
-instance [T1Space X] : T1Space (Alexandroff X)
+instance [T1Space X] : T1Space (OnePoint X)
     where t1 z := by
-    induction z using Alexandroff.rec
+    induction z using OnePoint.rec
     · exact is_closed_infty
     · rw [← image_singleton, is_closed_image_coe]
       exact ⟨isClosed_singleton, isCompact_singleton⟩
 
 /-- The one point compactification of a locally compact Hausdorff space is a normal (hence,
 Hausdorff and regular) topological space. -/
-instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (Alexandroff X) :=
+instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (OnePoint X) :=
   by
   have key :
-    ∀ z : X, ∃ u v : Set (Alexandroff X), IsOpen u ∧ IsOpen v ∧ ↑z ∈ u ∧ ∞ ∈ v ∧ Disjoint u v :=
+    ∀ z : X, ∃ u v : Set (OnePoint X), IsOpen u ∧ IsOpen v ∧ ↑z ∈ u ∧ ∞ ∈ v ∧ Disjoint u v :=
     by
     intro z
     rcases exists_open_with_compact_closure z with ⟨u, hu, huy', Hu⟩
@@ -512,7 +510,7 @@ instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (Alexandroff X) :=
         is_open_compl_image_coe.2 ⟨isClosed_closure, Hu⟩, mem_image_of_mem _ huy',
         mem_compl infty_not_mem_image_coe, (image_subset _ subset_closure).disjoint_compl_right⟩
   refine' @normalOfCompactT2 _ _ _ ⟨fun x y hxy => _⟩
-  induction x using Alexandroff.rec <;> induction y using Alexandroff.rec
+  induction x using OnePoint.rec <;> induction y using OnePoint.rec
   · exact (hxy rfl).elim
   · rcases key y with ⟨u, v, hu, hv, hxu, hyv, huv⟩
     exact ⟨v, u, hv, hu, hyv, hxu, huv.symm⟩
@@ -520,7 +518,7 @@ instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (Alexandroff X) :=
   · exact separated_by_openEmbedding open_embedding_coe (mt coe_eq_coe.mpr hxy)
 
 /-- If `X` is not a compact space, then `alexandroff X` is a connected space. -/
-instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (Alexandroff X)
+instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (OnePoint X)
     where
   to_preconnectedSpace := denseEmbedding_coe.to_denseInducing.PreconnectedSpace
   to_nonempty := inferInstance
@@ -528,16 +526,16 @@ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (Alexandroff
 /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
 `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
 theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X] :
-    ¬Continuous (@CofiniteTopology.of (Alexandroff X)).symm :=
+    ¬Continuous (@CofiniteTopology.of (OnePoint X)).symm :=
   by
   inhabit X
   simp only [continuous_iff_continuousAt, ContinuousAt, not_forall]
   use CofiniteTopology.of ↑(default : X)
   simpa [nhds_coe_eq, nhds_discrete, CofiniteTopology.nhds_eq] using
-    (finite_singleton ((default : X) : Alexandroff X)).infinite_compl
-#align alexandroff.not_continuous_cofinite_topology_of_symm Alexandroff.not_continuous_cofiniteTopology_of_symm
+    (finite_singleton ((default : X) : OnePoint X)).infinite_compl
+#align alexandroff.not_continuous_cofinite_topology_of_symm OnePoint.not_continuous_cofiniteTopology_of_symm
 
-end Alexandroff
+end OnePoint
 
 #print Continuous.homeoOfEquivCompactToT2.t1_counterexample /-
 /-- A concrete counterexample shows that  `continuous.homeo_of_equiv_compact_to_t2`
@@ -550,9 +548,9 @@ Let `α = alexandroff ℕ` be the one-point compactification of `ℕ`, and let `
 theorem Continuous.homeoOfEquivCompactToT2.t1_counterexample :
     ∃ (α β : Type)(Iα : TopologicalSpace α)(Iβ : TopologicalSpace β),
       CompactSpace α ∧ T1Space β ∧ ∃ f : α ≃ β, Continuous f ∧ ¬Continuous f.symm :=
-  ⟨Alexandroff ℕ, CofiniteTopology (Alexandroff ℕ), inferInstance, inferInstance, inferInstance,
+  ⟨OnePoint ℕ, CofiniteTopology (OnePoint ℕ), inferInstance, inferInstance, inferInstance,
     inferInstance, CofiniteTopology.of, CofiniteTopology.continuous_of,
-    Alexandroff.not_continuous_cofiniteTopology_of_symm⟩
+    OnePoint.not_continuous_cofiniteTopology_of_symm⟩
 #align continuous.homeo_of_equiv_compact_to_t2.t1_counterexample Continuous.homeoOfEquivCompactToT2.t1_counterexample
 -/
 
Diff
@@ -44,7 +44,7 @@ one-point compactification, compactness
 
 open Set Filter
 
-open Classical Topology Filter
+open scoped Classical Topology Filter
 
 /-!
 ### Definition and basic properties
Diff
@@ -133,65 +133,29 @@ protected def rec (C : Alexandroff X → Sort _) (h₁ : C ∞) (h₂ : ∀ x :
 #align alexandroff.rec Alexandroff.rec
 -/
 
-/- warning: alexandroff.is_compl_range_coe_infty -> Alexandroff.isCompl_range_coe_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}}, IsCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.completeBooleanAlgebra.{u1} (Alexandroff.{u1} X))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.completeBooleanAlgebra.{u1} (Alexandroff.{u1} X)))))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-but is expected to have type
-  forall {X : Type.{u1}}, IsCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instCompleteBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (Alexandroff.{u1} X)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instCompleteBooleanAlgebraSet.{u1} (Alexandroff.{u1} X)))))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_compl_range_coe_infty Alexandroff.isCompl_range_coe_inftyₓ'. -/
 theorem isCompl_range_coe_infty : IsCompl (range (coe : X → Alexandroff X)) {∞} :=
   isCompl_range_some_none X
 #align alexandroff.is_compl_range_coe_infty Alexandroff.isCompl_range_coe_infty
 
-/- warning: alexandroff.range_coe_union_infty -> Alexandroff.range_coe_union_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (Set.univ.{u1} (Alexandroff.{u1} X))
-but is expected to have type
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instUnionSet.{u1} (Alexandroff.{u1} X)) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (Set.univ.{u1} (Alexandroff.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.range_coe_union_infty Alexandroff.range_coe_union_inftyₓ'. -/
 @[simp]
 theorem range_coe_union_infty : range (coe : X → Alexandroff X) ∪ {∞} = univ :=
   range_some_union_none X
 #align alexandroff.range_coe_union_infty Alexandroff.range_coe_union_infty
 
-/- warning: alexandroff.range_coe_inter_infty -> Alexandroff.range_coe_inter_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (Inter.inter.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasInter.{u1} (Alexandroff.{u1} X)) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasEmptyc.{u1} (Alexandroff.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (Inter.inter.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instInterSet.{u1} (Alexandroff.{u1} X)) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instEmptyCollectionSet.{u1} (Alexandroff.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.range_coe_inter_infty Alexandroff.range_coe_inter_inftyₓ'. -/
 @[simp]
 theorem range_coe_inter_infty : range (coe : X → Alexandroff X) ∩ {∞} = ∅ :=
   range_some_inter_none X
 #align alexandroff.range_coe_inter_infty Alexandroff.range_coe_inter_infty
 
-/- warning: alexandroff.compl_range_coe -> Alexandroff.compl_range_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-but is expected to have type
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.compl_range_coe Alexandroff.compl_range_coeₓ'. -/
 @[simp]
 theorem compl_range_coe : range (coe : X → Alexandroff X)ᶜ = {∞} :=
   compl_range_some X
 #align alexandroff.compl_range_coe Alexandroff.compl_range_coe
 
-/- warning: alexandroff.compl_infty -> Alexandroff.compl_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))))
-but is expected to have type
-  forall {X : Type.{u1}}, Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.compl_infty Alexandroff.compl_inftyₓ'. -/
 theorem compl_infty : ({∞}ᶜ : Set (Alexandroff X)) = range (coe : X → Alexandroff X) :=
   (@isCompl_range_coe_infty X).symm.compl_eq
 #align alexandroff.compl_infty Alexandroff.compl_infty
 
-/- warning: alexandroff.compl_image_coe -> Alexandroff.compl_image_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} (s : Set.{u1} X), Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}} (s : Set.{u1} X), Eq.{succ u1} (Set.{u1} (Alexandroff.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instUnionSet.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.compl_image_coe Alexandroff.compl_image_coeₓ'. -/
 theorem compl_image_coe (s : Set X) : (coe '' s : Set (Alexandroff X))ᶜ = coe '' sᶜ ∪ {∞} := by
   rw [coe_injective.compl_image_eq, compl_range_coe]
 #align alexandroff.compl_image_coe Alexandroff.compl_image_coe
@@ -271,89 +235,41 @@ instance : TopologicalSpace (Alexandroff X)
 
 variable {s : Set (Alexandroff X)} {t : Set X}
 
-/- warning: alexandroff.is_open_def -> Alexandroff.isOpen_def is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (And ((Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (And ((Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_def Alexandroff.isOpen_defₓ'. -/
 theorem isOpen_def :
     IsOpen s ↔ (∞ ∈ s → IsCompact ((coe ⁻¹' s : Set X)ᶜ)) ∧ IsOpen (coe ⁻¹' s : Set X) :=
   Iff.rfl
 #align alexandroff.is_open_def Alexandroff.isOpen_def
 
-/- warning: alexandroff.is_open_iff_of_mem' -> Alexandroff.isOpen_iff_of_mem' is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (And (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s))) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (And (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s))) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_iff_of_mem' Alexandroff.isOpen_iff_of_mem'ₓ'. -/
 theorem isOpen_iff_of_mem' (h : ∞ ∈ s) :
     IsOpen s ↔ IsCompact ((coe ⁻¹' s : Set X)ᶜ) ∧ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
 #align alexandroff.is_open_iff_of_mem' Alexandroff.isOpen_iff_of_mem'
 
-/- warning: alexandroff.is_open_iff_of_mem -> Alexandroff.isOpen_iff_of_mem is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (And (IsClosed.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s))) (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (And (IsClosed.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s))) (IsCompact.{u1} X _inst_1 (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_iff_of_mem Alexandroff.isOpen_iff_of_memₓ'. -/
 theorem isOpen_iff_of_mem (h : ∞ ∈ s) :
     IsOpen s ↔ IsClosed ((coe ⁻¹' s : Set X)ᶜ) ∧ IsCompact ((coe ⁻¹' s : Set X)ᶜ) := by
   simp only [is_open_iff_of_mem' h, isClosed_compl_iff, and_comm]
 #align alexandroff.is_open_iff_of_mem Alexandroff.isOpen_iff_of_mem
 
-/- warning: alexandroff.is_open_iff_of_not_mem -> Alexandroff.isOpen_iff_of_not_mem is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Not (Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s)) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Not (Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s)) -> (Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (IsOpen.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_iff_of_not_mem Alexandroff.isOpen_iff_of_not_memₓ'. -/
 theorem isOpen_iff_of_not_mem (h : ∞ ∉ s) : IsOpen s ↔ IsOpen (coe ⁻¹' s : Set X) := by
   simp [is_open_def, h]
 #align alexandroff.is_open_iff_of_not_mem Alexandroff.isOpen_iff_of_not_mem
 
-/- warning: alexandroff.is_closed_iff_of_mem -> Alexandroff.isClosed_iff_of_mem is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (IsClosed.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s) -> (Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (IsClosed.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_closed_iff_of_mem Alexandroff.isClosed_iff_of_memₓ'. -/
 theorem isClosed_iff_of_mem (h : ∞ ∈ s) : IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) :=
   by
   have : ∞ ∉ sᶜ := fun H => H h
   rw [← isOpen_compl_iff, is_open_iff_of_not_mem this, ← isOpen_compl_iff, preimage_compl]
 #align alexandroff.is_closed_iff_of_mem Alexandroff.isClosed_iff_of_mem
 
-/- warning: alexandroff.is_closed_iff_of_not_mem -> Alexandroff.isClosed_iff_of_not_mem is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Not (Membership.Mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasMem.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s)) -> (Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) s) (And (IsClosed.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)) (IsCompact.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} (Alexandroff.{u1} X)}, (Not (Membership.mem.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instMembershipSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X) s)) -> (Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) s) (And (IsClosed.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)) (IsCompact.{u1} X _inst_1 (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_closed_iff_of_not_mem Alexandroff.isClosed_iff_of_not_memₓ'. -/
 theorem isClosed_iff_of_not_mem (h : ∞ ∉ s) :
     IsClosed s ↔ IsClosed (coe ⁻¹' s : Set X) ∧ IsCompact (coe ⁻¹' s : Set X) := by
   rw [← isOpen_compl_iff, is_open_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl]
 #align alexandroff.is_closed_iff_of_not_mem Alexandroff.isClosed_iff_of_not_mem
 
-/- warning: alexandroff.is_open_image_coe -> Alexandroff.isOpen_image_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)) (IsOpen.{u1} X _inst_1 s)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)) (IsOpen.{u1} X _inst_1 s)
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_image_coe Alexandroff.isOpen_image_coeₓ'. -/
 @[simp]
 theorem isOpen_image_coe {s : Set X} : IsOpen (coe '' s : Set (Alexandroff X)) ↔ IsOpen s := by
   rw [is_open_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective]
 #align alexandroff.is_open_image_coe Alexandroff.isOpen_image_coe
 
-/- warning: alexandroff.is_open_compl_image_coe -> Alexandroff.isOpen_compl_image_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s))) (And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s))) (And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_compl_image_coe Alexandroff.isOpen_compl_image_coeₓ'. -/
 theorem isOpen_compl_image_coe {s : Set X} :
     IsOpen ((coe '' s : Set (Alexandroff X))ᶜ) ↔ IsClosed s ∧ IsCompact s :=
   by
@@ -361,24 +277,12 @@ theorem isOpen_compl_image_coe {s : Set X} :
   exact infty_not_mem_image_coe
 #align alexandroff.is_open_compl_image_coe Alexandroff.isOpen_compl_image_coe
 
-/- warning: alexandroff.is_closed_image_coe -> Alexandroff.isClosed_image_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)) (And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {s : Set.{u1} X}, Iff (IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)) (And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_closed_image_coe Alexandroff.isClosed_image_coeₓ'. -/
 @[simp]
 theorem isClosed_image_coe {s : Set X} :
     IsClosed (coe '' s : Set (Alexandroff X)) ↔ IsClosed s ∧ IsCompact s := by
   rw [← isOpen_compl_iff, is_open_compl_image_coe]
 #align alexandroff.is_closed_image_coe Alexandroff.isClosed_image_coe
 
-/- warning: alexandroff.opens_of_compl -> Alexandroff.opensOfCompl is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (TopologicalSpace.Opens.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (TopologicalSpace.Opens.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1))
-Case conversion may be inaccurate. Consider using '#align alexandroff.opens_of_compl Alexandroff.opensOfComplₓ'. -/
 /-- An open set in `alexandroff X` constructed from a closed compact set in `X` -/
 def opensOfCompl (s : Set X) (h₁ : IsClosed s) (h₂ : IsCompact s) :
     TopologicalSpace.Opens (Alexandroff X) :=
@@ -392,103 +296,43 @@ theorem infty_mem_opensOfCompl {s : Set X} (h₁ : IsClosed s) (h₂ : IsCompact
 #align alexandroff.infty_mem_opens_of_compl Alexandroff.infty_mem_opensOfCompl
 -/
 
-/- warning: alexandroff.continuous_coe -> Alexandroff.continuous_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Continuous.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Continuous.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X)
-Case conversion may be inaccurate. Consider using '#align alexandroff.continuous_coe Alexandroff.continuous_coeₓ'. -/
 @[continuity]
 theorem continuous_coe : Continuous (coe : X → Alexandroff X) :=
   continuous_def.mpr fun s hs => hs.right
 #align alexandroff.continuous_coe Alexandroff.continuous_coe
 
-/- warning: alexandroff.is_open_map_coe -> Alexandroff.isOpenMap_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsOpenMap.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsOpenMap.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X)
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_map_coe Alexandroff.isOpenMap_coeₓ'. -/
 theorem isOpenMap_coe : IsOpenMap (coe : X → Alexandroff X) := fun s => isOpen_image_coe.2
 #align alexandroff.is_open_map_coe Alexandroff.isOpenMap_coe
 
-/- warning: alexandroff.open_embedding_coe -> Alexandroff.openEmbedding_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], OpenEmbedding.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], OpenEmbedding.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X)
-Case conversion may be inaccurate. Consider using '#align alexandroff.open_embedding_coe Alexandroff.openEmbedding_coeₓ'. -/
 theorem openEmbedding_coe : OpenEmbedding (coe : X → Alexandroff X) :=
   openEmbedding_of_continuous_injective_open continuous_coe coe_injective isOpenMap_coe
 #align alexandroff.open_embedding_coe Alexandroff.openEmbedding_coe
 
-/- warning: alexandroff.is_open_range_coe -> Alexandroff.isOpen_range_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsOpen.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Set.range.{u1, succ u1} (Alexandroff.{u1} X) X (Alexandroff.some.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_open_range_coe Alexandroff.isOpen_range_coeₓ'. -/
 theorem isOpen_range_coe : IsOpen (range (coe : X → Alexandroff X)) :=
   openEmbedding_coe.open_range
 #align alexandroff.is_open_range_coe Alexandroff.isOpen_range_coe
 
-/- warning: alexandroff.is_closed_infty -> Alexandroff.isClosed_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.is_closed_infty Alexandroff.isClosed_inftyₓ'. -/
 theorem isClosed_infty : IsClosed ({∞} : Set (Alexandroff X)) := by
   rw [← compl_range_coe, isClosed_compl_iff]; exact is_open_range_coe
 #align alexandroff.is_closed_infty Alexandroff.isClosed_infty
 
-/- warning: alexandroff.nhds_coe_eq -> Alexandroff.nhds_coe_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x)) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (nhds.{u1} X _inst_1 x))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x)) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (nhds.{u1} X _inst_1 x))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_coe_eq Alexandroff.nhds_coe_eqₓ'. -/
 theorem nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → Alexandroff X) (𝓝 x) :=
   (openEmbedding_coe.map_nhds_eq x).symm
 #align alexandroff.nhds_coe_eq Alexandroff.nhds_coe_eq
 
-/- warning: alexandroff.nhds_within_coe_image -> Alexandroff.nhdsWithin_coe_image is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} X) (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (nhdsWithin.{u1} X _inst_1 x s))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} X) (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (nhdsWithin.{u1} X _inst_1 x s))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_coe_image Alexandroff.nhdsWithin_coe_imageₓ'. -/
 theorem nhdsWithin_coe_image (s : Set X) (x : X) :
     𝓝[coe '' s] (x : Alexandroff X) = map coe (𝓝[s] x) :=
   (openEmbedding_coe.toEmbedding.map_nhdsWithin_eq _ _).symm
 #align alexandroff.nhds_within_coe_image Alexandroff.nhdsWithin_coe_image
 
-/- warning: alexandroff.nhds_within_coe -> Alexandroff.nhdsWithin_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} (Alexandroff.{u1} X)) (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) s) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (nhdsWithin.{u1} X _inst_1 x (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (s : Set.{u1} (Alexandroff.{u1} X)) (x : X), Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) s) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (nhdsWithin.{u1} X _inst_1 x (Set.preimage.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_coe Alexandroff.nhdsWithin_coeₓ'. -/
 theorem nhdsWithin_coe (s : Set (Alexandroff X)) (x : X) : 𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) :=
   (openEmbedding_coe.map_nhdsWithin_preimage_eq _ _).symm
 #align alexandroff.nhds_within_coe Alexandroff.nhdsWithin_coe
 
-/- warning: alexandroff.comap_coe_nhds -> Alexandroff.comap_coe_nhds is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X), Eq.{succ u1} (Filter.{u1} X) (Filter.comap.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x))) (nhds.{u1} X _inst_1 x)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X), Eq.{succ u1} (Filter.{u1} X) (Filter.comap.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x))) (nhds.{u1} X _inst_1 x)
-Case conversion may be inaccurate. Consider using '#align alexandroff.comap_coe_nhds Alexandroff.comap_coe_nhdsₓ'. -/
 theorem comap_coe_nhds (x : X) : comap (coe : X → Alexandroff X) (𝓝 x) = 𝓝 x :=
   (openEmbedding_coe.to_inducing.nhds_eq_comap x).symm
 #align alexandroff.comap_coe_nhds Alexandroff.comap_coe_nhds
 
-/- warning: alexandroff.nhds_within_compl_coe_ne_bot -> Alexandroff.nhdsWithin_compl_coe_neBot is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X) [h : Filter.NeBot.{u1} X (nhdsWithin.{u1} X _inst_1 x (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Singleton.singleton.{u1, u1} X (Set.{u1} X) (Set.hasSingleton.{u1} X) x)))], Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] (x : X) [h : Filter.NeBot.{u1} X (nhdsWithin.{u1} X _inst_1 x (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Singleton.singleton.{u1, u1} X (Set.{u1} X) (Set.instSingletonSet.{u1} X) x)))], Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.some.{u1} X x))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_compl_coe_ne_bot Alexandroff.nhdsWithin_compl_coe_neBotₓ'. -/
 /-- If `x` is not an isolated point of `X`, then `x : alexandroff X` is not an isolated point
 of `alexandroff X`. -/
 instance nhdsWithin_compl_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] :
@@ -496,12 +340,6 @@ instance nhdsWithin_compl_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] :
   simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe
 #align alexandroff.nhds_within_compl_coe_ne_bot Alexandroff.nhdsWithin_compl_coe_neBot
 
-/- warning: alexandroff.nhds_within_compl_infty_eq -> Alexandroff.nhdsWithin_compl_infty_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (Filter.coclosedCompact.{u1} X _inst_1))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (Filter.coclosedCompact.{u1} X _inst_1))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_compl_infty_eq Alexandroff.nhdsWithin_compl_infty_eqₓ'. -/
 theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : Alexandroff X) = map coe (coclosedCompact X) :=
   by
   refine' (nhdsWithin_basis_open ∞ _).ext (has_basis_coclosed_compact.map _) _ _
@@ -513,45 +351,21 @@ theorem nhdsWithin_compl_infty_eq : 𝓝[≠] (∞ : Alexandroff X) = map coe (c
     simp [compl_image_coe, ← diff_eq, subset_preimage_image]
 #align alexandroff.nhds_within_compl_infty_eq Alexandroff.nhdsWithin_compl_infty_eq
 
-/- warning: alexandroff.nhds_within_compl_infty_ne_bot -> Alexandroff.nhdsWithin_compl_infty_neBot is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_compl_infty_ne_bot Alexandroff.nhdsWithin_compl_infty_neBotₓ'. -/
 /-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/
 instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : Alexandroff X)) := by
   rw [nhds_within_compl_infty_eq]; infer_instance
 #align alexandroff.nhds_within_compl_infty_ne_bot Alexandroff.nhdsWithin_compl_infty_neBot
 
-/- warning: alexandroff.nhds_within_compl_ne_bot -> Alexandroff.nhdsWithin_compl_neBot is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : forall (x : X), Filter.NeBot.{u1} X (nhdsWithin.{u1} X _inst_1 x (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) (Singleton.singleton.{u1, u1} X (Set.{u1} X) (Set.hasSingleton.{u1} X) x)))] [_inst_3 : NoncompactSpace.{u1} X _inst_1] (x : Alexandroff.{u1} X), Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) x (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.booleanAlgebra.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) x)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : forall (x : X), Filter.NeBot.{u1} X (nhdsWithin.{u1} X _inst_1 x (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) (Singleton.singleton.{u1, u1} X (Set.{u1} X) (Set.instSingletonSet.{u1} X) x)))] [_inst_3 : NoncompactSpace.{u1} X _inst_1] (x : Alexandroff.{u1} X), Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) x (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) x)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_compl_ne_bot Alexandroff.nhdsWithin_compl_neBotₓ'. -/
 instance (priority := 900) nhdsWithin_compl_neBot [∀ x : X, NeBot (𝓝[≠] x)] [NoncompactSpace X]
     (x : Alexandroff X) : NeBot (𝓝[≠] x) :=
   Alexandroff.rec _ Alexandroff.nhdsWithin_compl_infty_neBot
     (fun y => Alexandroff.nhdsWithin_compl_coe_neBot y) x
 #align alexandroff.nhds_within_compl_ne_bot Alexandroff.nhdsWithin_compl_neBot
 
-/- warning: alexandroff.nhds_infty_eq -> Alexandroff.nhds_infty_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (Sup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.completeLattice.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.hasPure.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (Sup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instCompleteLatticeFilter.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.instPureFilter.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_infty_eq Alexandroff.nhds_infty_eqₓ'. -/
 theorem nhds_infty_eq : 𝓝 (∞ : Alexandroff X) = map coe (coclosedCompact X) ⊔ pure ∞ := by
   rw [← nhds_within_compl_infty_eq, nhdsWithin_compl_singleton_sup_pure]
 #align alexandroff.nhds_infty_eq Alexandroff.nhds_infty_eq
 
-/- warning: alexandroff.has_basis_nhds_infty -> Alexandroff.hasBasis_nhds_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Filter.HasBasis.{u1, succ u1} (Alexandroff.{u1} X) (Set.{u1} X) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (fun (s : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s)) (fun (s : Set.{u1} X) => Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Filter.HasBasis.{u1, succ u1} (Alexandroff.{u1} X) (Set.{u1} X) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (fun (s : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 s) (IsCompact.{u1} X _inst_1 s)) (fun (s : Set.{u1} X) => Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instUnionSet.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.has_basis_nhds_infty Alexandroff.hasBasis_nhds_inftyₓ'. -/
 theorem hasBasis_nhds_infty :
     (𝓝 (∞ : Alexandroff X)).HasBasis (fun s : Set X => IsClosed s ∧ IsCompact s) fun s =>
       coe '' sᶜ ∪ {∞} :=
@@ -560,57 +374,27 @@ theorem hasBasis_nhds_infty :
   exact (has_basis_coclosed_compact.map _).sup_pure _
 #align alexandroff.has_basis_nhds_infty Alexandroff.hasBasis_nhds_infty
 
-/- warning: alexandroff.comap_coe_nhds_infty -> Alexandroff.comap_coe_nhds_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} X) (Filter.comap.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (Filter.coclosedCompact.{u1} X _inst_1)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} X) (Filter.comap.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (Filter.coclosedCompact.{u1} X _inst_1)
-Case conversion may be inaccurate. Consider using '#align alexandroff.comap_coe_nhds_infty Alexandroff.comap_coe_nhds_inftyₓ'. -/
 @[simp]
 theorem comap_coe_nhds_infty : comap (coe : X → Alexandroff X) (𝓝 ∞) = coclosedCompact X := by
   simp [nhds_infty_eq, comap_sup, comap_map coe_injective]
 #align alexandroff.comap_coe_nhds_infty Alexandroff.comap_coe_nhds_infty
 
-/- warning: alexandroff.le_nhds_infty -> Alexandroff.le_nhds_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Filter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toHasLe.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Filter.hasMem.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) f))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Filter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instPartialOrderFilter.{u1} (Alexandroff.{u1} X)))) f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Membership.mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (instMembershipSetFilter.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instUnionSet.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) f))
-Case conversion may be inaccurate. Consider using '#align alexandroff.le_nhds_infty Alexandroff.le_nhds_inftyₓ'. -/
 theorem le_nhds_infty {f : Filter (Alexandroff X)} :
     f ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' sᶜ ∪ {∞} ∈ f := by
   simp only [has_basis_nhds_infty.ge_iff, and_imp]
 #align alexandroff.le_nhds_infty Alexandroff.le_nhds_infty
 
-/- warning: alexandroff.ultrafilter_le_nhds_infty -> Alexandroff.ultrafilter_le_nhds_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Ultrafilter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toHasLe.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (HasLiftT.mk.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (CoeTCₓ.coe.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.Filter.hasCoeT.{u1} (Alexandroff.{u1} X)))) f) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Not (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.hasMem.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s) f)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Ultrafilter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instPartialOrderFilter.{u1} (Alexandroff.{u1} X)))) (Ultrafilter.toFilter.{u1} (Alexandroff.{u1} X) f) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Not (Membership.mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.instMembershipSetUltrafilter.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s) f)))
-Case conversion may be inaccurate. Consider using '#align alexandroff.ultrafilter_le_nhds_infty Alexandroff.ultrafilter_le_nhds_inftyₓ'. -/
 theorem ultrafilter_le_nhds_infty {f : Ultrafilter (Alexandroff X)} :
     (f : Filter (Alexandroff X)) ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → coe '' s ∉ f := by
   simp only [le_nhds_infty, ← compl_image_coe, Ultrafilter.mem_coe,
     Ultrafilter.compl_mem_iff_not_mem]
 #align alexandroff.ultrafilter_le_nhds_infty Alexandroff.ultrafilter_le_nhds_infty
 
-/- warning: alexandroff.tendsto_nhds_infty' -> Alexandroff.tendsto_nhds_infty' is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {α : Type.{u2}} {f : (Alexandroff.{u1} X) -> α} {l : Filter.{u2} α}, Iff (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) l) (And (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (Pure.pure.{u1, u1} Filter.{u1} Filter.hasPure.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)) l) (Filter.Tendsto.{u1, u2} X α (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) α f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (Filter.coclosedCompact.{u1} X _inst_1) l))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {α : Type.{u2}} {f : (Alexandroff.{u1} X) -> α} {l : Filter.{u2} α}, Iff (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) l) (And (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (Pure.pure.{u1, u1} Filter.{u1} Filter.instPureFilter.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)) l) (Filter.Tendsto.{u1, u2} X α (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) α f (Alexandroff.some.{u1} X)) (Filter.coclosedCompact.{u1} X _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align alexandroff.tendsto_nhds_infty' Alexandroff.tendsto_nhds_infty'ₓ'. -/
 theorem tendsto_nhds_infty' {α : Type _} {f : Alexandroff X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ coe) (coclosedCompact X) l := by
   simp [nhds_infty_eq, and_comm']
 #align alexandroff.tendsto_nhds_infty' Alexandroff.tendsto_nhds_infty'
 
-/- warning: alexandroff.tendsto_nhds_infty -> Alexandroff.tendsto_nhds_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {α : Type.{u2}} {f : (Alexandroff.{u1} X) -> α} {l : Filter.{u2} α}, Iff (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) l) (forall (s : Set.{u2} α), (Membership.Mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (Filter.hasMem.{u2} α) s l) -> (And (Membership.Mem.{u2, u2} α (Set.{u2} α) (Set.hasMem.{u2} α) (f (Alexandroff.infty.{u1} X)) s) (Exists.{succ u1} (Set.{u1} X) (fun (t : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 t) (And (IsCompact.{u1} X _inst_1 t) (Set.MapsTo.{u1, u2} X α (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) α f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) t) s))))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {α : Type.{u2}} {f : (Alexandroff.{u1} X) -> α} {l : Filter.{u2} α}, Iff (Filter.Tendsto.{u1, u2} (Alexandroff.{u1} X) α f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) l) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s l) -> (And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) (f (Alexandroff.infty.{u1} X)) s) (Exists.{succ u1} (Set.{u1} X) (fun (t : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 t) (And (IsCompact.{u1} X _inst_1 t) (Set.MapsTo.{u1, u2} X α (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) α f (Alexandroff.some.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) t) s))))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.tendsto_nhds_infty Alexandroff.tendsto_nhds_inftyₓ'. -/
 theorem tendsto_nhds_infty {α : Type _} {f : Alexandroff X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔
       ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
@@ -619,23 +403,11 @@ theorem tendsto_nhds_infty {α : Type _} {f : Alexandroff X → α} {l : Filter
       and_assoc', exists_prop]
 #align alexandroff.tendsto_nhds_infty Alexandroff.tendsto_nhds_infty
 
-/- warning: alexandroff.continuous_at_infty' -> Alexandroff.continuousAt_infty' is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.topologicalSpace.{u1} X _inst_1) _inst_2 f (Alexandroff.infty.{u1} X)) (Filter.Tendsto.{u1, u2} X Y (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (Filter.coclosedCompact.{u1} X _inst_1) (nhds.{u2} Y _inst_2 (f (Alexandroff.infty.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) _inst_2 f (Alexandroff.infty.{u1} X)) (Filter.Tendsto.{u1, u2} X Y (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f (Alexandroff.some.{u1} X)) (Filter.coclosedCompact.{u1} X _inst_1) (nhds.{u2} Y _inst_2 (f (Alexandroff.infty.{u1} X))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.continuous_at_infty' Alexandroff.continuousAt_infty'ₓ'. -/
 theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} :
     ContinuousAt f ∞ ↔ Tendsto (f ∘ coe) (coclosedCompact X) (𝓝 (f ∞)) :=
   tendsto_nhds_infty'.trans <| and_iff_right (tendsto_pure_nhds _ _)
 #align alexandroff.continuous_at_infty' Alexandroff.continuousAt_infty'
 
-/- warning: alexandroff.continuous_at_infty -> Alexandroff.continuousAt_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.topologicalSpace.{u1} X _inst_1) _inst_2 f (Alexandroff.infty.{u1} X)) (forall (s : Set.{u2} Y), (Membership.Mem.{u2, u2} (Set.{u2} Y) (Filter.{u2} Y) (Filter.hasMem.{u2} Y) s (nhds.{u2} Y _inst_2 (f (Alexandroff.infty.{u1} X)))) -> (Exists.{succ u1} (Set.{u1} X) (fun (t : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 t) (And (IsCompact.{u1} X _inst_1 t) (Set.MapsTo.{u1, u2} X Y (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) t) s)))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) _inst_2 f (Alexandroff.infty.{u1} X)) (forall (s : Set.{u2} Y), (Membership.mem.{u2, u2} (Set.{u2} Y) (Filter.{u2} Y) (instMembershipSetFilter.{u2} Y) s (nhds.{u2} Y _inst_2 (f (Alexandroff.infty.{u1} X)))) -> (Exists.{succ u1} (Set.{u1} X) (fun (t : Set.{u1} X) => And (IsClosed.{u1} X _inst_1 t) (And (IsCompact.{u1} X _inst_1 t) (Set.MapsTo.{u1, u2} X Y (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f (Alexandroff.some.{u1} X)) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) t) s)))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.continuous_at_infty Alexandroff.continuousAt_inftyₓ'. -/
 theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} :
     ContinuousAt f ∞ ↔
       ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ coe) (tᶜ) s :=
@@ -643,23 +415,11 @@ theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X
     simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc']
 #align alexandroff.continuous_at_infty Alexandroff.continuousAt_infty
 
-/- warning: alexandroff.continuous_at_coe -> Alexandroff.continuousAt_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y} {x : X}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.topologicalSpace.{u1} X _inst_1) _inst_2 f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x)) (ContinuousAt.{u1, u2} X Y _inst_1 _inst_2 (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))) x)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {Y : Type.{u2}} [_inst_2 : TopologicalSpace.{u2} Y] {f : (Alexandroff.{u1} X) -> Y} {x : X}, Iff (ContinuousAt.{u1, u2} (Alexandroff.{u1} X) Y (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) _inst_2 f (Alexandroff.some.{u1} X x)) (ContinuousAt.{u1, u2} X Y _inst_1 _inst_2 (Function.comp.{succ u1, succ u1, succ u2} X (Alexandroff.{u1} X) Y f (Alexandroff.some.{u1} X)) x)
-Case conversion may be inaccurate. Consider using '#align alexandroff.continuous_at_coe Alexandroff.continuousAt_coeₓ'. -/
 theorem continuousAt_coe {Y : Type _} [TopologicalSpace Y] {f : Alexandroff X → Y} {x : X} :
     ContinuousAt f x ↔ ContinuousAt (f ∘ coe) x := by
   rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]
 #align alexandroff.continuous_at_coe Alexandroff.continuousAt_coe
 
-/- warning: alexandroff.dense_range_coe -> Alexandroff.denseRange_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], DenseRange.{u1, u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) X ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], DenseRange.{u1, u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) X (Alexandroff.some.{u1} X)
-Case conversion may be inaccurate. Consider using '#align alexandroff.dense_range_coe Alexandroff.denseRange_coeₓ'. -/
 /-- If `X` is not a compact space, then the natural embedding `X → alexandroff X` has dense range.
 -/
 theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → Alexandroff X) :=
@@ -668,74 +428,32 @@ theorem denseRange_coe [NoncompactSpace X] : DenseRange (coe : X → Alexandroff
   exact dense_compl_singleton _
 #align alexandroff.dense_range_coe Alexandroff.denseRange_coe
 
-/- warning: alexandroff.dense_embedding_coe -> Alexandroff.denseEmbedding_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], DenseEmbedding.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], DenseEmbedding.{u1, u1} X (Alexandroff.{u1} X) _inst_1 (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X)
-Case conversion may be inaccurate. Consider using '#align alexandroff.dense_embedding_coe Alexandroff.denseEmbedding_coeₓ'. -/
 theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding (coe : X → Alexandroff X) :=
   { openEmbedding_coe with dense := denseRange_coe }
 #align alexandroff.dense_embedding_coe Alexandroff.denseEmbedding_coe
 
-/- warning: alexandroff.specializes_coe -> Alexandroff.specializes_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X} {y : X}, Iff (Specializes.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) y)) (Specializes.{u1} X _inst_1 x y)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X} {y : X}, Iff (Specializes.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) (Alexandroff.some.{u1} X y)) (Specializes.{u1} X _inst_1 x y)
-Case conversion may be inaccurate. Consider using '#align alexandroff.specializes_coe Alexandroff.specializes_coeₓ'. -/
 @[simp]
 theorem specializes_coe {x y : X} : (x : Alexandroff X) ⤳ y ↔ x ⤳ y :=
   openEmbedding_coe.to_inducing.specializes_iff
 #align alexandroff.specializes_coe Alexandroff.specializes_coe
 
-/- warning: alexandroff.inseparable_coe -> Alexandroff.inseparable_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X} {y : X}, Iff (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) y)) (Inseparable.{u1} X _inst_1 x y)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X} {y : X}, Iff (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) (Alexandroff.some.{u1} X y)) (Inseparable.{u1} X _inst_1 x y)
-Case conversion may be inaccurate. Consider using '#align alexandroff.inseparable_coe Alexandroff.inseparable_coeₓ'. -/
 @[simp]
 theorem inseparable_coe {x y : X} : Inseparable (x : Alexandroff X) y ↔ Inseparable x y :=
   openEmbedding_coe.to_inducing.inseparable_iff
 #align alexandroff.inseparable_coe Alexandroff.inseparable_coe
 
-/- warning: alexandroff.not_specializes_infty_coe -> Alexandroff.not_specializes_infty_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Specializes.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Specializes.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (Alexandroff.some.{u1} X x))
-Case conversion may be inaccurate. Consider using '#align alexandroff.not_specializes_infty_coe Alexandroff.not_specializes_infty_coeₓ'. -/
 theorem not_specializes_infty_coe {x : X} : ¬Specializes ∞ (x : Alexandroff X) :=
   isClosed_infty.not_specializes rfl (coe_ne_infty x)
 #align alexandroff.not_specializes_infty_coe Alexandroff.not_specializes_infty_coe
 
-/- warning: alexandroff.not_inseparable_infty_coe -> Alexandroff.not_inseparable_infty_coe is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (Alexandroff.some.{u1} X x))
-Case conversion may be inaccurate. Consider using '#align alexandroff.not_inseparable_infty_coe Alexandroff.not_inseparable_infty_coeₓ'. -/
 theorem not_inseparable_infty_coe {x : X} : ¬Inseparable ∞ (x : Alexandroff X) := fun h =>
   not_specializes_infty_coe h.Specializes
 #align alexandroff.not_inseparable_infty_coe Alexandroff.not_inseparable_infty_coe
 
-/- warning: alexandroff.not_inseparable_coe_infty -> Alexandroff.not_inseparable_coe_infty is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x) (Alexandroff.infty.{u1} X))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : X}, Not (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.some.{u1} X x) (Alexandroff.infty.{u1} X))
-Case conversion may be inaccurate. Consider using '#align alexandroff.not_inseparable_coe_infty Alexandroff.not_inseparable_coe_inftyₓ'. -/
 theorem not_inseparable_coe_infty {x : X} : ¬Inseparable (x : Alexandroff X) ∞ := fun h =>
   not_specializes_infty_coe h.specializes'
 #align alexandroff.not_inseparable_coe_infty Alexandroff.not_inseparable_coe_infty
 
-/- warning: alexandroff.inseparable_iff -> Alexandroff.inseparable_iff is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : Alexandroff.{u1} X} {y : Alexandroff.{u1} X}, Iff (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) x y) (Or (And (Eq.{succ u1} (Alexandroff.{u1} X) x (Alexandroff.infty.{u1} X)) (Eq.{succ u1} (Alexandroff.{u1} X) y (Alexandroff.infty.{u1} X))) (Exists.{succ u1} X (fun (x' : X) => And (Eq.{succ u1} (Alexandroff.{u1} X) x ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) x')) (Exists.{succ u1} X (fun (y' : X) => And (Eq.{succ u1} (Alexandroff.{u1} X) y ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X))) y')) (Inseparable.{u1} X _inst_1 x' y'))))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {x : Alexandroff.{u1} X} {y : Alexandroff.{u1} X}, Iff (Inseparable.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) x y) (Or (And (Eq.{succ u1} (Alexandroff.{u1} X) x (Alexandroff.infty.{u1} X)) (Eq.{succ u1} (Alexandroff.{u1} X) y (Alexandroff.infty.{u1} X))) (Exists.{succ u1} X (fun (x' : X) => And (Eq.{succ u1} (Alexandroff.{u1} X) x (Alexandroff.some.{u1} X x')) (Exists.{succ u1} X (fun (y' : X) => And (Eq.{succ u1} (Alexandroff.{u1} X) y (Alexandroff.some.{u1} X y')) (Inseparable.{u1} X _inst_1 x' y'))))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.inseparable_iff Alexandroff.inseparable_iffₓ'. -/
 theorem inseparable_iff {x y : Alexandroff X} :
     Inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ Inseparable x' y' := by
   induction x using Alexandroff.rec <;> induction y using Alexandroff.rec <;>
@@ -807,12 +525,6 @@ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (Alexandroff
   to_preconnectedSpace := denseEmbedding_coe.to_denseInducing.PreconnectedSpace
   to_nonempty := inferInstance
 
-/- warning: alexandroff.not_continuous_cofinite_topology_of_symm -> Alexandroff.not_continuous_cofiniteTopology_of_symm is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.topologicalSpace.{u1} (Alexandroff.{u1} X)) (Alexandroff.topologicalSpace.{u1} X _inst_1) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (fun (_x : Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) => (CofiniteTopology.{u1} (Alexandroff.{u1} X)) -> (Alexandroff.{u1} X)) (Equiv.hasCoeToFun.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.instTopologicalSpaceCofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (fun (_x : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => Alexandroff.{u1} X) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
-Case conversion may be inaccurate. Consider using '#align alexandroff.not_continuous_cofinite_topology_of_symm Alexandroff.not_continuous_cofiniteTopology_of_symmₓ'. -/
 /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
 `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
 theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X] :
Diff
@@ -228,10 +228,7 @@ theorem infty_not_mem_image_coe {s : Set X} : ∞ ∉ (coe : X → Alexandroff X
 
 #print Alexandroff.coe_preimage_infty /-
 @[simp]
-theorem coe_preimage_infty : (coe : X → Alexandroff X) ⁻¹' {∞} = ∅ :=
-  by
-  ext
-  simp
+theorem coe_preimage_infty : (coe : X → Alexandroff X) ⁻¹' {∞} = ∅ := by ext; simp
 #align alexandroff.coe_preimage_infty Alexandroff.coe_preimage_infty
 -/
 
@@ -441,10 +438,8 @@ lean 3 declaration is
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], IsClosed.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))
 Case conversion may be inaccurate. Consider using '#align alexandroff.is_closed_infty Alexandroff.isClosed_inftyₓ'. -/
-theorem isClosed_infty : IsClosed ({∞} : Set (Alexandroff X)) :=
-  by
-  rw [← compl_range_coe, isClosed_compl_iff]
-  exact is_open_range_coe
+theorem isClosed_infty : IsClosed ({∞} : Set (Alexandroff X)) := by
+  rw [← compl_range_coe, isClosed_compl_iff]; exact is_open_range_coe
 #align alexandroff.is_closed_infty Alexandroff.isClosed_infty
 
 /- warning: alexandroff.nhds_coe_eq -> Alexandroff.nhds_coe_eq is a dubious translation:
@@ -525,10 +520,8 @@ but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : NoncompactSpace.{u1} X _inst_1], Filter.NeBot.{u1} (Alexandroff.{u1} X) (nhdsWithin.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X) (HasCompl.compl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instBooleanAlgebraSet.{u1} (Alexandroff.{u1} X))) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))))
 Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_within_compl_infty_ne_bot Alexandroff.nhdsWithin_compl_infty_neBotₓ'. -/
 /-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/
-instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : Alexandroff X)) :=
-  by
-  rw [nhds_within_compl_infty_eq]
-  infer_instance
+instance nhdsWithin_compl_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : Alexandroff X)) := by
+  rw [nhds_within_compl_infty_eq]; infer_instance
 #align alexandroff.nhds_within_compl_infty_ne_bot Alexandroff.nhdsWithin_compl_infty_neBot
 
 /- warning: alexandroff.nhds_within_compl_ne_bot -> Alexandroff.nhdsWithin_compl_neBot is a dubious translation:
Diff
@@ -818,7 +818,7 @@ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (Alexandroff
 lean 3 declaration is
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.topologicalSpace.{u1} (Alexandroff.{u1} X)) (Alexandroff.topologicalSpace.{u1} X _inst_1) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (fun (_x : Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) => (CofiniteTopology.{u1} (Alexandroff.{u1} X)) -> (Alexandroff.{u1} X)) (Equiv.hasCoeToFun.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
 but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.instTopologicalSpaceCofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (fun (_x : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => Alexandroff.{u1} X) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.instTopologicalSpaceCofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (fun (_x : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => Alexandroff.{u1} X) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
 Case conversion may be inaccurate. Consider using '#align alexandroff.not_continuous_cofinite_topology_of_symm Alexandroff.not_continuous_cofiniteTopology_of_symmₓ'. -/
 /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
 `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
Diff
@@ -580,7 +580,7 @@ theorem comap_coe_nhds_infty : comap (coe : X → Alexandroff X) (𝓝 ∞) = co
 
 /- warning: alexandroff.le_nhds_infty -> Alexandroff.le_nhds_infty is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Filter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Filter.hasMem.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) f))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Filter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toHasLe.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Filter.hasMem.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.hasUnion.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.booleanAlgebra.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.hasSingleton.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) f))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Filter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instPartialOrderFilter.{u1} (Alexandroff.{u1} X)))) f (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Membership.mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (instMembershipSetFilter.{u1} (Alexandroff.{u1} X)) (Union.union.{u1} (Set.{u1} (Alexandroff.{u1} X)) (Set.instUnionSet.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (HasCompl.compl.{u1} (Set.{u1} X) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} X) (Set.instBooleanAlgebraSet.{u1} X)) s)) (Singleton.singleton.{u1, u1} (Alexandroff.{u1} X) (Set.{u1} (Alexandroff.{u1} X)) (Set.instSingletonSet.{u1} (Alexandroff.{u1} X)) (Alexandroff.infty.{u1} X))) f))
 Case conversion may be inaccurate. Consider using '#align alexandroff.le_nhds_infty Alexandroff.le_nhds_inftyₓ'. -/
@@ -591,7 +591,7 @@ theorem le_nhds_infty {f : Filter (Alexandroff X)} :
 
 /- warning: alexandroff.ultrafilter_le_nhds_infty -> Alexandroff.ultrafilter_le_nhds_infty is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Ultrafilter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (HasLiftT.mk.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (CoeTCₓ.coe.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.Filter.hasCoeT.{u1} (Alexandroff.{u1} X)))) f) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Not (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.hasMem.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s) f)))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Ultrafilter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toHasLe.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.partialOrder.{u1} (Alexandroff.{u1} X)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (HasLiftT.mk.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (CoeTCₓ.coe.{succ u1, succ u1} (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Filter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.Filter.hasCoeT.{u1} (Alexandroff.{u1} X)))) f) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Not (Membership.Mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.hasMem.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) s) f)))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {f : Ultrafilter.{u1} (Alexandroff.{u1} X)}, Iff (LE.le.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Preorder.toLE.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (PartialOrder.toPreorder.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instPartialOrderFilter.{u1} (Alexandroff.{u1} X)))) (Ultrafilter.toFilter.{u1} (Alexandroff.{u1} X) f) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X))) (forall (s : Set.{u1} X), (IsClosed.{u1} X _inst_1 s) -> (IsCompact.{u1} X _inst_1 s) -> (Not (Membership.mem.{u1, u1} (Set.{u1} (Alexandroff.{u1} X)) (Ultrafilter.{u1} (Alexandroff.{u1} X)) (Ultrafilter.instMembershipSetUltrafilter.{u1} (Alexandroff.{u1} X)) (Set.image.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) s) f)))
 Case conversion may be inaccurate. Consider using '#align alexandroff.ultrafilter_le_nhds_infty Alexandroff.ultrafilter_le_nhds_inftyₓ'. -/
Diff
@@ -262,7 +262,7 @@ instance : TopologicalSpace (Alexandroff X)
     refine' ⟨_, hs.inter ht⟩
     rintro ⟨hms', hmt'⟩
     simpa [compl_inter] using (hms hms').union (hmt hmt')
-  isOpen_unionₛ S ho :=
+  isOpen_sUnion S ho :=
     by
     suffices IsOpen (coe ⁻¹' ⋃₀ S : Set X) by
       refine' ⟨_, this⟩
@@ -270,7 +270,7 @@ instance : TopologicalSpace (Alexandroff X)
       refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.is_closed_compl _
       exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS)
     rw [preimage_sUnion]
-    exact isOpen_bunionᵢ fun s hs => (ho s hs).2
+    exact isOpen_biUnion fun s hs => (ho s hs).2
 
 variable {s : Set (Alexandroff X)} {t : Set X}
 
Diff
@@ -769,7 +769,7 @@ instance : CompactSpace (Alexandroff X)
       by
       rw [nhds_infty_eq]
       exact (tendsto_map.mono_left cocompact_le_coclosed_compact).mono_right le_sup_left
-    convert ← this.is_compact_insert_range_of_cocompact continuous_coe
+    convert← this.is_compact_insert_range_of_cocompact continuous_coe
     exact insert_none_range_some X
 
 /-- The one point compactification of a `t0_space` space is a `t0_space`. -/
Diff
@@ -818,7 +818,7 @@ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (Alexandroff
 lean 3 declaration is
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.topologicalSpace.{u1} (Alexandroff.{u1} X)) (Alexandroff.topologicalSpace.{u1} X _inst_1) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (fun (_x : Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) => (CofiniteTopology.{u1} (Alexandroff.{u1} X)) -> (Alexandroff.{u1} X)) (Equiv.hasCoeToFun.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
 but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.instTopologicalSpaceCofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (fun (_x : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => Alexandroff.{u1} X) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : Infinite.{succ u1} X] [_inst_3 : DiscreteTopology.{u1} X _inst_1], Not (Continuous.{u1, u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X) (CofiniteTopology.instTopologicalSpaceCofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (fun (_x : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : CofiniteTopology.{u1} (Alexandroff.{u1} X)) => Alexandroff.{u1} X) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (Alexandroff.{u1} X)) (Equiv.symm.{succ u1, succ u1} (Alexandroff.{u1} X) (CofiniteTopology.{u1} (Alexandroff.{u1} X)) (CofiniteTopology.of.{u1} (Alexandroff.{u1} X)))))
 Case conversion may be inaccurate. Consider using '#align alexandroff.not_continuous_cofinite_topology_of_symm Alexandroff.not_continuous_cofiniteTopology_of_symmₓ'. -/
 /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
 `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
Diff
@@ -545,9 +545,9 @@ instance (priority := 900) nhdsWithin_compl_neBot [∀ x : X, NeBot (𝓝[≠] x
 
 /- warning: alexandroff.nhds_infty_eq -> Alexandroff.nhds_infty_eq is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (HasSup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.completeLattice.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.hasPure.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.topologicalSpace.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (Sup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.completeLattice.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) X (Alexandroff.{u1} X) (HasLiftT.mk.{succ u1, succ u1} X (Alexandroff.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} X (Alexandroff.{u1} X) (Alexandroff.hasCoeT.{u1} X)))) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.hasPure.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
 but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (HasSup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instCompleteLatticeFilter.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.instPureFilter.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X], Eq.{succ u1} (Filter.{u1} (Alexandroff.{u1} X)) (nhds.{u1} (Alexandroff.{u1} X) (Alexandroff.instTopologicalSpaceAlexandroff.{u1} X _inst_1) (Alexandroff.infty.{u1} X)) (Sup.sup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (SemilatticeSup.toSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} (Alexandroff.{u1} X)) (Filter.instCompleteLatticeFilter.{u1} (Alexandroff.{u1} X)))))) (Filter.map.{u1, u1} X (Alexandroff.{u1} X) (Alexandroff.some.{u1} X) (Filter.coclosedCompact.{u1} X _inst_1)) (Pure.pure.{u1, u1} Filter.{u1} Filter.instPureFilter.{u1} (Alexandroff.{u1} X) (Alexandroff.infty.{u1} X)))
 Case conversion may be inaccurate. Consider using '#align alexandroff.nhds_infty_eq Alexandroff.nhds_infty_eqₓ'. -/
 theorem nhds_infty_eq : 𝓝 (∞ : Alexandroff X) = map coe (coclosedCompact X) ⊔ pure ∞ := by
   rw [← nhds_within_compl_infty_eq, nhdsWithin_compl_singleton_sup_pure]

Changes in mathlib4

mathlib3
mathlib4
feat(Separation): define R0 spaces (#10621)

Generalize coclosedCompact_eq_cocompact and relativelyCompact.

Diff
@@ -394,12 +394,12 @@ theorem denseEmbedding_coe [NoncompactSpace X] : DenseEmbedding ((↑) : X → O
   { openEmbedding_coe with dense := denseRange_coe }
 #align alexandroff.dense_embedding_coe OnePoint.denseEmbedding_coe
 
-@[simp]
+@[simp, norm_cast]
 theorem specializes_coe {x y : X} : (x : OnePoint X) ⤳ y ↔ x ⤳ y :=
   openEmbedding_coe.toInducing.specializes_iff
 #align alexandroff.specializes_coe OnePoint.specializes_coe
 
-@[simp]
+@[simp, norm_cast]
 theorem inseparable_coe {x y : X} : Inseparable (x : OnePoint X) y ↔ Inseparable x y :=
   openEmbedding_coe.toInducing.inseparable_iff
 #align alexandroff.inseparable_coe OnePoint.inseparable_coe
@@ -457,21 +457,24 @@ instance [T1Space X] : T1Space (OnePoint X) where
     · rw [← image_singleton, isClosed_image_coe]
       exact ⟨isClosed_singleton, isCompact_singleton⟩
 
-/-- The one point compactification of a weakly locally compact Hausdorff space is a T₄
-(hence, Hausdorff and regular) topological space. -/
-instance [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := by
-  have key : ∀ z : X, Disjoint (𝓝 (some z)) (𝓝 ∞) := fun z => by
+/-- The one point compactification of a locally compact R₁ space is a normal topological space. -/
+instance [LocallyCompactSpace X] [R1Space X] : NormalSpace (OnePoint X) := by
+  suffices R1Space (OnePoint X) by infer_instance
+  have key : ∀ z : X, Disjoint (𝓝 (some z)) (𝓝 ∞) := fun z ↦ by
     rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact,
       disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty]
     exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩
-  suffices T2Space (OnePoint X) by infer_instance
-  refine t2Space_iff_disjoint_nhds.2 fun x y hxy => ?_
+  refine ⟨fun x y ↦ ?_⟩
   induction x using OnePoint.rec <;> induction y using OnePoint.rec
-  · exact (hxy rfl).elim
-  · exact (key _).symm
-  · exact key _
-  · rwa [nhds_coe_eq, nhds_coe_eq, disjoint_map coe_injective, disjoint_nhds_nhds,
-      ← coe_injective.ne_iff]
+  · exact .inl le_rfl
+  · exact .inr (key _).symm
+  · exact .inr (key _)
+  · rw [nhds_coe_eq, nhds_coe_eq, disjoint_map coe_injective, specializes_coe]
+    apply specializes_or_disjoint_nhds
+
+/-- The one point compactification of a weakly locally compact Hausdorff space is a T₄
+(hence, Hausdorff and regular) topological space. -/
+example [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := inferInstance
 
 /-- If `X` is not a compact space, then `OnePoint X` is a connected space. -/
 instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (OnePoint X) where
chore: rename open_range to isOpen_range, closed_range to isClosed_range (#11438)

All these lemmas refer to the range of some function being open/range (i.e. isOpen or isClosed).

Diff
@@ -273,7 +273,7 @@ theorem openEmbedding_coe : OpenEmbedding ((↑) : X → OnePoint X) :=
 #align alexandroff.open_embedding_coe OnePoint.openEmbedding_coe
 
 theorem isOpen_range_coe : IsOpen (range ((↑) : X → OnePoint X)) :=
-  openEmbedding_coe.open_range
+  openEmbedding_coe.isOpen_range
 #align alexandroff.is_open_range_coe OnePoint.isOpen_range_coe
 
 theorem isClosed_infty : IsClosed ({∞} : Set (OnePoint X)) := by
chore: move Mathlib to v4.7.0-rc1 (#11162)

This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0 branch as we update to intermediate nightlies.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>

Diff
@@ -94,12 +94,12 @@ theorem coe_eq_coe {x y : X} : (x : OnePoint X) = y ↔ x = y :=
 
 @[simp]
 theorem coe_ne_infty (x : X) : (x : OnePoint X) ≠ ∞ :=
-  fun.
+  nofun
 #align alexandroff.coe_ne_infty OnePoint.coe_ne_infty
 
 @[simp]
 theorem infty_ne_coe (x : X) : ∞ ≠ (x : OnePoint X) :=
-  fun.
+  nofun
 #align alexandroff.infty_ne_coe OnePoint.infty_ne_coe
 
 /-- Recursor for `OnePoint` using the preferred forms `∞` and `↑x`. -/
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -114,7 +114,7 @@ theorem isCompl_range_coe_infty : IsCompl (range ((↑) : X → OnePoint X)) {
   isCompl_range_some_none X
 #align alexandroff.is_compl_range_coe_infty OnePoint.isCompl_range_coe_infty
 
--- porting note: moved @[simp] to a new lemma
+-- Porting note: moved @[simp] to a new lemma
 theorem range_coe_union_infty : range ((↑) : X → OnePoint X) ∪ {∞} = univ :=
   range_some_union_none X
 #align alexandroff.range_coe_union_infty OnePoint.range_coe_union_infty
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -464,7 +464,7 @@ instance [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := by
     rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact,
       disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty]
     exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩
-  suffices : T2Space (OnePoint X); infer_instance
+  suffices T2Space (OnePoint X) by infer_instance
   refine t2Space_iff_disjoint_nhds.2 fun x y hxy => ?_
   induction x using OnePoint.rec <;> induction y using OnePoint.rec
   · exact (hxy rfl).elim
chore(Topology/SubsetProperties): rename isCompact_of_isClosed_subset (#7298)

As discussed on Zulip.

Co-authored-by: grunweg <grunweg@posteo.de>

Diff
@@ -196,7 +196,7 @@ instance : TopologicalSpace (OnePoint X) where
     suffices IsOpen ((↑) ⁻¹' ⋃₀ S : Set X) by
       refine' ⟨_, this⟩
       rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩
-      refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.isClosed_compl _
+      refine' IsCompact.of_isClosed_subset ((ho s hsS).1 hs) this.isClosed_compl _
       exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS)
     rw [preimage_sUnion]
     exact isOpen_biUnion fun s hs => (ho s hs).2
refactor: split NormalSpace into NormalSpace and T4Space (#7072)
  • Rename NormalSpace to T4Space.
  • Add NormalSpace, a version without the T1Space assumption.
  • Adjust some theorems.
  • Supersedes thus closes #6892.
  • Add some instance cycles, see #2030
Diff
@@ -457,14 +457,14 @@ instance [T1Space X] : T1Space (OnePoint X) where
     · rw [← image_singleton, isClosed_image_coe]
       exact ⟨isClosed_singleton, isCompact_singleton⟩
 
-/-- The one point compactification of a locally compact Hausdorff space is a normal (hence,
-Hausdorff and regular) topological space. -/
-instance [LocallyCompactSpace X] [T2Space X] : NormalSpace (OnePoint X) := by
+/-- The one point compactification of a weakly locally compact Hausdorff space is a T₄
+(hence, Hausdorff and regular) topological space. -/
+instance [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := by
   have key : ∀ z : X, Disjoint (𝓝 (some z)) (𝓝 ∞) := fun z => by
     rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact,
       disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty]
     exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩
-  suffices : T2Space (OnePoint X); exact normalOfCompactT2
+  suffices : T2Space (OnePoint X); infer_instance
   refine t2Space_iff_disjoint_nhds.2 fun x y hxy => ?_
   induction x using OnePoint.rec <;> induction y using OnePoint.rec
   · exact (hxy rfl).elim
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -46,10 +46,10 @@ In this section we define `OnePoint X` to be the disjoint union of `X` and `∞`
 -/
 
 
-variable {X : Type _}
+variable {X : Type*}
 
 /-- The OnePoint extension of an arbitrary topological space `X` -/
-def OnePoint (X : Type _) :=
+def OnePoint (X : Type*) :=
   Option X
 #align alexandroff OnePoint
 
@@ -104,7 +104,7 @@ theorem infty_ne_coe (x : X) : ∞ ≠ (x : OnePoint X) :=
 
 /-- Recursor for `OnePoint` using the preferred forms `∞` and `↑x`. -/
 @[elab_as_elim]
-protected def rec {C : OnePoint X → Sort _} (h₁ : C ∞) (h₂ : ∀ x : X, C x) :
+protected def rec {C : OnePoint X → Sort*} (h₁ : C ∞) (h₂ : ∀ x : X, C x) :
     ∀ z : OnePoint X, C z
   | ∞ => h₁
   | (x : X) => h₂ x
@@ -354,12 +354,12 @@ theorem ultrafilter_le_nhds_infty {f : Ultrafilter (OnePoint X)} :
     Ultrafilter.compl_mem_iff_not_mem]
 #align alexandroff.ultrafilter_le_nhds_infty OnePoint.ultrafilter_le_nhds_infty
 
-theorem tendsto_nhds_infty' {α : Type _} {f : OnePoint X → α} {l : Filter α} :
+theorem tendsto_nhds_infty' {α : Type*} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ (↑)) (coclosedCompact X) l := by
   simp [nhds_infty_eq, and_comm]
 #align alexandroff.tendsto_nhds_infty' OnePoint.tendsto_nhds_infty'
 
-theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α} :
+theorem tendsto_nhds_infty {α : Type*} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔
       ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s :=
   tendsto_nhds_infty'.trans <| by
@@ -367,18 +367,18 @@ theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α}
       and_assoc, exists_prop]
 #align alexandroff.tendsto_nhds_infty OnePoint.tendsto_nhds_infty
 
-theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
+theorem continuousAt_infty' {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔ Tendsto (f ∘ (↑)) (coclosedCompact X) (𝓝 (f ∞)) :=
   tendsto_nhds_infty'.trans <| and_iff_right (tendsto_pure_nhds _ _)
 #align alexandroff.continuous_at_infty' OnePoint.continuousAt_infty'
 
-theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
+theorem continuousAt_infty {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔
       ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s :=
   continuousAt_infty'.trans <| by simp only [hasBasis_coclosedCompact.tendsto_left_iff, and_assoc]
 #align alexandroff.continuous_at_infty OnePoint.continuousAt_infty
 
-theorem continuousAt_coe {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} :
+theorem continuousAt_coe {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} :
     ContinuousAt f x ↔ ContinuousAt (f ∘ (↑)) x := by
   rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]; rfl
 #align alexandroff.continuous_at_coe OnePoint.continuousAt_coe
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Yourong Zang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yourong Zang, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.alexandroff
-! leanprover-community/mathlib commit dc6c365e751e34d100e80fe6e314c3c3e0fd2988
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Fintype.Option
 import Mathlib.Topology.Separation
 import Mathlib.Topology.Sets.Opens
 
+#align_import topology.alexandroff from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988"
+
 /-!
 # The OnePoint Compactification
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -494,7 +494,7 @@ theorem not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X
 
 end OnePoint
 
-/-- A concrete counterexample shows that  `Continuous.homeoOfEquivCompactToT2`
+/-- A concrete counterexample shows that `Continuous.homeoOfEquivCompactToT2`
 cannot be generalized from `T2Space` to `T1Space`.
 
 Let `α = OnePoint ℕ` be the one-point compactification of `ℕ`, and let `β` be the same space
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -132,7 +132,7 @@ theorem range_coe_inter_infty : range ((↑) : X → OnePoint X) ∩ {∞} = ∅
 #align alexandroff.range_coe_inter_infty OnePoint.range_coe_inter_infty
 
 @[simp]
-theorem compl_range_coe : range ((↑) : X → OnePoint X)ᶜ = {∞} :=
+theorem compl_range_coe : (range ((↑) : X → OnePoint X))ᶜ = {∞} :=
   compl_range_some X
 #align alexandroff.compl_range_coe OnePoint.compl_range_coe
 
@@ -187,7 +187,7 @@ that `(↑)` has dense range, so it is a dense embedding.
 variable [TopologicalSpace X]
 
 instance : TopologicalSpace (OnePoint X) where
-  IsOpen s := (∞ ∈ s → IsCompact ((((↑) : X → OnePoint X) ⁻¹' s)ᶜ)) ∧
+  IsOpen s := (∞ ∈ s → IsCompact (((↑) : X → OnePoint X) ⁻¹' s)ᶜ) ∧
     IsOpen (((↑) : X → OnePoint X) ⁻¹' s)
   isOpen_univ := by simp
   isOpen_inter s t := by
@@ -207,17 +207,17 @@ instance : TopologicalSpace (OnePoint X) where
 variable {s : Set (OnePoint X)} {t : Set X}
 
 theorem isOpen_def :
-    IsOpen s ↔ (∞ ∈ s → IsCompact (((↑) ⁻¹' s : Set X)ᶜ)) ∧ IsOpen ((↑) ⁻¹' s : Set X) :=
+    IsOpen s ↔ (∞ ∈ s → IsCompact ((↑) ⁻¹' s : Set X)ᶜ) ∧ IsOpen ((↑) ⁻¹' s : Set X) :=
   Iff.rfl
 #align alexandroff.is_open_def OnePoint.isOpen_def
 
 theorem isOpen_iff_of_mem' (h : ∞ ∈ s) :
-    IsOpen s ↔ IsCompact (((↑) ⁻¹' s : Set X)ᶜ) ∧ IsOpen ((↑) ⁻¹' s : Set X) := by
+    IsOpen s ↔ IsCompact ((↑) ⁻¹' s : Set X)ᶜ ∧ IsOpen ((↑) ⁻¹' s : Set X) := by
   simp [isOpen_def, h]
 #align alexandroff.is_open_iff_of_mem' OnePoint.isOpen_iff_of_mem'
 
 theorem isOpen_iff_of_mem (h : ∞ ∈ s) :
-    IsOpen s ↔ IsClosed (((↑) ⁻¹' s : Set X)ᶜ) ∧ IsCompact (((↑) ⁻¹' s : Set X)ᶜ) := by
+    IsOpen s ↔ IsClosed ((↑) ⁻¹' s : Set X)ᶜ ∧ IsCompact ((↑) ⁻¹' s : Set X)ᶜ := by
   simp only [isOpen_iff_of_mem' h, isClosed_compl_iff, and_comm]
 #align alexandroff.is_open_iff_of_mem OnePoint.isOpen_iff_of_mem
 
@@ -241,7 +241,7 @@ theorem isOpen_image_coe {s : Set X} : IsOpen ((↑) '' s : Set (OnePoint X)) 
 #align alexandroff.is_open_image_coe OnePoint.isOpen_image_coe
 
 theorem isOpen_compl_image_coe {s : Set X} :
-    IsOpen (((↑) '' s : Set (OnePoint X))ᶜ) ↔ IsClosed s ∧ IsCompact s := by
+    IsOpen ((↑) '' s : Set (OnePoint X))ᶜ ↔ IsClosed s ∧ IsCompact s := by
   rw [isOpen_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective]
   exact infty_not_mem_image_coe
 #align alexandroff.is_open_compl_image_coe OnePoint.isOpen_compl_image_coe
@@ -364,7 +364,7 @@ theorem tendsto_nhds_infty' {α : Type _} {f : OnePoint X → α} {l : Filter α
 
 theorem tendsto_nhds_infty {α : Type _} {f : OnePoint X → α} {l : Filter α} :
     Tendsto f (𝓝 ∞) l ↔
-      ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) (tᶜ) s :=
+      ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s :=
   tendsto_nhds_infty'.trans <| by
     simp only [tendsto_pure_left, hasBasis_coclosedCompact.tendsto_left_iff, forall_and,
       and_assoc, exists_prop]
@@ -377,7 +377,7 @@ theorem continuousAt_infty' {Y : Type _} [TopologicalSpace Y] {f : OnePoint X 
 
 theorem continuousAt_infty {Y : Type _} [TopologicalSpace Y] {f : OnePoint X → Y} :
     ContinuousAt f ∞ ↔
-      ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) (tᶜ) s :=
+      ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s :=
   continuousAt_infty'.trans <| by simp only [hasBasis_coclosedCompact.tendsto_left_iff, and_assoc]
 #align alexandroff.continuous_at_infty OnePoint.continuousAt_infty
 
chore: Rename Alenxandroff to Compactification.OnePoint (#4506)

We rename Alexandroff to Compactification.OnePoint to avoid future name conflicts (with e.g. Alexandroff topological spaces). See this zulip thread.

chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -195,14 +195,14 @@ instance : TopologicalSpace (Alexandroff X) where
     refine' ⟨_, hs.inter ht⟩
     rintro ⟨hms', hmt'⟩
     simpa [compl_inter] using (hms hms').union (hmt hmt')
-  isOpen_unionₛ S ho := by
+  isOpen_sUnion S ho := by
     suffices IsOpen ((↑) ⁻¹' ⋃₀ S : Set X) by
       refine' ⟨_, this⟩
       rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩
       refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.isClosed_compl _
-      exact compl_subset_compl.mpr (preimage_mono <| subset_unionₛ_of_mem hsS)
-    rw [preimage_unionₛ]
-    exact isOpen_bunionᵢ fun s hs => (ho s hs).2
+      exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS)
+    rw [preimage_sUnion]
+    exact isOpen_biUnion fun s hs => (ho s hs).2
 
 variable {s : Set (Alexandroff X)} {t : Set X}
 
feat: port Topology.Alexandroff (#2229)

Dependencies 8 + 322

323 files ported (97.6%)
140208 lines ported (96.5%)
Show graph

The unported dependencies are