topology.algebra.module.strong_topology ⟷ Mathlib.Topology.Algebra.Module.StrongTopology

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(topology/algebra/module/strong_topology): golf arrow_congrSL introduced in #19107 (#19128)

I added more general definitions precomp and postcomp for expressing that (pre/post)-composing by a fixed continuous linear maps is continuous. These were planned about a year ago when I defined the strong topology and follow from uniform_on_fun.precomp_uniform_continuous and uniform_on_fun.postcomp_uniform_continuous.

The proof of continuity of arrow_congrSL is a direct consequence of these, so we don't have to do it by hand.

This is not really a "golf" since I added more lines than I removed, but these more general constructions will be needed at some point anyway (my use case was distribution theory) so I'm doing some proactive golfing :smile:.

Diff
@@ -175,9 +175,12 @@ end general
 
 section bounded_sets
 
-variables {π•œβ‚ π•œβ‚‚ : Type*} [normed_field π•œβ‚] [normed_field π•œβ‚‚] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {E E' F F' : Type*}
+variables {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type*} [normed_field π•œβ‚] [normed_field π•œβ‚‚] [normed_field π•œβ‚ƒ]
+  {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [ring_hom_comp_triple Οƒ Ο„ ρ]
+  {E E' F F' G : Type*}
   [add_comm_group E] [module π•œβ‚ E] [add_comm_group E'] [module ℝ E']
   [add_comm_group F] [module π•œβ‚‚ F] [add_comm_group F'] [module ℝ F']
+  [add_comm_group G] [module π•œβ‚ƒ G]
   [topological_space E]
 
 /-- The topology of bounded convergence on `E β†’L[π•œ] F`. This coincides with the topology induced by
@@ -224,6 +227,49 @@ protected lemma has_basis_nhds_zero [topological_space F]
     (Ξ» SV, {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2}) :=
 continuous_linear_map.has_basis_nhds_zero_of_basis (𝓝 0).basis_sets
 
+variables (G) [topological_space F] [topological_space G]
+
+/-- Pre-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps] def precomp [topological_add_group G] [has_continuous_const_smul π•œβ‚ƒ G]
+  [ring_hom_surjective Οƒ] [ring_hom_isometric Οƒ] (L : E β†’SL[Οƒ] F) :
+  (F β†’SL[Ο„] G) β†’L[π•œβ‚ƒ] (E β†’SL[ρ] G) :=
+{ to_fun := Ξ» f, f.comp L,
+  map_add' := Ξ» f g, add_comp f g L,
+  map_smul' := Ξ» a f, smul_comp a f L,
+  cont :=
+  begin
+    letI : uniform_space G := topological_add_group.to_uniform_space G,
+    haveI : uniform_add_group G := topological_add_comm_group_is_uniform,
+    rw (strong_topology.embedding_coe_fn _ _ _).continuous_iff,
+    refine (uniform_on_fun.precomp_uniform_continuous _).continuous.comp
+      (strong_topology.embedding_coe_fn _ _ _).continuous,
+    exact Ξ» S hS, hS.image L,
+  end }
+
+variables (E) {G}
+
+/-- Post-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps] def postcomp [topological_add_group F] [topological_add_group G]
+  [has_continuous_const_smul π•œβ‚ƒ G] [has_continuous_const_smul π•œβ‚‚ F] (L : F β†’SL[Ο„] G) :
+  (E β†’SL[Οƒ] F) β†’SL[Ο„] (E β†’SL[ρ] G) :=
+{ to_fun := Ξ» f, L.comp f,
+  map_add' := comp_add L,
+  map_smul' := comp_smulβ‚›β‚— L,
+  cont :=
+  begin
+    letI : uniform_space G := topological_add_group.to_uniform_space G,
+    haveI : uniform_add_group G := topological_add_comm_group_is_uniform,
+    letI : uniform_space F := topological_add_group.to_uniform_space F,
+    haveI : uniform_add_group F := topological_add_comm_group_is_uniform,
+    rw (strong_topology.embedding_coe_fn _ _ _).continuous_iff,
+    exact (uniform_on_fun.postcomp_uniform_continuous L.uniform_continuous).continuous.comp
+      (strong_topology.embedding_coe_fn _ _ _).continuous
+  end }
+
 end bounded_sets
 
 end continuous_linear_map
@@ -249,49 +295,29 @@ variables {π•œ : Type*} {π•œβ‚‚ : Type*} {π•œβ‚ƒ : Type*} {π•œβ‚„ : Type*}
     [ring_hom_inv_pair σ₄₃ σ₃₄]
   [ring_hom_comp_triple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [ring_hom_comp_triple Οƒβ‚‚β‚„ σ₄₃ σ₂₃]
     [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple σ₁₃ σ₃₄ σ₁₄]
+    [ring_hom_comp_triple σ₂₃ σ₃₄ Οƒβ‚‚β‚„] [ring_hom_comp_triple σ₁₂ Οƒβ‚‚β‚„ σ₁₄]
+  [ring_hom_isometric σ₁₂] [ring_hom_isometric σ₂₁]
 
 include σ₁₄ Οƒβ‚‚β‚„ σ₁₃ σ₃₄ σ₂₁ σ₂₃
 
 /-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
 spaces of continuous (semi)linear maps. -/
-@[simps] def arrow_congrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
-  (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] (F β†’SL[σ₂₃] G) :=
+@[simps] def arrow_congrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+  (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] (F β†’SL[σ₂₃] G) :=
 { -- given explicitly to help `simps`
   to_fun := Ξ» L, (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E)),
   -- given explicitly to help `simps`
   inv_fun := Ξ» L, (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F)),
   map_add' := Ξ» f g, by rw [add_comp, comp_add],
   map_smul' := Ξ» t f, by rw [smul_comp, comp_smulβ‚›β‚—],
+  continuous_to_fun :=
+    ((postcomp F e₄₃.to_continuous_linear_map).comp
+      (precomp H e₁₂.symm.to_continuous_linear_map)).continuous,
+  continuous_inv_fun :=
+    ((precomp H e₁₂.to_continuous_linear_map).comp
+      (postcomp F e₄₃.symm.to_continuous_linear_map)).continuous,
   .. e₁₂.arrow_congr_equiv e₄₃, }
 
-variables [ring_hom_isometric σ₂₁]
-
-lemma arrow_congrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
-  continuous (id (e₁₂.arrow_congrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] (F β†’SL[σ₂₃] G))) :=
-begin
-  apply continuous_of_continuous_at_zero,
-  show filter.tendsto _ _ _,
-  simp_rw [(e₁₂.arrow_congrβ‚›β‚— e₄₃).map_zero],
-  rw continuous_linear_map.has_basis_nhds_zero.tendsto_iff
-    continuous_linear_map.has_basis_nhds_zero,
-  rintros ⟨sF, sG⟩ ⟨h1 : bornology.is_vonN_bounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0:G)⟩,
-  dsimp,
-  refine ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩,
-    λ _ h _ hx, h _ (set.mem_image_of_mem _ hx)⟩,
-  apply e₄₃.continuous.continuous_at,
-  simpa using h2,
-end
-
-variables [ring_hom_isometric σ₁₂]
-
-/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
-between the spaces of continuous (semi)linear maps. -/
-@[simps] def arrow_congrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
-  (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] (F β†’SL[σ₂₃] G) :=
-{ continuous_to_fun := e₁₂.arrow_congrβ‚›β‚—_continuous e₄₃,
-  continuous_inv_fun := e₁₂.symm.arrow_congrβ‚›β‚—_continuous e₄₃.symm,
-  .. e₁₂.arrow_congrβ‚›β‚— e₄₃, }
-
 end semilinear
 
 section linear

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

refactor(topology/vector_bundle/hom): fibres of hom-bundle carry strong topology (#19107)

Currently, the "hom-bundle" between two vector bundles E₁ and Eβ‚‚ has fibre over x which is a type synonym of E₁ x β†’SL[Οƒ] Eβ‚‚ x, but which carries a topology produced by the hom-bundle construction (using the identification by trivializations withe the model fibre F₁ β†’SL[Οƒ] Fβ‚‚). This was needed when this bundle was made (#14541) because at that time, F₁ β†’SL[Οƒ] Fβ‚‚ (continuous linear maps between normed spaces) carried a topology in mathlib but E₁ x β†’SL[Οƒ] Eβ‚‚ x (continuous linear maps between topological vector spaces) did not.

As of #16053, continuous linear maps between topological vector spaces do carry a topology, the strong topology. So we can kill the old topology on the type synonym and just use the default one, which should avoid annoying issues later.

A few minor changes are needed to make this go through:

  • we revert #14377: the question is whether the "vector prebundle" construction, whose canonical use is for the hom-bundle, should or should not require a topology on the fibres. Now that in applications it could happen either way (fibres do or don't come with a topology), it will be more convenient to assume that they do carry a topology, and put the "artificial" topology on the fibres if they happen to not.
  • some assumptions need to change from [add_comm_monoid] to [add_comm_group], this is mathematically harmless since they are also modules over a field.
  • generalize the construction continuous_linear_equiv.arrow_congrSL from normed spaces to topological vector spaces

Co-authored-by: Moritz Doll <moritz.doll@googlemail.com> Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -227,3 +227,86 @@ continuous_linear_map.has_basis_nhds_zero_of_basis (𝓝 0).basis_sets
 end bounded_sets
 
 end continuous_linear_map
+
+open continuous_linear_map
+
+namespace continuous_linear_equiv
+
+section semilinear
+
+variables {π•œ : Type*} {π•œβ‚‚ : Type*} {π•œβ‚ƒ : Type*} {π•œβ‚„ : Type*}
+  {E : Type*} {F : Type*} {G : Type*} {H : Type*}
+  [add_comm_group E] [add_comm_group F] [add_comm_group G] [add_comm_group H]
+  [nontrivially_normed_field π•œ] [nontrivially_normed_field π•œβ‚‚] [nontrivially_normed_field π•œβ‚ƒ]
+    [nontrivially_normed_field π•œβ‚„]
+  [module π•œ E] [module π•œβ‚‚ F] [module π•œβ‚ƒ G] [module π•œβ‚„ H]
+  [topological_space E] [topological_space F] [topological_space G] [topological_space H]
+  [topological_add_group G] [topological_add_group H]
+  [has_continuous_const_smul π•œβ‚ƒ G] [has_continuous_const_smul π•œβ‚„ H]
+  {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} {σ₃₄ : π•œβ‚ƒ β†’+* π•œβ‚„}
+    {σ₄₃ : π•œβ‚„ β†’+* π•œβ‚ƒ} {Οƒβ‚‚β‚„ : π•œβ‚‚ β†’+* π•œβ‚„} {σ₁₄ : π•œ β†’+* π•œβ‚„}
+  [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] [ring_hom_inv_pair σ₃₄ σ₄₃]
+    [ring_hom_inv_pair σ₄₃ σ₃₄]
+  [ring_hom_comp_triple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [ring_hom_comp_triple Οƒβ‚‚β‚„ σ₄₃ σ₂₃]
+    [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple σ₁₃ σ₃₄ σ₁₄]
+
+include σ₁₄ Οƒβ‚‚β‚„ σ₁₃ σ₃₄ σ₂₁ σ₂₃
+
+/-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
+spaces of continuous (semi)linear maps. -/
+@[simps] def arrow_congrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+  (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] (F β†’SL[σ₂₃] G) :=
+{ -- given explicitly to help `simps`
+  to_fun := Ξ» L, (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E)),
+  -- given explicitly to help `simps`
+  inv_fun := Ξ» L, (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F)),
+  map_add' := Ξ» f g, by rw [add_comp, comp_add],
+  map_smul' := Ξ» t f, by rw [smul_comp, comp_smulβ‚›β‚—],
+  .. e₁₂.arrow_congr_equiv e₄₃, }
+
+variables [ring_hom_isometric σ₂₁]
+
+lemma arrow_congrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+  continuous (id (e₁₂.arrow_congrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] (F β†’SL[σ₂₃] G))) :=
+begin
+  apply continuous_of_continuous_at_zero,
+  show filter.tendsto _ _ _,
+  simp_rw [(e₁₂.arrow_congrβ‚›β‚— e₄₃).map_zero],
+  rw continuous_linear_map.has_basis_nhds_zero.tendsto_iff
+    continuous_linear_map.has_basis_nhds_zero,
+  rintros ⟨sF, sG⟩ ⟨h1 : bornology.is_vonN_bounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0:G)⟩,
+  dsimp,
+  refine ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩,
+    λ _ h _ hx, h _ (set.mem_image_of_mem _ hx)⟩,
+  apply e₄₃.continuous.continuous_at,
+  simpa using h2,
+end
+
+variables [ring_hom_isometric σ₁₂]
+
+/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
+between the spaces of continuous (semi)linear maps. -/
+@[simps] def arrow_congrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+  (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] (F β†’SL[σ₂₃] G) :=
+{ continuous_to_fun := e₁₂.arrow_congrβ‚›β‚—_continuous e₄₃,
+  continuous_inv_fun := e₁₂.symm.arrow_congrβ‚›β‚—_continuous e₄₃.symm,
+  .. e₁₂.arrow_congrβ‚›β‚— e₄₃, }
+
+end semilinear
+
+section linear
+variables {π•œ : Type*} {E : Type*} {F : Type*} {G : Type*} {H : Type*}
+  [add_comm_group E] [add_comm_group F] [add_comm_group G] [add_comm_group H]
+  [nontrivially_normed_field π•œ] [module π•œ E] [module π•œ F] [module π•œ G] [module π•œ H]
+  [topological_space E] [topological_space F] [topological_space G] [topological_space H]
+  [topological_add_group G] [topological_add_group H]
+  [has_continuous_const_smul π•œ G] [has_continuous_const_smul π•œ H]
+
+/-- A pair of continuous linear equivalences generates an continuous linear equivalence between
+the spaces of continuous linear maps. -/
+def arrow_congr (e₁ : E ≃L[π•œ] F) (eβ‚‚ : H ≃L[π•œ] G) : (E β†’L[π•œ] H) ≃L[π•œ] (F β†’L[π•œ] G) :=
+e₁.arrow_congrSL eβ‚‚
+
+end linear
+
+end continuous_linear_equiv

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -69,96 +69,97 @@ variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚]
   [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
   [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E] [TopologicalSpace E'] (F)
 
-#print ContinuousLinearMap.strongTopology /-
+#print UniformConvergenceCLM.instTopologicalSpace /-
 /-- Given `E` and `F` two topological vector spaces and `𝔖 : set (set E)`, then
 `strong_topology Οƒ F 𝔖` is the "topology of uniform convergence on the elements of `𝔖`" on
 `E β†’L[π•œ] F`.
 
 If the continuous linear image of any element of `𝔖` is bounded, this makes `E β†’L[π•œ] F` a
 topological vector space. -/
-def strongTopology [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
+def instTopologicalSpace [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
     TopologicalSpace (E β†’SL[Οƒ] F) :=
   (@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced coeFn
-#align continuous_linear_map.strong_topology ContinuousLinearMap.strongTopology
+#align continuous_linear_map.strong_topology UniformConvergenceCLM.instTopologicalSpace
 -/
 
-#print ContinuousLinearMap.strongUniformity /-
+#print UniformConvergenceCLM.instUniformSpace /-
 /-- The uniform structure associated with `continuous_linear_map.strong_topology`. We make sure
 that this has nice definitional properties. -/
-def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+def instUniformSpace [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     UniformSpace (E β†’SL[Οƒ] F) :=
-  @UniformSpace.replaceTopology _ (strongTopology Οƒ F 𝔖)
+  @UniformSpace.replaceTopology _ (instTopologicalSpace Οƒ F 𝔖)
     ((UniformOnFun.uniformSpace E F 𝔖).comap coeFn)
     (by rw [strong_topology, UniformAddGroup.toUniformSpace_eq] <;> rfl)
-#align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
+#align continuous_linear_map.strong_uniformity UniformConvergenceCLM.instUniformSpace
 -/
 
-#print ContinuousLinearMap.strongUniformity_topology_eq /-
+#print UniformConvergenceCLM.uniformity_toTopologicalSpace_eq /-
 @[simp]
-theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    (strongUniformity Οƒ F 𝔖).toTopologicalSpace = strongTopology Οƒ F 𝔖 :=
+theorem uniformity_toTopologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    (instUniformSpace Οƒ F 𝔖).toTopologicalSpace = instTopologicalSpace Οƒ F 𝔖 :=
   rfl
-#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
+#align continuous_linear_map.strong_uniformity_topology_eq UniformConvergenceCLM.uniformity_toTopologicalSpace_eq
 -/
 
-#print ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn /-
-theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
+#print UniformConvergenceCLM.uniformEmbedding_coeFn /-
+theorem UniformConvergenceCLM.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
-    @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
+    @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (instUniformSpace Οƒ F 𝔖)
       (UniformOnFun.uniformSpace E F 𝔖) coeFn :=
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   ⟨⟨rfl⟩, DFunLike.coe_injective⟩
-#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
+#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn UniformConvergenceCLM.uniformEmbedding_coeFn
 -/
 
-#print ContinuousLinearMap.strongTopology.embedding_coeFn /-
-theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
-      (UniformOnFun.ofFun 𝔖 ∘ coeFn) :=
-  @UniformEmbedding.embedding _ _ (id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
-#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
+#print UniformConvergenceCLM.embedding_coeFn /-
+theorem UniformConvergenceCLM.embedding_coeFn [UniformSpace F] [UniformAddGroup F]
+    (𝔖 : Set (Set E)) :
+    @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (instTopologicalSpace Οƒ F 𝔖)
+      (UniformOnFun.topologicalSpace E F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ coeFn) :=
+  @UniformEmbedding.embedding _ _ (id _) _ _ (UniformConvergenceCLM.uniformEmbedding_coeFn _ _ _)
+#align continuous_linear_map.strong_topology.embedding_coe_fn UniformConvergenceCLM.embedding_coeFn
 -/
 
-#print ContinuousLinearMap.strongUniformity.uniformAddGroup /-
-theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
+#print UniformConvergenceCLM.instUniformAddGroup /-
+theorem UniformConvergenceCLM.instUniformAddGroup [UniformSpace F] [UniformAddGroup F]
+    (𝔖 : Set (Set E)) : @UniformAddGroup (E β†’SL[Οƒ] F) (instUniformSpace Οƒ F 𝔖) _ :=
   by
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   rw [strong_uniformity, UniformSpace.replaceTopology_eq]
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F := ⟨(coeFn : (E β†’SL[Οƒ] F) β†’ E β†’α΅€ F), rfl, fun _ _ => rfl⟩
   exact UniformAddGroup.comap Ο†
-#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
+#align continuous_linear_map.strong_uniformity.uniform_add_group UniformConvergenceCLM.instUniformAddGroup
 -/
 
-#print ContinuousLinearMap.strongTopology.topologicalAddGroup /-
-theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
-    (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
+#print UniformConvergenceCLM.instTopologicalAddGroup /-
+theorem UniformConvergenceCLM.instTopologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
+    (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (instTopologicalSpace Οƒ F 𝔖) _ :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   haveI : UniformAddGroup (E β†’SL[Οƒ] F) := strong_uniformity.uniform_add_group Οƒ F 𝔖
   infer_instance
-#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
+#align continuous_linear_map.strong_topology.topological_add_group UniformConvergenceCLM.instTopologicalAddGroup
 -/
 
-#print ContinuousLinearMap.strongTopology.t2Space /-
-theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
-    (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
+#print UniformConvergenceCLM.t2Space /-
+theorem UniformConvergenceCLM.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
+    (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (instTopologicalSpace Οƒ F 𝔖) :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strong_topology Οƒ F 𝔖
   haveI : T2Space (E β†’α΅€[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖
   exact (strong_topology.embedding_coe_fn Οƒ F 𝔖).T2Space
-#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
+#align continuous_linear_map.strong_topology.t2_space UniformConvergenceCLM.t2Space
 -/
 
-#print ContinuousLinearMap.strongTopology.continuousSMul /-
-theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
+#print UniformConvergenceCLM.continuousSMul /-
+theorem UniformConvergenceCLM.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
-    @ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) _ _ (strongTopology Οƒ F 𝔖) :=
+    @ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) _ _ (instTopologicalSpace Οƒ F 𝔖) :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
@@ -168,31 +169,33 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
   exact
     UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) h𝔖₁ h𝔖₂ Ο† ⟨rfl⟩
       fun u s hs => (h𝔖₃ s hs).image u
-#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
+#align continuous_linear_map.strong_topology.has_continuous_smul UniformConvergenceCLM.continuousSMul
 -/
 
-#print ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis /-
-theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
-    {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
-    {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
-    (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis (fun Si : Set E Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2)
-      fun Si => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
+#print UniformConvergenceCLM.hasBasis_nhds_zero_of_basis /-
+theorem UniformConvergenceCLM.hasBasis_nhds_zero_of_basis [TopologicalSpace F]
+    [TopologicalAddGroup F] {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty)
+    (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F}
+    (h : (𝓝 0 : Filter F).HasBasis p b) :
+    (@nhds (E β†’SL[Οƒ] F) (instTopologicalSpace Οƒ F 𝔖) 0).HasBasis
+      (fun Si : Set E Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2) fun Si =>
+      {f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   rw [nhds_induced]
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap coeFn
-#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
+#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis UniformConvergenceCLM.hasBasis_nhds_zero_of_basis
 -/
 
-#print ContinuousLinearMap.strongTopology.hasBasis_nhds_zero /-
-theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
+#print UniformConvergenceCLM.hasBasis_nhds_zero /-
+theorem UniformConvergenceCLM.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
-    (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
+    (@nhds (E β†’SL[Οƒ] F) (instTopologicalSpace Οƒ F 𝔖) 0).HasBasis
       (fun SV : Set E Γ— Set F => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 0 : Filter F)) fun SV =>
       {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
-  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
-#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
+  UniformConvergenceCLM.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
+#align continuous_linear_map.strong_topology.has_basis_nhds_zero UniformConvergenceCLM.hasBasis_nhds_zero
 -/
 
 end General
@@ -207,26 +210,26 @@ variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type _} [NormedField π•œβ‚] [NormedField 
 /-- The topology of bounded convergence on `E β†’L[π•œ] F`. This coincides with the topology induced by
 the operator norm when `E` and `F` are normed spaces. -/
 instance [TopologicalSpace F] [TopologicalAddGroup F] : TopologicalSpace (E β†’SL[Οƒ] F) :=
-  strongTopology Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
+  instTopologicalSpace Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
 
 instance [TopologicalSpace F] [TopologicalAddGroup F] : TopologicalAddGroup (E β†’SL[Οƒ] F) :=
-  strongTopology.topologicalAddGroup Οƒ F _
+  UniformConvergenceCLM.instTopologicalAddGroup Οƒ F _
 
 instance [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [TopologicalSpace F] [TopologicalAddGroup F]
     [ContinuousSMul π•œβ‚‚ F] : ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousSMul Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
+  UniformConvergenceCLM.continuousSMul Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) fun s hs => hs
 
 instance [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
-  strongUniformity Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
+  instUniformSpace Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
 
 instance [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
-  strongUniformity.uniformAddGroup Οƒ F _
+  UniformConvergenceCLM.instUniformAddGroup Οƒ F _
 
 instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E] [T2Space F] :
     T2Space (E β†’SL[Οƒ] F) :=
-  strongTopology.t2Space Οƒ F _
+  UniformConvergenceCLM.t2Space Οƒ F _
     (Set.eq_univ_of_forall fun x =>
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
@@ -235,7 +238,7 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
       fun Si => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
-  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
+  UniformConvergenceCLM.hasBasis_nhds_zero_of_basis Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
Diff
@@ -107,7 +107,7 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
       (UniformOnFun.uniformSpace E F 𝔖) coeFn :=
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
-  ⟨⟨rfl⟩, FunLike.coe_injective⟩
+  ⟨⟨rfl⟩, DFunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 -/
 
Diff
@@ -126,7 +126,7 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   rw [strong_uniformity, UniformSpace.replaceTopology_eq]
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F := ⟨(coeFn : (E β†’SL[Οƒ] F) β†’ E β†’α΅€ F), rfl, fun _ _ => rfl⟩
-  exact uniformAddGroup_comap Ο†
+  exact UniformAddGroup.comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 -/
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 -/
-import Mathbin.Topology.Algebra.UniformConvergence
+import Topology.Algebra.UniformConvergence
 
 #align_import topology.algebra.module.strong_topology from "leanprover-community/mathlib"@"8905e5ed90859939681a725b00f6063e65096d95"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit 8905e5ed90859939681a725b00f6063e65096d95
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Algebra.UniformConvergence
 
+#align_import topology.algebra.module.strong_topology from "leanprover-community/mathlib"@"8905e5ed90859939681a725b00f6063e65096d95"
+
 /-!
 # Strong topologies on the space of continuous linear maps
 
Diff
@@ -255,6 +255,7 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
 
 variable (G) [TopologicalSpace F] [TopologicalSpace G]
 
+#print ContinuousLinearMap.precomp /-
 /-- Pre-composition by a *fixed* continuous linear map as a continuous linear map.
 Note that in non-normed space it is not always true that composition is continuous
 in both variables, so we have to fix one of them. -/
@@ -274,9 +275,11 @@ def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurj
         (strong_topology.embedding_coe_fn _ _ _).Continuous
     exact fun S hS => hS.image L
 #align continuous_linear_map.precomp ContinuousLinearMap.precomp
+-/
 
 variable (E) {G}
 
+#print ContinuousLinearMap.postcomp /-
 /-- Post-composition by a *fixed* continuous linear map as a continuous linear map.
 Note that in non-normed space it is not always true that composition is continuous
 in both variables, so we have to fix one of them. -/
@@ -297,6 +300,7 @@ def postcomp [TopologicalAddGroup F] [TopologicalAddGroup G] [ContinuousConstSMu
       (UniformOnFun.postcomp_uniformContinuous L.uniform_continuous).Continuous.comp
         (strong_topology.embedding_coe_fn _ _ _).Continuous
 #align continuous_linear_map.postcomp ContinuousLinearMap.postcomp
+-/
 
 end BoundedSets
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit f7ebde7ee0d1505dfccac8644ae12371aa3c1c9f
+! leanprover-community/mathlib commit 8905e5ed90859939681a725b00f6063e65096d95
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -202,9 +202,10 @@ end General
 
 section BoundedSets
 
-variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {E E' F F' : Type _}
-  [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
-  [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E]
+variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] [NormedField π•œβ‚ƒ] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚}
+  {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [RingHomCompTriple Οƒ Ο„ ρ] {E E' F F' G : Type _} [AddCommGroup E]
+  [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F] [AddCommGroup F']
+  [Module ℝ F'] [AddCommGroup G] [Module π•œβ‚ƒ G] [TopologicalSpace E]
 
 /-- The topology of bounded convergence on `E β†’L[π•œ] F`. This coincides with the topology induced by
 the operator norm when `E` and `F` are normed spaces. -/
@@ -252,6 +253,51 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 -/
 
+variable (G) [TopologicalSpace F] [TopologicalSpace G]
+
+/-- Pre-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps]
+def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurjective Οƒ]
+    [RingHomIsometric Οƒ] (L : E β†’SL[Οƒ] F) : (F β†’SL[Ο„] G) β†’L[π•œβ‚ƒ] E β†’SL[ρ] G
+    where
+  toFun f := f.comp L
+  map_add' f g := add_comp f g L
+  map_smul' a f := smul_comp a f L
+  cont := by
+    letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G
+    haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
+    rw [(strong_topology.embedding_coe_fn _ _ _).continuous_iff]
+    refine'
+      (UniformOnFun.precomp_uniformContinuous _).Continuous.comp
+        (strong_topology.embedding_coe_fn _ _ _).Continuous
+    exact fun S hS => hS.image L
+#align continuous_linear_map.precomp ContinuousLinearMap.precomp
+
+variable (E) {G}
+
+/-- Post-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps]
+def postcomp [TopologicalAddGroup F] [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G]
+    [ContinuousConstSMul π•œβ‚‚ F] (L : F β†’SL[Ο„] G) : (E β†’SL[Οƒ] F) β†’SL[Ο„] E β†’SL[ρ] G
+    where
+  toFun f := L.comp f
+  map_add' := comp_add L
+  map_smul' := comp_smulβ‚›β‚— L
+  cont := by
+    letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G
+    haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
+    letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
+    haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
+    rw [(strong_topology.embedding_coe_fn _ _ _).continuous_iff]
+    exact
+      (UniformOnFun.postcomp_uniformContinuous L.uniform_continuous).Continuous.comp
+        (strong_topology.embedding_coe_fn _ _ _).Continuous
+#align continuous_linear_map.postcomp ContinuousLinearMap.postcomp
+
 end BoundedSets
 
 end ContinuousLinearMap
@@ -272,13 +318,14 @@ variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _
   {σ₃₄ : π•œβ‚ƒ β†’+* π•œβ‚„} {σ₄₃ : π•œβ‚„ β†’+* π•œβ‚ƒ} {Οƒβ‚‚β‚„ : π•œβ‚‚ β†’+* π•œβ‚„} {σ₁₄ : π•œ β†’+* π•œβ‚„} [RingHomInvPair σ₁₂ σ₂₁]
   [RingHomInvPair σ₂₁ σ₁₂] [RingHomInvPair σ₃₄ σ₄₃] [RingHomInvPair σ₄₃ σ₃₄]
   [RingHomCompTriple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [RingHomCompTriple Οƒβ‚‚β‚„ σ₄₃ σ₂₃] [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
-  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄]
+  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄] [RingHomCompTriple σ₂₃ σ₃₄ Οƒβ‚‚β‚„] [RingHomCompTriple σ₁₂ Οƒβ‚‚β‚„ σ₁₄]
+  [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₁]
 
-#print ContinuousLinearEquiv.arrowCongrβ‚›β‚— /-
+#print ContinuousLinearEquiv.arrowCongrSL /-
 /-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
 spaces of continuous (semi)linear maps. -/
 @[simps]
-def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G :=
+def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
   {-- given explicitly to help `simps`
         -- given explicitly to help `simps`
         e₁₂.arrowCongrEquiv
@@ -286,42 +333,13 @@ def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃
     toFun := fun L => (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E))
     invFun := fun L => (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F))
     map_add' := fun f g => by rw [add_comp, comp_add]
-    map_smul' := fun t f => by rw [smul_comp, comp_smulβ‚›β‚—] }
-#align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
--/
-
-variable [RingHomIsometric σ₂₁]
-
-#print ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous /-
-theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
-    Continuous (id (e₁₂.arrowCongrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G)) :=
-  by
-  apply continuous_of_continuousAt_zero
-  show Filter.Tendsto _ _ _
-  simp_rw [(e₁₂.arrow_congrβ‚›β‚— e₄₃).map_zero]
-  rw [continuous_linear_map.has_basis_nhds_zero.tendsto_iff ContinuousLinearMap.hasBasis_nhds_zero]
-  rintro ⟨sF, sG⟩ ⟨h1 : Bornology.IsVonNBounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0 : G)⟩
-  dsimp
-  refine'
-    ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩, fun _ h _ hx =>
-      h _ (Set.mem_image_of_mem _ hx)⟩
-  apply e₄₃.continuous.continuous_at
-  simpa using h2
-#align continuous_linear_equiv.arrow_congrβ‚›β‚—_continuous ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous
--/
-
-variable [RingHomIsometric σ₁₂]
-
-#print ContinuousLinearEquiv.arrowCongrSL /-
-/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
-between the spaces of continuous (semi)linear maps. -/
-@[simps]
-def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
-  {
-    e₁₂.arrowCongrβ‚›β‚—
-      e₄₃ with
-    continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
-    continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
+    map_smul' := fun t f => by rw [smul_comp, comp_smulβ‚›β‚—]
+    continuous_toFun :=
+      ((postcomp F e₄₃.toContinuousLinearMap).comp
+          (precomp H e₁₂.symm.toContinuousLinearMap)).Continuous
+    continuous_invFun :=
+      ((precomp H e₁₂.toContinuousLinearMap).comp
+          (postcomp F e₄₃.symm.toContinuousLinearMap)).Continuous }
 #align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
 -/
 
Diff
@@ -96,12 +96,15 @@ def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
 #align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
 -/
 
+#print ContinuousLinearMap.strongUniformity_topology_eq /-
 @[simp]
 theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     (strongUniformity Οƒ F 𝔖).toTopologicalSpace = strongTopology Οƒ F 𝔖 :=
   rfl
 #align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
+-/
 
+#print ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn /-
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
@@ -109,13 +112,17 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   ⟨⟨rfl⟩, FunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
+-/
 
+#print ContinuousLinearMap.strongTopology.embedding_coeFn /-
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
       (UniformOnFun.ofFun 𝔖 ∘ coeFn) :=
   @UniformEmbedding.embedding _ _ (id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
+-/
 
+#print ContinuousLinearMap.strongUniformity.uniformAddGroup /-
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
   by
@@ -124,7 +131,9 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F := ⟨(coeFn : (E β†’SL[Οƒ] F) β†’ E β†’α΅€ F), rfl, fun _ _ => rfl⟩
   exact uniformAddGroup_comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
+-/
 
+#print ContinuousLinearMap.strongTopology.topologicalAddGroup /-
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
   by
@@ -134,7 +143,9 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
   haveI : UniformAddGroup (E β†’SL[Οƒ] F) := strong_uniformity.uniform_add_group Οƒ F 𝔖
   infer_instance
 #align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
+-/
 
+#print ContinuousLinearMap.strongTopology.t2Space /-
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
   by
@@ -144,7 +155,9 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
   haveI : T2Space (E β†’α΅€[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖
   exact (strong_topology.embedding_coe_fn Οƒ F 𝔖).T2Space
 #align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
+-/
 
+#print ContinuousLinearMap.strongTopology.continuousSMul /-
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
@@ -159,7 +172,9 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
     UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) h𝔖₁ h𝔖₂ Ο† ⟨rfl⟩
       fun u s hs => (h𝔖₃ s hs).image u
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
+-/
 
+#print ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis /-
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -171,7 +186,9 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
   rw [nhds_induced]
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap coeFn
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
+-/
 
+#print ContinuousLinearMap.strongTopology.hasBasis_nhds_zero /-
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
@@ -179,6 +196,7 @@ theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGr
       {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
+-/
 
 end General
 
@@ -214,6 +232,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     (Set.eq_univ_of_forall fun x =>
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
+#print ContinuousLinearMap.hasBasis_nhds_zero_of_basis /-
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
@@ -222,13 +241,16 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
+-/
 
+#print ContinuousLinearMap.hasBasis_nhds_zero /-
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
       (fun SV : Set E Γ— Set F => Bornology.IsVonNBounded π•œβ‚ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F))
       fun SV => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
+-/
 
 end BoundedSets
 
@@ -252,8 +274,6 @@ variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _
   [RingHomCompTriple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [RingHomCompTriple Οƒβ‚‚β‚„ σ₄₃ σ₂₃] [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
   [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄]
 
-include σ₁₄ Οƒβ‚‚β‚„ σ₁₃ σ₃₄ σ₂₁ σ₂₃
-
 #print ContinuousLinearEquiv.arrowCongrβ‚›β‚— /-
 /-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
 spaces of continuous (semi)linear maps. -/
@@ -272,6 +292,7 @@ def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃
 
 variable [RingHomIsometric σ₂₁]
 
+#print ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous /-
 theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
     Continuous (id (e₁₂.arrowCongrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G)) :=
   by
@@ -287,6 +308,7 @@ theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H
   apply e₄₃.continuous.continuous_at
   simpa using h2
 #align continuous_linear_equiv.arrow_congrβ‚›β‚—_continuous ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous
+-/
 
 variable [RingHomIsometric σ₁₂]
 
Diff
@@ -164,7 +164,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis (fun Si : Set E Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2)
-      fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
+      fun Si => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
@@ -176,7 +176,7 @@ theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGr
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
       (fun SV : Set E Γ— Set F => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 0 : Filter F)) fun SV =>
-      { f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2 } :=
+      {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
 
@@ -191,19 +191,19 @@ variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚]
 /-- The topology of bounded convergence on `E β†’L[π•œ] F`. This coincides with the topology induced by
 the operator norm when `E` and `F` are normed spaces. -/
 instance [TopologicalSpace F] [TopologicalAddGroup F] : TopologicalSpace (E β†’SL[Οƒ] F) :=
-  strongTopology Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  strongTopology Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
 
 instance [TopologicalSpace F] [TopologicalAddGroup F] : TopologicalAddGroup (E β†’SL[Οƒ] F) :=
   strongTopology.topologicalAddGroup Οƒ F _
 
 instance [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [TopologicalSpace F] [TopologicalAddGroup F]
     [ContinuousSMul π•œβ‚‚ F] : ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  strongTopology.continuousSMul Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) fun s hs => hs
 
 instance [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
-  strongUniformity Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  strongUniformity Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
 
 instance [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
   strongUniformity.uniformAddGroup Οƒ F _
@@ -217,8 +217,8 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
-      fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
-  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+      fun Si => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
+  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
@@ -226,7 +226,7 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
       (fun SV : Set E Γ— Set F => Bornology.IsVonNBounded π•œβ‚ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F))
-      fun SV => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2 } :=
+      fun SV => {f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 
Diff
@@ -254,6 +254,7 @@ variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _
 
 include σ₁₄ Οƒβ‚‚β‚„ σ₁₃ σ₃₄ σ₂₁ σ₂₃
 
+#print ContinuousLinearEquiv.arrowCongrβ‚›β‚— /-
 /-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
 spaces of continuous (semi)linear maps. -/
 @[simps]
@@ -267,6 +268,7 @@ def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃
     map_add' := fun f g => by rw [add_comp, comp_add]
     map_smul' := fun t f => by rw [smul_comp, comp_smulβ‚›β‚—] }
 #align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
+-/
 
 variable [RingHomIsometric σ₂₁]
 
@@ -288,6 +290,7 @@ theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H
 
 variable [RingHomIsometric σ₁₂]
 
+#print ContinuousLinearEquiv.arrowCongrSL /-
 /-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
 between the spaces of continuous (semi)linear maps. -/
 @[simps]
@@ -298,6 +301,7 @@ def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G)
     continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
     continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
 #align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
+-/
 
 end Semilinear
 
@@ -309,11 +313,13 @@ variable {π•œ : Type _} {E : Type _} {F : Type _} {G : Type _} {H : Type _} [Ad
   [TopologicalSpace G] [TopologicalSpace H] [TopologicalAddGroup G] [TopologicalAddGroup H]
   [ContinuousConstSMul π•œ G] [ContinuousConstSMul π•œ H]
 
+#print ContinuousLinearEquiv.arrowCongr /-
 /-- A pair of continuous linear equivalences generates an continuous linear equivalence between
 the spaces of continuous linear maps. -/
 def arrowCongr (e₁ : E ≃L[π•œ] F) (eβ‚‚ : H ≃L[π•œ] G) : (E β†’L[π•œ] H) ≃L[π•œ] F β†’L[π•œ] G :=
   e₁.arrowCongrSL eβ‚‚
 #align continuous_linear_equiv.arrow_congr ContinuousLinearEquiv.arrowCongr
+-/
 
 end Linear
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
+! leanprover-community/mathlib commit f7ebde7ee0d1505dfccac8644ae12371aa3c1c9f
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -234,3 +234,88 @@ end BoundedSets
 
 end ContinuousLinearMap
 
+open ContinuousLinearMap
+
+namespace ContinuousLinearEquiv
+
+section Semilinear
+
+variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _} {E : Type _} {F : Type _}
+  {G : Type _} {H : Type _} [AddCommGroup E] [AddCommGroup F] [AddCommGroup G] [AddCommGroup H]
+  [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ]
+  [NontriviallyNormedField π•œβ‚„] [Module π•œ E] [Module π•œβ‚‚ F] [Module π•œβ‚ƒ G] [Module π•œβ‚„ H]
+  [TopologicalSpace E] [TopologicalSpace F] [TopologicalSpace G] [TopologicalSpace H]
+  [TopologicalAddGroup G] [TopologicalAddGroup H] [ContinuousConstSMul π•œβ‚ƒ G]
+  [ContinuousConstSMul π•œβ‚„ H] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {σ₁₃ : π•œ β†’+* π•œβ‚ƒ}
+  {σ₃₄ : π•œβ‚ƒ β†’+* π•œβ‚„} {σ₄₃ : π•œβ‚„ β†’+* π•œβ‚ƒ} {Οƒβ‚‚β‚„ : π•œβ‚‚ β†’+* π•œβ‚„} {σ₁₄ : π•œ β†’+* π•œβ‚„} [RingHomInvPair σ₁₂ σ₂₁]
+  [RingHomInvPair σ₂₁ σ₁₂] [RingHomInvPair σ₃₄ σ₄₃] [RingHomInvPair σ₄₃ σ₃₄]
+  [RingHomCompTriple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [RingHomCompTriple Οƒβ‚‚β‚„ σ₄₃ σ₂₃] [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
+  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄]
+
+include σ₁₄ Οƒβ‚‚β‚„ σ₁₃ σ₃₄ σ₂₁ σ₂₃
+
+/-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
+spaces of continuous (semi)linear maps. -/
+@[simps]
+def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G :=
+  {-- given explicitly to help `simps`
+        -- given explicitly to help `simps`
+        e₁₂.arrowCongrEquiv
+      e₄₃ with
+    toFun := fun L => (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E))
+    invFun := fun L => (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F))
+    map_add' := fun f g => by rw [add_comp, comp_add]
+    map_smul' := fun t f => by rw [smul_comp, comp_smulβ‚›β‚—] }
+#align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
+
+variable [RingHomIsometric σ₂₁]
+
+theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+    Continuous (id (e₁₂.arrowCongrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G)) :=
+  by
+  apply continuous_of_continuousAt_zero
+  show Filter.Tendsto _ _ _
+  simp_rw [(e₁₂.arrow_congrβ‚›β‚— e₄₃).map_zero]
+  rw [continuous_linear_map.has_basis_nhds_zero.tendsto_iff ContinuousLinearMap.hasBasis_nhds_zero]
+  rintro ⟨sF, sG⟩ ⟨h1 : Bornology.IsVonNBounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0 : G)⟩
+  dsimp
+  refine'
+    ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩, fun _ h _ hx =>
+      h _ (Set.mem_image_of_mem _ hx)⟩
+  apply e₄₃.continuous.continuous_at
+  simpa using h2
+#align continuous_linear_equiv.arrow_congrβ‚›β‚—_continuous ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous
+
+variable [RingHomIsometric σ₁₂]
+
+/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
+between the spaces of continuous (semi)linear maps. -/
+@[simps]
+def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
+  {
+    e₁₂.arrowCongrβ‚›β‚—
+      e₄₃ with
+    continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
+    continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
+#align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
+
+end Semilinear
+
+section Linear
+
+variable {π•œ : Type _} {E : Type _} {F : Type _} {G : Type _} {H : Type _} [AddCommGroup E]
+  [AddCommGroup F] [AddCommGroup G] [AddCommGroup H] [NontriviallyNormedField π•œ] [Module π•œ E]
+  [Module π•œ F] [Module π•œ G] [Module π•œ H] [TopologicalSpace E] [TopologicalSpace F]
+  [TopologicalSpace G] [TopologicalSpace H] [TopologicalAddGroup G] [TopologicalAddGroup H]
+  [ContinuousConstSMul π•œ G] [ContinuousConstSMul π•œ H]
+
+/-- A pair of continuous linear equivalences generates an continuous linear equivalence between
+the spaces of continuous linear maps. -/
+def arrowCongr (e₁ : E ≃L[π•œ] F) (eβ‚‚ : H ≃L[π•œ] G) : (E β†’L[π•œ] H) ≃L[π•œ] F β†’L[π•œ] G :=
+  e₁.arrowCongrSL eβ‚‚
+#align continuous_linear_equiv.arrow_congr ContinuousLinearEquiv.arrowCongr
+
+end Linear
+
+end ContinuousLinearEquiv
+
Diff
@@ -62,7 +62,7 @@ uniform convergence, bounded convergence
 -/
 
 
-open Topology UniformConvergence
+open scoped Topology UniformConvergence
 
 namespace ContinuousLinearMap
 
Diff
@@ -96,18 +96,12 @@ def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
 #align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
 -/
 
-/- warning: continuous_linear_map.strong_uniformity_topology_eq -> ContinuousLinearMap.strongUniformity_topology_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eqβ‚“'. -/
 @[simp]
 theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     (strongUniformity Οƒ F 𝔖).toTopologicalSpace = strongTopology Οƒ F 𝔖 :=
   rfl
 #align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
 
-/- warning: continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn -> ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFnβ‚“'. -/
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
@@ -116,18 +110,12 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
   ⟨⟨rfl⟩, FunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 
-/- warning: continuous_linear_map.strong_topology.embedding_coe_fn -> ContinuousLinearMap.strongTopology.embedding_coeFn is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFnβ‚“'. -/
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
       (UniformOnFun.ofFun 𝔖 ∘ coeFn) :=
   @UniformEmbedding.embedding _ _ (id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
 
-/- warning: continuous_linear_map.strong_uniformity.uniform_add_group -> ContinuousLinearMap.strongUniformity.uniformAddGroup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroupβ‚“'. -/
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
   by
@@ -137,9 +125,6 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   exact uniformAddGroup_comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
-/- warning: continuous_linear_map.strong_topology.topological_add_group -> ContinuousLinearMap.strongTopology.topologicalAddGroup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroupβ‚“'. -/
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
   by
@@ -150,9 +135,6 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
   infer_instance
 #align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
 
-/- warning: continuous_linear_map.strong_topology.t2_space -> ContinuousLinearMap.strongTopology.t2Space is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Spaceβ‚“'. -/
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
   by
@@ -163,9 +145,6 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
   exact (strong_topology.embedding_coe_fn Οƒ F 𝔖).T2Space
 #align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
 
-/- warning: continuous_linear_map.strong_topology.has_continuous_smul -> ContinuousLinearMap.strongTopology.continuousSMul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMulβ‚“'. -/
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
@@ -181,9 +160,6 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
       fun u s hs => (h𝔖₃ s hs).image u
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
-/- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basisβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -196,9 +172,6 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap coeFn
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
 
-/- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zeroβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
@@ -241,9 +214,6 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     (Set.eq_univ_of_forall fun x =>
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
-/- warning: continuous_linear_map.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.hasBasis_nhds_zero_of_basis is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basisβ‚“'. -/
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
@@ -253,9 +223,6 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
 
-/- warning: continuous_linear_map.has_basis_nhds_zero -> ContinuousLinearMap.hasBasis_nhds_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zeroβ‚“'. -/
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
       (fun SV : Set E Γ— Set F => Bornology.IsVonNBounded π•œβ‚ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F))
Diff
@@ -97,10 +97,7 @@ def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
 -/
 
 /- warning: continuous_linear_map.strong_uniformity_topology_eq -> ContinuousLinearMap.strongUniformity_topology_eq is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{succ (max u3 u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{max (succ u3) (succ u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eqβ‚“'. -/
 @[simp]
 theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
@@ -109,10 +106,7 @@ theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖
 #align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
 
 /- warning: continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn -> ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFnβ‚“'. -/
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
@@ -123,10 +117,7 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 
 /- warning: continuous_linear_map.strong_topology.embedding_coe_fn -> ContinuousLinearMap.strongTopology.embedding_coeFn is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (fun (_x : Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) => (E -> F) -> (UniformOnFun.{u3, u4} E F 𝔖)) (Equiv.hasCoeToFun.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFnβ‚“'. -/
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
@@ -135,10 +126,7 @@ theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
 
 /- warning: continuous_linear_map.strong_uniformity.uniform_add_group -> ContinuousLinearMap.strongUniformity.uniformAddGroup is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroupβ‚“'. -/
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
@@ -150,10 +138,7 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
 /- warning: continuous_linear_map.strong_topology.topological_add_group -> ContinuousLinearMap.strongTopology.topologicalAddGroup is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroupβ‚“'. -/
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
@@ -166,10 +151,7 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
 #align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
 
 /- warning: continuous_linear_map.strong_topology.t2_space -> ContinuousLinearMap.strongTopology.t2Space is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.sUnion.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.sUnion.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Spaceβ‚“'. -/
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
@@ -182,10 +164,7 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
 #align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
 
 /- warning: continuous_linear_map.strong_topology.has_continuous_smul -> ContinuousLinearMap.strongTopology.continuousSMul is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : RingHomSurjective.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (NormedField.toHasNorm.{u1} π•œβ‚ _inst_1) (NormedField.toHasNorm.{u2} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u4} F] [_inst_16 : TopologicalAddGroup.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_17 : ContinuousSMul.{u2, u4} π•œβ‚‚ F (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall (S : Set.{u3} E), (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toHasSmul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (SMulWithZero.toSmulZeroClass.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (Module.toMulActionWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u1, u2, u2, u3, u4} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u2, u4} π•œβ‚‚ F (CommRing.toCommMonoid.{u2} π•œβ‚‚ (SeminormedCommRing.toCommRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u2, u4} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1367 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1369 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1367 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1369) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMulβ‚“'. -/
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
@@ -203,10 +182,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
 /- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si)))))))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1659 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1661 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1659 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1661) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basisβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
@@ -221,10 +197,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
 
 /- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1962 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1964 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1962 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1964) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zeroβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
@@ -269,10 +242,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
 /- warning: continuous_linear_map.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.hasBasis_nhds_zero_of_basis is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))))))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u5}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u5} F] [_inst_13 : TopologicalAddGroup.{u5} F _inst_12 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_12 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basisβ‚“'. -/
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -284,10 +254,7 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
 
 /- warning: continuous_linear_map.has_basis_nhds_zero -> ContinuousLinearMap.hasBasis_nhds_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
-but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zeroβ‚“'. -/
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
Diff
@@ -126,7 +126,7 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (fun (_x : Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) => (E -> F) -> (UniformOnFun.{u3, u4} E F 𝔖)) (Equiv.hasCoeToFun.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFnβ‚“'. -/
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
Diff
@@ -185,7 +185,7 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : RingHomSurjective.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (NormedField.toHasNorm.{u1} π•œβ‚ _inst_1) (NormedField.toHasNorm.{u2} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u4} F] [_inst_16 : TopologicalAddGroup.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_17 : ContinuousSMul.{u2, u4} π•œβ‚‚ F (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall (S : Set.{u3} E), (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toHasSmul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (SMulWithZero.toSmulZeroClass.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (Module.toMulActionWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u1, u2, u2, u3, u4} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u2, u4} π•œβ‚‚ F (CommRing.toCommMonoid.{u2} π•œβ‚‚ (SeminormedCommRing.toCommRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u2, u4} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
+  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1367 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1369 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1367 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1369) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMulβ‚“'. -/
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
@@ -206,7 +206,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si)))))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1659 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1661 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1659 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1661) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basisβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
@@ -224,7 +224,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1962 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1964 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1962 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1964) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zeroβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
Diff
@@ -167,9 +167,9 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
 
 /- warning: continuous_linear_map.strong_topology.t2_space -> ContinuousLinearMap.strongTopology.t2Space is a dubious translation:
 lean 3 declaration is
-  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.sUnion.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.sUnion.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Spaceβ‚“'. -/
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
@@ -266,7 +266,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     T2Space (E β†’SL[Οƒ] F) :=
   strongTopology.t2Space Οƒ F _
     (Set.eq_univ_of_forall fun x =>
-      Set.mem_unionβ‚›_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
+      Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
 /- warning: continuous_linear_map.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.hasBasis_nhds_zero_of_basis is a dubious translation:
 lean 3 declaration is
Diff
@@ -100,7 +100,7 @@ def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{succ (max u3 u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{max (succ u3) (succ u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{max (succ u3) (succ u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eqβ‚“'. -/
 @[simp]
 theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
@@ -112,7 +112,7 @@ theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFnβ‚“'. -/
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
@@ -126,7 +126,7 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (fun (_x : Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) => (E -> F) -> (UniformOnFun.{u3, u4} E F 𝔖)) (Equiv.hasCoeToFun.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFnβ‚“'. -/
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
@@ -138,7 +138,7 @@ theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroupβ‚“'. -/
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
@@ -153,7 +153,7 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroupβ‚“'. -/
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
@@ -169,7 +169,7 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Spaceβ‚“'. -/
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
@@ -185,7 +185,7 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : RingHomSurjective.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (NormedField.toHasNorm.{u1} π•œβ‚ _inst_1) (NormedField.toHasNorm.{u2} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u4} F] [_inst_16 : TopologicalAddGroup.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_17 : ContinuousSMul.{u2, u4} π•œβ‚‚ F (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall (S : Set.{u3} E), (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toHasSmul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (SMulWithZero.toSmulZeroClass.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (Module.toMulActionWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u1, u2, u2, u3, u4} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u2, u4} π•œβ‚‚ F (CommRing.toCommMonoid.{u2} π•œβ‚‚ (SeminormedCommRing.toCommRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u2, u4} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚ (Ring.toNonAssocRing.{u4} π•œβ‚ (NormedRing.toRing.{u4} π•œβ‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u3} π•œβ‚‚ (Ring.toNonAssocRing.{u3} π•œβ‚‚ (NormedRing.toRing.{u3} π•œβ‚‚ (NormedCommRing.toNormedRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
+  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMulβ‚“'. -/
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
@@ -206,7 +206,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si)))))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basisβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
@@ -224,7 +224,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zeroβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
@@ -272,7 +272,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u5}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u5} F] [_inst_13 : TopologicalAddGroup.{u5} F _inst_12 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_12 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u5}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u5} F] [_inst_13 : TopologicalAddGroup.{u5} F _inst_12 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_12 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basisβ‚“'. -/
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -287,7 +287,7 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
 lean 3 declaration is
   forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
 but is expected to have type
-  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (Semiring.toNonAssocSemiring.{u1} π•œβ‚‚ (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zeroβ‚“'. -/
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit b8627dbac120a9ad6267a75575ae1e070d5bff5b
+! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Topology.Algebra.UniformConvergence
 /-!
 # Strong topologies on the space of continuous linear maps
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file, we define the strong topologies on `E β†’L[π•œ] F` associated with a family
 `𝔖 : set (set E)` to be the topology of uniform convergence on the elements of `𝔖` (also called
 the topology of `𝔖`-convergence).
Diff
@@ -69,6 +69,7 @@ variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚]
   [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
   [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E] [TopologicalSpace E'] (F)
 
+#print ContinuousLinearMap.strongTopology /-
 /-- Given `E` and `F` two topological vector spaces and `𝔖 : set (set E)`, then
 `strong_topology Οƒ F 𝔖` is the "topology of uniform convergence on the elements of `𝔖`" on
 `E β†’L[π•œ] F`.
@@ -79,7 +80,9 @@ def strongTopology [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set
     TopologicalSpace (E β†’SL[Οƒ] F) :=
   (@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced coeFn
 #align continuous_linear_map.strong_topology ContinuousLinearMap.strongTopology
+-/
 
+#print ContinuousLinearMap.strongUniformity /-
 /-- The uniform structure associated with `continuous_linear_map.strong_topology`. We make sure
 that this has nice definitional properties. -/
 def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
@@ -88,13 +91,26 @@ def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     ((UniformOnFun.uniformSpace E F 𝔖).comap coeFn)
     (by rw [strong_topology, UniformAddGroup.toUniformSpace_eq] <;> rfl)
 #align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
+-/
 
+/- warning: continuous_linear_map.strong_uniformity_topology_eq -> ContinuousLinearMap.strongUniformity_topology_eq is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{succ (max u3 u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Eq.{max (succ u3) (succ u4)} (TopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)) (UniformSpace.toTopologicalSpace.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖)) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖)
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eqβ‚“'. -/
 @[simp]
 theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     (strongUniformity Οƒ F 𝔖).toTopologicalSpace = strongTopology Οƒ F 𝔖 :=
   rfl
 #align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
 
+/- warning: continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn -> ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformEmbedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (UniformOnFun.uniformSpace.{u3, u4} E F _inst_13 𝔖) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFnβ‚“'. -/
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
@@ -103,12 +119,24 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
   ⟨⟨rfl⟩, FunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 
+/- warning: continuous_linear_map.strong_topology.embedding_coe_fn -> ContinuousLinearMap.strongTopology.embedding_coeFn is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u3 u4, max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (fun (_x : Equiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) => (E -> F) -> (UniformOnFun.{u3, u4} E F 𝔖)) (Equiv.hasCoeToFun.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (αΎ° : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), Embedding.{max u4 u3, max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (UniformOnFun.{u3, u4} E F 𝔖) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14) 𝔖) (UniformOnFun.topologicalSpace.{u3, u4} E F _inst_13 𝔖) (Function.comp.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (E -> F) (UniformOnFun.{u3, u4} E F 𝔖) (FunLike.coe.{max (succ u3) (succ u4), max (succ u3) (succ u4), max (succ u3) (succ u4)} (Equiv.{max (succ u3) (succ u4), max (succ u4) (succ u3)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (E -> F) (fun (_x : E -> F) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : E -> F) => UniformOnFun.{u3, u4} E F 𝔖) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (E -> F) (UniformOnFun.{u3, u4} E F 𝔖)) (UniformOnFun.ofFun.{u3, u4} E F 𝔖)) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (αΎ° : E) => F) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFnβ‚“'. -/
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖) (UniformOnFun.topologicalSpace E F 𝔖)
       (UniformOnFun.ofFun 𝔖 ∘ coeFn) :=
   @UniformEmbedding.embedding _ _ (id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
 
+/- warning: continuous_linear_map.strong_uniformity.uniform_add_group -> ContinuousLinearMap.strongUniformity.uniformAddGroup is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : UniformSpace.{u4} F] [_inst_14 : UniformAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), UniformAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongUniformity.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F (UniformSpace.toTopologicalSpace.{u4} F _inst_13) _inst_7 _inst_4 _inst_8 Οƒ (UniformAddGroup.to_topologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_14)))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroupβ‚“'. -/
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
   by
@@ -118,6 +146,12 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   exact uniformAddGroup_comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
+/- warning: continuous_linear_map.strong_topology.topological_add_group -> ContinuousLinearMap.strongTopology.topologicalAddGroup is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u1, u2, u3, u4} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), TopologicalAddGroup.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (AddCommGroup.toAddGroup.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommGroup.{u2, u1, u3, u4} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2))) E _inst_11 _inst_3 F _inst_13 _inst_7 _inst_4 _inst_8 Οƒ _inst_14))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroupβ‚“'. -/
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
   by
@@ -128,6 +162,12 @@ theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddG
   infer_instance
 #align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
 
+/- warning: continuous_linear_map.strong_topology.t2_space -> ContinuousLinearMap.strongTopology.t2Space is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_15 : T2Space.{u4} F _inst_13] (𝔖 : Set.{u3} (Set.{u3} E)), (Eq.{succ u3} (Set.{u3} E) (Set.unionβ‚›.{u3} E 𝔖) (Set.univ.{u3} E)) -> (T2Space.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Spaceβ‚“'. -/
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
   by
@@ -138,6 +178,12 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
   exact (strong_topology.embedding_coe_fn Οƒ F 𝔖).T2Space
 #align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
 
+/- warning: continuous_linear_map.strong_topology.has_continuous_smul -> ContinuousLinearMap.strongTopology.continuousSMul is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : RingHomSurjective.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u1, u2} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (NormedField.toHasNorm.{u1} π•œβ‚ _inst_1) (NormedField.toHasNorm.{u2} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u4} F] [_inst_16 : TopologicalAddGroup.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_17 : ContinuousSMul.{u2, u4} π•œβ‚‚ F (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall (S : Set.{u3} E), (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toHasSmul.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (SMulWithZero.toSmulZeroClass.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddMonoid.toAddZeroClass.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (AddCommMonoid.toAddMonoid.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16))))) (Module.toMulActionWithZero.{u2, max u3 u4} π•œβ‚‚ (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u1, u2, u2, u3, u4} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u2, u4} π•œβ‚‚ F (CommRing.toCommMonoid.{u2} π•œβ‚‚ (SeminormedCommRing.toCommRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u2, u4} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toHasSmul.{u2, u4} π•œβ‚‚ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} π•œβ‚‚ F (MulZeroClass.toHasZero.{u2} π•œβ‚‚ (MulZeroOneClass.toMulZeroClass.{u2} π•œβ‚‚ (MonoidWithZero.toMulZeroOneClass.{u2} π•œβ‚‚ (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u2} π•œβ‚‚ (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.to_continuousAdd.{u4} F _inst_15 (AddCommGroup.toAddGroup.{u4} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u2} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u2} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u2} π•œβ‚‚ (SeminormedCommRing.toSemiNormedRing.{u2} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u4}} {π•œβ‚‚ : Type.{u3}} [_inst_1 : NormedField.{u4} π•œβ‚] [_inst_2 : NormedField.{u3} π•œβ‚‚] (Οƒ : RingHom.{u4, u3} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚ (Ring.toNonAssocRing.{u4} π•œβ‚ (NormedRing.toRing.{u4} π•œβ‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u3} π•œβ‚‚ (Ring.toNonAssocRing.{u3} π•œβ‚‚ (NormedRing.toRing.{u3} π•œβ‚‚ (NormedCommRing.toNormedRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) {E : Type.{u1}} (F : Type.{u2}) [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_7 : AddCommGroup.{u2} F] [_inst_8 : Module.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] [_inst_11 : TopologicalSpace.{u1} E] [_inst_13 : RingHomSurjective.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ] [_inst_14 : RingHomIsometric.{u4, u3} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (NormedField.toNorm.{u4} π•œβ‚ _inst_1) (NormedField.toNorm.{u3} π•œβ‚‚ _inst_2) Οƒ] [_inst_15 : TopologicalSpace.{u2} F] [_inst_16 : TopologicalAddGroup.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7)] [_inst_17 : ContinuousSMul.{u3, u2} π•œβ‚‚ F (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15] (𝔖 : Set.{u1} (Set.{u1} E)), (Set.Nonempty.{u1} (Set.{u1} E) 𝔖) -> (DirectedOn.{u1} (Set.{u1} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 : Set.{u1} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409 : Set.{u1} E) => HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1407 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1409) 𝔖) -> (forall (S : Set.{u1} E), (Membership.mem.{u1, u1} (Set.{u1} E) (Set.{u1} (Set.{u1} E)) (Set.instMembershipSet.{u1} (Set.{u1} E)) S 𝔖) -> (Bornology.IsVonNBounded.{u4, u1} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u4} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u4} π•œβ‚ (NormedField.toNormedCommRing.{u4} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u4, u1} π•œβ‚ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u1} π•œβ‚ E (CommMonoidWithZero.toZero.{u4} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u4} π•œβ‚ (Semifield.toCommGroupWithZero.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u1} π•œβ‚ E (Semiring.toMonoidWithZero.{u4} π•œβ‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u4, u1} π•œβ‚ E (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_11 S)) -> (ContinuousSMul.{u3, max u2 u1} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulZeroClass.toSMul.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (SMulWithZero.toSMulZeroClass.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (CommMonoidWithZero.toZero.{u3} π•œβ‚‚ (CommGroupWithZero.toCommMonoidWithZero.{u3} π•œβ‚‚ (Semifield.toCommGroupWithZero.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (MulActionWithZero.toSMulWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (ContinuousLinearMap.zero.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (Module.toMulActionWithZero.{u3, max u1 u2} π•œβ‚‚ (ContinuousLinearMap.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (ContinuousLinearMap.addCommMonoid.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_4 _inst_8 (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)) (ContinuousLinearMap.module.{u4, u3, u3, u1, u2} π•œβ‚ π•œβ‚‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚ (Field.toSemifield.{u4} π•œβ‚ (NormedField.toField.{u4} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) E _inst_11 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4 F _inst_15 (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8 _inst_8 (smulCommClass_self.{u3, u2} π•œβ‚‚ F (CommRing.toCommMonoid.{u3} π•œβ‚‚ (EuclideanDomain.toCommRing.{u3} π•œβ‚‚ (Field.toEuclideanDomain.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (MulActionWithZero.toMulAction.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_7))))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8))) (ContinuousSMul.continuousConstSMul.{u3, u2} π•œβ‚‚ F (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) _inst_15 (SMulZeroClass.toSMul.{u3, u2} π•œβ‚‚ F (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (SMulWithZero.toSMulZeroClass.{u3, u2} π•œβ‚‚ F (MonoidWithZero.toZero.{u3} π•œβ‚‚ (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (MulActionWithZero.toSMulWithZero.{u3, u2} π•œβ‚‚ F (Semiring.toMonoidWithZero.{u3} π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2))))) (AddMonoid.toZero.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_7))) (Module.toMulActionWithZero.{u3, u2} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u3} π•œβ‚‚ (Semifield.toDivisionSemiring.{u3} π•œβ‚‚ (Field.toSemifield.{u3} π•œβ‚‚ (NormedField.toField.{u3} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_8)))) _inst_17) Οƒ (TopologicalAddGroup.toContinuousAdd.{u2} F _inst_15 (AddCommGroup.toAddGroup.{u2} F _inst_7) _inst_16)))))) (UniformSpace.toTopologicalSpace.{u3} π•œβ‚‚ (PseudoMetricSpace.toUniformSpace.{u3} π•œβ‚‚ (SeminormedRing.toPseudoMetricSpace.{u3} π•œβ‚‚ (SeminormedCommRing.toSeminormedRing.{u3} π•œβ‚‚ (NormedCommRing.toSeminormedCommRing.{u3} π•œβ‚‚ (NormedField.toNormedCommRing.{u3} π•œβ‚‚ _inst_2)))))) (ContinuousLinearMap.strongTopology.{u4, u3, u1, u2} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_15 _inst_16 𝔖))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMulβ‚“'. -/
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
@@ -153,6 +199,12 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
       fun u s hs => (h𝔖₃ s hs).image u
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
+/- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si)))))))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u5}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u5} F] [_inst_14 : TopologicalAddGroup.{u5} F _inst_13 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1705 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.1707) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_13 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u5 u3} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si)))))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basisβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -165,6 +217,12 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap coeFn
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
 
+/- warning: continuous_linear_map.strong_topology.has_basis_nhds_zero -> ContinuousLinearMap.strongTopology.hasBasis_nhds_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] (Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E)) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.Mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.hasMem.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] (Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))) {E : Type.{u3}} (F : Type.{u4}) [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_13 : TopologicalSpace.{u4} F] [_inst_14 : TopologicalAddGroup.{u4} F _inst_13 (AddCommGroup.toAddGroup.{u4} F _inst_7)] (𝔖 : Set.{u3} (Set.{u3} E)), (Set.Nonempty.{u3} (Set.{u3} E) 𝔖) -> (DirectedOn.{u3} (Set.{u3} E) (fun (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 : Set.{u3} E) (x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016 : Set.{u3} E) => HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2014 x._@.Mathlib.Topology.Algebra.Module.StrongTopology._hyg.2016) 𝔖) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u4 u3} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.strongTopology.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_13 _inst_14 𝔖) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) 𝔖) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_13 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_13 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_13 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zeroβ‚“'. -/
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
@@ -207,6 +265,12 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     (Set.eq_univ_of_forall fun x =>
       Set.mem_unionβ‚›_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
+/- warning: continuous_linear_map.has_basis_nhds_zero_of_basis -> ContinuousLinearMap.hasBasis_nhds_zero_of_basis is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)] {ΞΉ : Type.{u5}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u4} F)}, (Filter.HasBasis.{u4, succ u5} F ΞΉ (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))) p b) -> (Filter.HasBasis.{max u3 u4, max (succ u3) (succ u5)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u5} (Set.{u3} E) ΞΉ) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u5} (Set.{u3} E) ΞΉ) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u5} (Set.{u3} E) ΞΉ Si)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (b (Prod.snd.{u3, u5} (Set.{u3} E) ΞΉ Si))))))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u5}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u5} F] [_inst_8 : Module.{u1, u5} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u5} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u5} F] [_inst_13 : TopologicalAddGroup.{u5} F _inst_12 (AddCommGroup.toAddGroup.{u5} F _inst_7)] {ΞΉ : Type.{u4}} {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u5} F)}, (Filter.HasBasis.{u5, succ u4} F ΞΉ (nhds.{u5} F _inst_12 (OfNat.ofNat.{u5} F 0 (Zero.toOfNat0.{u5} F (NegZeroClass.toZero.{u5} F (SubNegZeroMonoid.toNegZeroClass.{u5} F (SubtractionMonoid.toSubNegZeroMonoid.{u5} F (SubtractionCommMonoid.toSubtractionMonoid.{u5} F (AddCommGroup.toDivisionAddCommMonoid.{u5} F _inst_7)))))))) p b) -> (Filter.HasBasis.{max u3 u5, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) ΞΉ) (nhds.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8)))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) (p (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))) (fun (Si : Prod.{u3, u4} (Set.{u3} E) ΞΉ) => setOf.{max u3 u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) ΞΉ Si)) -> (Membership.mem.{u5, u5} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u5} F) (Set.instMembershipSet.{u5} F) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u5, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u5, u2, u1, u3, u5} (ContinuousLinearMap.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u5} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u5} F _inst_7) _inst_4 _inst_8))) f x) (b (Prod.snd.{u3, u4} (Set.{u3} E) ΞΉ Si))))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basisβ‚“'. -/
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
@@ -216,6 +280,12 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
 
+/- warning: continuous_linear_map.has_basis_nhds_zero -> ContinuousLinearMap.hasBasis_nhds_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œβ‚ : Type.{u1}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : NormedField.{u1} π•œβ‚] [_inst_2 : NormedField.{u2} π•œβ‚‚] {Οƒ : RingHom.{u1, u2} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚ (Ring.toNonAssocRing.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚‚ (Ring.toNonAssocRing.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} π•œβ‚‚ F (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (OfNat.mk.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.zero.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u1, u3} π•œβ‚ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œβ‚ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œβ‚ E (MulZeroClass.toHasZero.{u1} π•œβ‚ (MulZeroOneClass.toMulZeroClass.{u1} π•œβ‚ (MonoidWithZero.toMulZeroOneClass.{u1} π•œβ‚ (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u1} π•œβ‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)))) (Module.toMulActionWithZero.{u1, u3} π•œβ‚ E (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.Mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (Filter.hasMem.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (OfNat.mk.{u4} F 0 (Zero.zero.{u4} F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (SubNegMonoid.toAddMonoid.{u4} F (AddGroup.toSubNegMonoid.{u4} F (AddCommGroup.toAddGroup.{u4} F _inst_7))))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.Mem.{u3, u3} E (Set.{u3} E) (Set.hasMem.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.Mem.{u4, u4} F (Set.{u4} F) (Set.hasMem.{u4} F) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u2, u3, u4} π•œβ‚ π•œβ‚‚ (Ring.toSemiring.{u1} π•œβ‚ (NormedRing.toRing.{u1} π•œβ‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚ (NormedField.toNormedCommRing.{u1} π•œβ‚ _inst_1)))) (Ring.toSemiring.{u2} π•œβ‚‚ (NormedRing.toRing.{u2} π•œβ‚‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚‚ (NormedField.toNormedCommRing.{u2} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
+but is expected to have type
+  forall {π•œβ‚ : Type.{u2}} {π•œβ‚‚ : Type.{u1}} [_inst_1 : NormedField.{u2} π•œβ‚] [_inst_2 : NormedField.{u1} π•œβ‚‚] {Οƒ : RingHom.{u2, u1} π•œβ‚ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u2} π•œβ‚ (Ring.toNonAssocRing.{u2} π•œβ‚ (NormedRing.toRing.{u2} π•œβ‚ (NormedCommRing.toNormedRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u1} π•œβ‚‚ (Ring.toNonAssocRing.{u1} π•œβ‚‚ (NormedRing.toRing.{u1} π•œβ‚‚ (NormedCommRing.toNormedRing.{u1} π•œβ‚‚ (NormedField.toNormedCommRing.{u1} π•œβ‚‚ _inst_2)))))} {E : Type.{u3}} {F : Type.{u4}} [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u1, u4} π•œβ‚‚ F (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] [_inst_11 : TopologicalSpace.{u3} E] [_inst_12 : TopologicalSpace.{u4} F] [_inst_13 : TopologicalAddGroup.{u4} F _inst_12 (AddCommGroup.toAddGroup.{u4} F _inst_7)], Filter.HasBasis.{max u3 u4, max (succ u3) (succ u4)} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) (nhds.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.topologicalSpace.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ _inst_1 _inst_2 Οƒ E F _inst_3 _inst_4 _inst_7 _inst_8 _inst_11 _inst_12 _inst_13) (OfNat.ofNat.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) 0 (Zero.toOfNat0.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (ContinuousLinearMap.zero.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8)))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => And (Bornology.IsVonNBounded.{u2, u3} π•œβ‚ E (SeminormedCommRing.toSeminormedRing.{u2} π•œβ‚ (NormedCommRing.toSeminormedCommRing.{u2} π•œβ‚ (NormedField.toNormedCommRing.{u2} π•œβ‚ _inst_1))) (SMulZeroClass.toSMul.{u2, u3} π•œβ‚ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π•œβ‚ E (CommMonoidWithZero.toZero.{u2} π•œβ‚ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œβ‚ (Semifield.toCommGroupWithZero.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π•œβ‚ E (Semiring.toMonoidWithZero.{u2} π•œβ‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u2, u3} π•œβ‚ E (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_11 (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) (Membership.mem.{u4, u4} (Set.{u4} F) (Filter.{u4} F) (instMembershipSetFilter.{u4} F) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV) (nhds.{u4} F _inst_12 (OfNat.ofNat.{u4} F 0 (Zero.toOfNat0.{u4} F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7)))))))))) (fun (SV : Prod.{u3, u4} (Set.{u3} E) (Set.{u4} F)) => setOf.{max u3 u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) (fun (f : ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) => forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (Prod.fst.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV)) -> (Membership.mem.{u4, u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Set.{u4} F) (Set.instMembershipSet.{u4} F) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) E F _inst_11 _inst_12 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u2, u1, u3, u4} (ContinuousLinearMap.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8) π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u1, u3, u4} π•œβ‚ π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚ (Field.toSemifield.{u2} π•œβ‚ (NormedField.toField.{u2} π•œβ‚ _inst_1)))) (DivisionSemiring.toSemiring.{u1} π•œβ‚‚ (Semifield.toDivisionSemiring.{u1} π•œβ‚‚ (Field.toSemifield.{u1} π•œβ‚‚ (NormedField.toField.{u1} π•œβ‚‚ _inst_2)))) Οƒ E _inst_11 (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) F _inst_12 (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_4 _inst_8))) f x) (Prod.snd.{u3, u4} (Set.{u3} E) (Set.{u4} F) SV))))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zeroβ‚“'. -/
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
       (fun SV : Set E Γ— Set F => Bornology.IsVonNBounded π•œβ‚ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F))
Diff
@@ -4,12 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit b8627dbac120a9ad6267a75575ae1e070d5bff5b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Algebra.UniformConvergence
-import Mathbin.Topology.Algebra.Module.LocallyConvex
 
 /-!
 # Strong topologies on the space of continuous linear maps
@@ -52,7 +51,6 @@ sets).
 
 ## TODO
 
-* show that these topologies are Tβ‚‚ and locally convex if the topology on `F` is
 * add a type alias for continuous linear maps with the topology of `𝔖`-convergence?
 
 ## Tags
@@ -175,22 +173,6 @@ theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGr
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
 
-theorem strongTopology.locallyConvexSpace [TopologicalSpace F'] [TopologicalAddGroup F']
-    [ContinuousConstSMul ℝ F'] [LocallyConvexSpace ℝ F'] (𝔖 : Set (Set E')) (h𝔖₁ : 𝔖.Nonempty)
-    (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
-    @LocallyConvexSpace ℝ (E' β†’L[ℝ] F') _ _ _ (strongTopology (RingHom.id ℝ) F' 𝔖) :=
-  by
-  letI : TopologicalSpace (E' β†’L[ℝ] F') := strong_topology (RingHom.id ℝ) F' 𝔖
-  haveI : TopologicalAddGroup (E' β†’L[ℝ] F') := strong_topology.topological_add_group _ _ _
-  refine'
-    LocallyConvexSpace.ofBasisZero _ _ _ _
-      (strong_topology.has_basis_nhds_zero_of_basis _ _ _ h𝔖₁ h𝔖₂
-        (LocallyConvexSpace.convex_basis_zero ℝ F'))
-      _
-  rintro ⟨S, V⟩ ⟨hS, hVmem, hVconvex⟩ f hf g hg a b ha hb hab x hx
-  exact hVconvex (hf x hx) (hg x hx) ha hb hab
-#align continuous_linear_map.strong_topology.locally_convex_space ContinuousLinearMap.strongTopology.locallyConvexSpace
-
 end General
 
 section BoundedSets
@@ -241,11 +223,6 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 
-instance [TopologicalSpace E'] [TopologicalSpace F'] [TopologicalAddGroup F']
-    [ContinuousConstSMul ℝ F'] [LocallyConvexSpace ℝ F'] : LocallyConvexSpace ℝ (E' β†’L[ℝ] F') :=
-  strongTopology.locallyConvexSpace _ βŸ¨βˆ…, Bornology.isVonNBounded_empty ℝ E'⟩
-    (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union)
-
 end BoundedSets
 
 end ContinuousLinearMap
Diff
@@ -117,14 +117,14 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   rw [strong_uniformity, UniformSpace.replaceTopology_eq]
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F := ⟨(coeFn : (E β†’SL[Οƒ] F) β†’ E β†’α΅€ F), rfl, fun _ _ => rfl⟩
-  exact uniform_add_group_comap Ο†
+  exact uniformAddGroup_comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
-  haveI : UniformAddGroup F := topological_add_commGroup_is_uniform
+  haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : UniformSpace (E β†’SL[Οƒ] F) := strong_uniformity Οƒ F 𝔖
   haveI : UniformAddGroup (E β†’SL[Οƒ] F) := strong_uniformity.uniform_add_group Οƒ F 𝔖
   infer_instance
@@ -134,7 +134,7 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
     (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
-  haveI : UniformAddGroup F := topological_add_commGroup_is_uniform
+  haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strong_topology Οƒ F 𝔖
   haveI : T2Space (E β†’α΅€[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖
   exact (strong_topology.embedding_coe_fn Οƒ F 𝔖).T2Space
@@ -146,7 +146,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
     @ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) _ _ (strongTopology Οƒ F 𝔖) :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
-  haveI : UniformAddGroup F := topological_add_commGroup_is_uniform
+  haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strong_topology Οƒ F 𝔖
   let Ο† : (E β†’SL[Οƒ] F) β†’β‚—[π•œβ‚‚] E β†’α΅€[𝔖] F :=
     ⟨(coeFn : (E β†’SL[Οƒ] F) β†’ E β†’ F), fun _ _ => rfl, fun _ _ => rfl⟩
@@ -162,7 +162,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
       fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
   by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
-  haveI : UniformAddGroup F := topological_add_commGroup_is_uniform
+  haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   rw [nhds_induced]
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap coeFn
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis

Changes in mathlib4

mathlib3
mathlib4
feat(Topology/Algebra/Module/StrongTopology): add monotonicity lemmas (#11600)
Diff
@@ -83,15 +83,23 @@ instance instFunLike [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : FunLike (UniformConvergenceCLM Οƒ F 𝔖) E F :=
   ContinuousLinearMap.funLike
 
-instance continuousSemilinearMapClass [TopologicalSpace F] [TopologicalAddGroup F]
+instance instContinuousSemilinearMapClass [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : ContinuousSemilinearMapClass (UniformConvergenceCLM Οƒ F 𝔖) Οƒ E F :=
   ContinuousLinearMap.continuousSemilinearMapClass
-instance instTopologicalSpace [TopologicalSpace F]
-    [TopologicalAddGroup F] (𝔖 : Set (Set E)) : TopologicalSpace (UniformConvergenceCLM Οƒ F 𝔖) :=
+
+instance instTopologicalSpace [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
+    TopologicalSpace (UniformConvergenceCLM Οƒ F 𝔖) :=
   (@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced
     (DFunLike.coe : (UniformConvergenceCLM Οƒ F 𝔖) β†’ (E β†’α΅€[𝔖] F))
 #align continuous_linear_map.strong_topology UniformConvergenceCLM.instTopologicalSpace
 
+theorem topologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    instTopologicalSpace Οƒ F 𝔖 = TopologicalSpace.induced DFunLike.coe
+      (UniformOnFun.topologicalSpace E F 𝔖) := by
+  rw [instTopologicalSpace]
+  congr
+  exact UniformAddGroup.toUniformSpace_eq
+
 /-- The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure
 that this has nice definitional properties. -/
 instance instUniformSpace [UniformSpace F] [UniformAddGroup F]
@@ -102,6 +110,10 @@ instance instUniformSpace [UniformSpace F] [UniformAddGroup F]
     (by rw [UniformConvergenceCLM.instTopologicalSpace, UniformAddGroup.toUniformSpace_eq]; rfl)
 #align continuous_linear_map.strong_uniformity UniformConvergenceCLM.instUniformSpace
 
+theorem uniformSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    instUniformSpace Οƒ F 𝔖 = UniformSpace.comap DFunLike.coe (UniformOnFun.uniformSpace E F 𝔖) := by
+  rw [instUniformSpace, UniformSpace.replaceTopology_eq]
+
 @[simp]
 theorem uniformity_toTopologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     (UniformConvergenceCLM.instUniformSpace Οƒ F 𝔖).toTopologicalSpace =
@@ -109,8 +121,7 @@ theorem uniformity_toTopologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (
   rfl
 #align continuous_linear_map.strong_uniformity_topology_eq UniformConvergenceCLM.uniformity_toTopologicalSpace_eq
 
-theorem uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
-    (𝔖 : Set (Set E)) :
+theorem uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     UniformEmbedding (Ξ± := UniformConvergenceCLM Οƒ F 𝔖) (Ξ² := E β†’α΅€[𝔖] F) DFunLike.coe :=
   ⟨⟨rfl⟩, DFunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn UniformConvergenceCLM.uniformEmbedding_coeFn
@@ -208,6 +219,20 @@ theorem tendsto_iff_tendstoUniformlyOn {ΞΉ : Type*} {p : Filter ΞΉ} [UniformSpac
   rw [(embedding_coeFn Οƒ F 𝔖).tendsto_nhds_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn]
   rfl
 
+variable {𝔖₁ 𝔖₂ : Set (Set E)}
+
+theorem uniformSpace_mono [UniformSpace F] [UniformAddGroup F] (h : 𝔖₂ βŠ† 𝔖₁) :
+    instUniformSpace Οƒ F 𝔖₁ ≀ instUniformSpace Οƒ F 𝔖₂ := by
+  simp_rw [uniformSpace_eq]
+  exact UniformSpace.comap_mono (UniformOnFun.mono (le_refl _) h)
+
+theorem topologicalSpace_mono [TopologicalSpace F] [TopologicalAddGroup F] (h : 𝔖₂ βŠ† 𝔖₁) :
+    instTopologicalSpace Οƒ F 𝔖₁ ≀ instTopologicalSpace Οƒ F 𝔖₂ := by
+  letI := TopologicalAddGroup.toUniformSpace F
+  haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
+  simp_rw [← uniformity_toTopologicalSpace_eq]
+  exact UniformSpace.toTopologicalSpace_mono (uniformSpace_mono Οƒ F h)
+
 end UniformConvergenceCLM
 
 end General
feat(Topology/Algebra/StrongTopology): introduce type synonym for abstract topologies on CLM (#11470)
Diff
@@ -29,14 +29,15 @@ sets).
 
 ## Main definitions
 
-* `ContinuousLinearMap.strongTopology` is the topology mentioned above for an arbitrary `𝔖`.
+* `UniformConvergenceCLM` is a type synonym for `E β†’SL[Οƒ] F` equipped with the `𝔖`-topology.
+* `UniformConvergenceCLM.instTopologicalSpace` is the topology mentioned above for an arbitrary `𝔖`.
 * `ContinuousLinearMap.topologicalSpace` is the topology of bounded convergence. This is
   declared as an instance.
 
 ## Main statements
 
-* `ContinuousLinearMap.strongTopology.topologicalAddGroup` and
-  `ContinuousLinearMap.strongTopology.continuousSMul` show that the strong topology
+* `UniformConvergenceCLM.instTopologicalAddGroup` and
+  `UniformConvergenceCLM.instContinuousSMul` show that the strong topology
   makes `E β†’L[π•œ] F` a topological vector space, with the assumptions on `𝔖` mentioned above.
 * `ContinuousLinearMap.topologicalAddGroup` and
   `ContinuousLinearMap.continuousSMul` register these facts as instances for the special
@@ -48,7 +49,7 @@ sets).
 
 ## TODO
 
-* add a type alias for continuous linear maps with the topology of `𝔖`-convergence?
+* Add convergence on compact subsets
 
 ## Tags
 
@@ -58,139 +59,165 @@ uniform convergence, bounded convergence
 
 open scoped Topology UniformConvergence
 
-namespace ContinuousLinearMap
-
 section General
 
+/-! ### 𝔖-Topologies -/
+
 variable {π•œβ‚ π•œβ‚‚ : Type*} [NormedField π•œβ‚] [NormedField π•œβ‚‚] (Οƒ : π•œβ‚ β†’+* π•œβ‚‚) {E E' F F' : Type*}
   [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
   [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E] [TopologicalSpace E'] (F)
 
 /-- Given `E` and `F` two topological vector spaces and `𝔖 : Set (Set E)`, then
-`strongTopology Οƒ F 𝔖` is the "topology of uniform convergence on the elements of `𝔖`" on
-`E β†’L[π•œ] F`.
+`UniformConvergenceCLM Οƒ F 𝔖` is a type synonym of `E β†’SL[Οƒ] F` equipped with the "topology of
+uniform convergence on the elements of `𝔖`".
 
-If the continuous linear image of any element of `𝔖` is bounded, this makes `E β†’L[π•œ] F` a
+If the continuous linear image of any element of `𝔖` is bounded, this makes `E β†’SL[Οƒ] F` a
 topological vector space. -/
-def strongTopology [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
-    TopologicalSpace (E β†’SL[Οƒ] F) :=
+@[nolint unusedArguments]
+def UniformConvergenceCLM [TopologicalSpace F] [TopologicalAddGroup F] (_ : Set (Set E)) :=
+  E β†’SL[Οƒ] F
+
+namespace UniformConvergenceCLM
+
+instance instFunLike [TopologicalSpace F] [TopologicalAddGroup F]
+    (𝔖 : Set (Set E)) : FunLike (UniformConvergenceCLM Οƒ F 𝔖) E F :=
+  ContinuousLinearMap.funLike
+
+instance continuousSemilinearMapClass [TopologicalSpace F] [TopologicalAddGroup F]
+    (𝔖 : Set (Set E)) : ContinuousSemilinearMapClass (UniformConvergenceCLM Οƒ F 𝔖) Οƒ E F :=
+  ContinuousLinearMap.continuousSemilinearMapClass
+instance instTopologicalSpace [TopologicalSpace F]
+    [TopologicalAddGroup F] (𝔖 : Set (Set E)) : TopologicalSpace (UniformConvergenceCLM Οƒ F 𝔖) :=
   (@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced
-    (DFunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F))
-#align continuous_linear_map.strong_topology ContinuousLinearMap.strongTopology
+    (DFunLike.coe : (UniformConvergenceCLM Οƒ F 𝔖) β†’ (E β†’α΅€[𝔖] F))
+#align continuous_linear_map.strong_topology UniformConvergenceCLM.instTopologicalSpace
 
 /-- The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure
 that this has nice definitional properties. -/
-def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    UniformSpace (E β†’SL[Οƒ] F) :=
-  @UniformSpace.replaceTopology _ (strongTopology Οƒ F 𝔖)
-    ((UniformOnFun.uniformSpace E F 𝔖).comap (DFunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F)))
-    (by rw [strongTopology, UniformAddGroup.toUniformSpace_eq]; rfl)
-#align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
+instance instUniformSpace [UniformSpace F] [UniformAddGroup F]
+    (𝔖 : Set (Set E)) : UniformSpace (UniformConvergenceCLM Οƒ F 𝔖) :=
+  UniformSpace.replaceTopology
+    ((UniformOnFun.uniformSpace E F 𝔖).comap
+      (DFunLike.coe : (UniformConvergenceCLM Οƒ F 𝔖) β†’ (E β†’α΅€[𝔖] F)))
+    (by rw [UniformConvergenceCLM.instTopologicalSpace, UniformAddGroup.toUniformSpace_eq]; rfl)
+#align continuous_linear_map.strong_uniformity UniformConvergenceCLM.instUniformSpace
 
 @[simp]
-theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    (strongUniformity Οƒ F 𝔖).toTopologicalSpace = strongTopology Οƒ F 𝔖 :=
+theorem uniformity_toTopologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    (UniformConvergenceCLM.instUniformSpace Οƒ F 𝔖).toTopologicalSpace =
+      UniformConvergenceCLM.instTopologicalSpace Οƒ F 𝔖 :=
   rfl
-#align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
+#align continuous_linear_map.strong_uniformity_topology_eq UniformConvergenceCLM.uniformity_toTopologicalSpace_eq
 
-theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
+theorem uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
-    @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
-      (UniformOnFun.uniformSpace E F 𝔖) DFunLike.coe :=
-  letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
+    UniformEmbedding (Ξ± := UniformConvergenceCLM Οƒ F 𝔖) (Ξ² := E β†’α΅€[𝔖] F) DFunLike.coe :=
   ⟨⟨rfl⟩, DFunLike.coe_injective⟩
-#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
-
-theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖)
-    (UniformOnFun.topologicalSpace E F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) :=
-  @UniformEmbedding.embedding _ _ (_root_.id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
-#align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
-
-theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
-    @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ := by
-  letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
-  let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F :=
-    ⟨⟨(DFunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’α΅€[𝔖] F), rfl⟩, fun _ _ => rfl⟩
-  exact (strongUniformity.uniformEmbedding_coeFn _ _ _).uniformAddGroup Ο†
-#align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
-
-theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
-    (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ := by
+#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn UniformConvergenceCLM.uniformEmbedding_coeFn
+
+theorem embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    Embedding (X := UniformConvergenceCLM Οƒ F 𝔖) (Y := E β†’α΅€[𝔖] F)
+      (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) :=
+  UniformEmbedding.embedding (uniformEmbedding_coeFn _ _ _)
+#align continuous_linear_map.strong_topology.embedding_coe_fn UniformConvergenceCLM.embedding_coeFn
+
+instance instAddCommGroup [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
+    AddCommGroup (UniformConvergenceCLM Οƒ F 𝔖) := ContinuousLinearMap.addCommGroup
+
+instance instUniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
+    UniformAddGroup (UniformConvergenceCLM Οƒ F 𝔖) := by
+  let Ο† : (UniformConvergenceCLM Οƒ F 𝔖) β†’+ E β†’α΅€[𝔖] F :=
+    ⟨⟨(DFunLike.coe : (UniformConvergenceCLM Οƒ F 𝔖) β†’ E β†’α΅€[𝔖] F), rfl⟩, fun _ _ => rfl⟩
+  exact (uniformEmbedding_coeFn _ _ _).uniformAddGroup Ο†
+#align continuous_linear_map.strong_uniformity.uniform_add_group UniformConvergenceCLM.instUniformAddGroup
+
+instance instTopologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
+    (𝔖 : Set (Set E)) : TopologicalAddGroup (UniformConvergenceCLM Οƒ F 𝔖) := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
-  haveI : UniformAddGroup (E β†’SL[Οƒ] F) := strongUniformity.uniformAddGroup Οƒ F 𝔖
   infer_instance
-#align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
+#align continuous_linear_map.strong_topology.topological_add_group UniformConvergenceCLM.instTopologicalAddGroup
 
-theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
-    (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : @T2Space (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) := by
+theorem t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
+    (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : T2Space (UniformConvergenceCLM Οƒ F 𝔖) := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
   haveI : T2Space (E β†’α΅€[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖
-  exact (strongTopology.embedding_coeFn Οƒ F 𝔖).t2Space
-#align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
+  exact (embedding_coeFn Οƒ F 𝔖).t2Space
+#align continuous_linear_map.strong_topology.t2_space UniformConvergenceCLM.t2Space
+
+instance instDistribMulAction (M : Type*) [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
+    [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E)) :
+    DistribMulAction M (UniformConvergenceCLM Οƒ F 𝔖) := ContinuousLinearMap.distribMulAction
 
-theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
+instance instModule (R : Type*) [Semiring R] [Module R F] [SMulCommClass π•œβ‚‚ R F]
+    [TopologicalSpace F] [ContinuousConstSMul R F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
+    Module R (UniformConvergenceCLM Οƒ F 𝔖) := ContinuousLinearMap.module
+
+theorem continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
-    @ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) _ _ (strongTopology Οƒ F 𝔖) := by
+    ContinuousSMul π•œβ‚‚ (UniformConvergenceCLM Οƒ F 𝔖) := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
-  let Ο† : (E β†’SL[Οƒ] F) β†’β‚—[π•œβ‚‚] E β†’ F := ⟨⟨DFunLike.coe, fun _ _ => rfl⟩, fun _ _ => rfl⟩
-  exact UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) Ο† ⟨rfl⟩
-    fun u s hs => (h𝔖₃ s hs).image u
-#align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
+  let Ο† : (UniformConvergenceCLM Οƒ F 𝔖) β†’β‚—[π•œβ‚‚] E β†’ F :=
+    ⟨⟨DFunLike.coe, fun _ _ => rfl⟩, fun _ _ => rfl⟩
+  exact UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (UniformConvergenceCLM Οƒ F 𝔖) Ο†
+    ⟨rfl⟩ fun u s hs => (h𝔖₃ s hs).image u
+#align continuous_linear_map.strong_topology.has_continuous_smul UniformConvergenceCLM.continuousSMul
 
-theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
+theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type*} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
-    (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
+    (𝓝 (0 : UniformConvergenceCLM Οƒ F 𝔖)).HasBasis
       (fun Si : Set E Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2)
       fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  -- Porting note: replace `nhds_induced` by `Inducing.nhds_eq_comap` (which needs an additional
-  -- `letI`) so that Lean doesn't try to use the product topology
-  letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
-  rw [(strongTopology.embedding_coeFn Οƒ F 𝔖).toInducing.nhds_eq_comap]
+  rw [(embedding_coeFn Οƒ F 𝔖).toInducing.nhds_eq_comap]
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap DFunLike.coe
-#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
+#align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis UniformConvergenceCLM.hasBasis_nhds_zero_of_basis
 
-theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
+theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
-    (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
+    (𝓝 (0 : UniformConvergenceCLM Οƒ F 𝔖)).HasBasis
       (fun SV : Set E Γ— Set F => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 0 : Filter F)) fun SV =>
-      { f : E β†’SL[Οƒ] F | βˆ€ x ∈ SV.1, f x ∈ SV.2 } :=
-  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
-#align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
+      { f : UniformConvergenceCLM Οƒ F 𝔖 | βˆ€ x ∈ SV.1, f x ∈ SV.2 } :=
+  hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
+#align continuous_linear_map.strong_topology.has_basis_nhds_zero UniformConvergenceCLM.hasBasis_nhds_zero
 
-theorem strongTopology.uniformContinuousConstSMul (M : Type*)
+instance instUniformContinuousConstSMul (M : Type*)
     [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
     [UniformSpace F] [UniformAddGroup F] [UniformContinuousConstSMul M F] (𝔖 : Set (Set E)) :
-    @UniformContinuousConstSMul M (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
-  let _ := strongUniformity Οƒ F 𝔖
-  (strongUniformity.uniformEmbedding_coeFn Οƒ F 𝔖).toUniformInducing.uniformContinuousConstSMul
-    fun _ _ ↦ rfl
+    UniformContinuousConstSMul M (UniformConvergenceCLM Οƒ F 𝔖) :=
+  (uniformEmbedding_coeFn Οƒ F 𝔖).toUniformInducing.uniformContinuousConstSMul fun _ _ ↦ by rfl
 
-theorem strongTopology.continuousConstSMul (M : Type*)
+instance instContinuousConstSMul (M : Type*)
     [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E)) :
-    @ContinuousConstSMul M (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
+    ContinuousConstSMul M (UniformConvergenceCLM Οƒ F 𝔖) :=
   let _ := TopologicalAddGroup.toUniformSpace F
   have _ : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  let _ := strongUniformity Οƒ F 𝔖
   have _ := uniformContinuousConstSMul_of_continuousConstSMul M F
-  have _ := strongTopology.uniformContinuousConstSMul Οƒ F M 𝔖
   inferInstance
 
+theorem tendsto_iff_tendstoUniformlyOn {ΞΉ : Type*} {p : Filter ΞΉ} [UniformSpace F]
+    [UniformAddGroup F] (𝔖 : Set (Set E)) {a : ΞΉ β†’ UniformConvergenceCLM Οƒ F 𝔖}
+    {aβ‚€ : UniformConvergenceCLM Οƒ F 𝔖} :
+    Filter.Tendsto a p (𝓝 aβ‚€) ↔ βˆ€ s ∈ 𝔖, TendstoUniformlyOn (a Β· Β·) aβ‚€ p s := by
+  rw [(embedding_coeFn Οƒ F 𝔖).tendsto_nhds_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn]
+  rfl
+
+end UniformConvergenceCLM
+
 end General
 
+namespace ContinuousLinearMap
+
 section BoundedSets
 
+/-! ### Topology of bounded convergence  -/
+
 variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type*} [NormedField π•œβ‚] [NormedField π•œβ‚‚] [NormedField π•œβ‚ƒ] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚}
   {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [RingHomCompTriple Οƒ Ο„ ρ] {E E' F F' G : Type*} [AddCommGroup E]
   [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F] [AddCommGroup F']
@@ -200,25 +227,25 @@ variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type*} [NormedField π•œβ‚] [NormedField 
 the operator norm when `E` and `F` are normed spaces. -/
 instance topologicalSpace [TopologicalSpace F] [TopologicalAddGroup F] :
     TopologicalSpace (E β†’SL[Οƒ] F) :=
-  strongTopology Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  UniformConvergenceCLM.instTopologicalSpace Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
 
 instance topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F] :
     TopologicalAddGroup (E β†’SL[Οƒ] F) :=
-  strongTopology.topologicalAddGroup Οƒ F _
+  UniformConvergenceCLM.instTopologicalAddGroup Οƒ F _
 
 instance continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [TopologicalSpace F]
     [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] : ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S } fun _ hs => hs
+  UniformConvergenceCLM.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S } fun _ hs => hs
 
 instance uniformSpace [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
-  strongUniformity Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  UniformConvergenceCLM.instUniformSpace Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
 
 instance uniformAddGroup [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
-  strongUniformity.uniformAddGroup Οƒ F _
+  UniformConvergenceCLM.instUniformAddGroup Οƒ F _
 
 instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E] [T2Space F] :
     T2Space (E β†’SL[Οƒ] F) :=
-  strongTopology.t2Space Οƒ F _
+  UniformConvergenceCLM.t2Space Οƒ F _
     (Set.eq_univ_of_forall fun x =>
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
@@ -226,7 +253,7 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     {ΞΉ : Type*} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
       fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
-  strongTopology.hasBasis_nhds_zero_of_basis Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
+  UniformConvergenceCLM.hasBasis_nhds_zero_of_basis Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
@@ -242,12 +269,12 @@ instance uniformContinuousConstSMul
     {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
     [UniformSpace F] [UniformAddGroup F] [UniformContinuousConstSMul M F] :
     UniformContinuousConstSMul M (E β†’SL[Οƒ] F) :=
-  strongTopology.uniformContinuousConstSMul Οƒ F _ _
+  UniformConvergenceCLM.instUniformContinuousConstSMul Οƒ F _ _
 
 instance continuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] :
     ContinuousConstSMul M (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousConstSMul Οƒ F _ _
+  UniformConvergenceCLM.instContinuousConstSMul Οƒ F _ _
 
 variable (G) [TopologicalSpace F] [TopologicalSpace G]
 
@@ -264,11 +291,11 @@ def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurj
   cont := by
     letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G
     haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
-    rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
+    rw [(UniformConvergenceCLM.embedding_coeFn _ _ _).continuous_iff]
     -- Porting note: without this, the following doesn't work
     change Continuous ((fun f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ DFunLike.coe)
     exact (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp
-        (strongTopology.embedding_coeFn _ _ _).continuous
+        (UniformConvergenceCLM.embedding_coeFn _ _ _).continuous
 #align continuous_linear_map.precomp ContinuousLinearMap.precomp
 
 variable (E) {G}
@@ -288,10 +315,10 @@ def postcomp [TopologicalAddGroup F] [TopologicalAddGroup G] [ContinuousConstSMu
     haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
     letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
     haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-    rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
+    rw [(UniformConvergenceCLM.embedding_coeFn _ _ _).continuous_iff]
     exact
       (UniformOnFun.postcomp_uniformContinuous L.uniformContinuous).continuous.comp
-        (strongTopology.embedding_coeFn _ _ _).continuous
+        (UniformConvergenceCLM.embedding_coeFn _ _ _).continuous
 #align continuous_linear_map.postcomp ContinuousLinearMap.postcomp
 
 end BoundedSets
@@ -318,6 +345,8 @@ open ContinuousLinearMap
 
 namespace ContinuousLinearEquiv
 
+/-! ### Continuous linear equivalences -/
+
 section Semilinear
 
 variable {π•œ : Type*} {π•œβ‚‚ : Type*} {π•œβ‚ƒ : Type*} {π•œβ‚„ : Type*} {E : Type*} {F : Type*}
feat: bundled versions of two operations on continuous multilinear maps (#11775)

We provide versions of smulRight and compContinuousLinearMap as a continuous bilinear (resp multilinear) map.

Diff
@@ -307,6 +307,9 @@ variable {π•œ : Type*} [NormedField π•œ] {E F G : Type*}
 /-- Send a continuous bilinear map to an abstract bilinear map (forgetting continuity). -/
 def toLinearMapβ‚‚ (L : E β†’L[π•œ] F β†’L[π•œ] G) : E β†’β‚—[π•œ] F β†’β‚—[π•œ] G := (coeLM π•œ).comp L.toLinearMap
 
+@[simp] lemma toLinearMapβ‚‚_apply (L : E β†’L[π•œ] F β†’L[π•œ] G) (v : E) (w : F) :
+    L.toLinearMapβ‚‚ v w = L v w := rfl
+
 end BilinearMaps
 
 end ContinuousLinearMap
chore: replace Ξ» by fun (#11301)

Per the style guidelines, Ξ» is disallowed in mathlib. This is close to exhaustive; I left some tactic code alone when it seemed to me that tactic could be upstreamed soon.

Notes

  • In lines I was modifying anyway, I also converted => to ↦.
  • Also contains some mild in-passing indentation fixes in Mathlib/Order/SupClosed.
  • Some doc comments still contained Lean 3 syntax Ξ» x, , which I also replaced.
Diff
@@ -266,7 +266,7 @@ def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurj
     haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
     rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
     -- Porting note: without this, the following doesn't work
-    change Continuous ((Ξ» f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ DFunLike.coe)
+    change Continuous ((fun f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ DFunLike.coe)
     exact (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp
         (strongTopology.embedding_coeFn _ _ _).continuous
 #align continuous_linear_map.precomp ContinuousLinearMap.precomp
feat(Algebra/UniformConvergence): drop unneeded assumptions (#10321)
  • Prove a version of UniformOnFun.continuousSMul_induced_of_image_bounded for UniformFuns.
  • Deal with Ο† : H β†’β‚—[π•œ] (Ξ± β†’ E) and ofFun ∘ Ο†, not Ο† : H β†’β‚—[π•œ] (Ξ± β†’α΅€[𝔖] E).
  • Drop unneeded assumptions (nonempty, directed).
Diff
@@ -135,17 +135,14 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
 
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
-    (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖)
     (h𝔖₃ : βˆ€ S ∈ 𝔖, Bornology.IsVonNBounded π•œβ‚ S) :
     @ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) _ _ (strongTopology Οƒ F 𝔖) := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
-  let Ο† : (E β†’SL[Οƒ] F) β†’β‚—[π•œβ‚‚] E β†’α΅€[𝔖] F :=
-    ⟨⟨(DFunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’ F), fun _ _ => rfl⟩, fun _ _ => rfl⟩
-  exact
-    UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) h𝔖₁ h𝔖₂ Ο† ⟨rfl⟩
-      fun u s hs => (h𝔖₃ s hs).image u
+  let Ο† : (E β†’SL[Οƒ] F) β†’β‚—[π•œβ‚‚] E β†’ F := ⟨⟨DFunLike.coe, fun _ _ => rfl⟩, fun _ _ => rfl⟩
+  exact UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) Ο† ⟨rfl⟩
+    fun u s hs => (h𝔖₃ s hs).image u
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
@@ -211,9 +208,7 @@ instance topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F] :
 
 instance continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [TopologicalSpace F]
     [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] : ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
-    βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
-    (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) fun _ hs => hs
+  strongTopology.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S } fun _ hs => hs
 
 instance uniformSpace [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
   strongUniformity Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
feat(Analysis/Fourier): derivative of Fourier transform (#9773)

This PR computes the Frechet derivative of the Fourier transform of a function on a real normed space, including special-case handling for functions on inner-product spaces and on the reals themselves.

Co-authored-by: Alex Kontorovich <alex.kontorovich@rutgers.edu> Co-authored-by: Heather Macbeth <hmacbeth1@fordham.edu>

Diff
@@ -301,6 +301,19 @@ def postcomp [TopologicalAddGroup F] [TopologicalAddGroup G] [ContinuousConstSMu
 
 end BoundedSets
 
+section BilinearMaps
+
+variable {π•œ : Type*} [NormedField π•œ] {E F G : Type*}
+  [AddCommGroup E] [Module π•œ E] [TopologicalSpace E]
+  [AddCommGroup F] [Module π•œ F] [TopologicalSpace F]
+  [AddCommGroup G] [Module π•œ G]
+  [TopologicalSpace G] [TopologicalAddGroup G] [ContinuousConstSMul π•œ G]
+
+/-- Send a continuous bilinear map to an abstract bilinear map (forgetting continuity). -/
+def toLinearMapβ‚‚ (L : E β†’L[π•œ] F β†’L[π•œ] G) : E β†’β‚—[π•œ] F β†’β‚—[π•œ] G := (coeLM π•œ).comp L.toLinearMap
+
+end BilinearMaps
+
 end ContinuousLinearMap
 
 open ContinuousLinearMap
chore(*): rename FunLike to DFunLike (#9785)

This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.

This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:

sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean     
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean

Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -75,7 +75,7 @@ topological vector space. -/
 def strongTopology [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
     TopologicalSpace (E β†’SL[Οƒ] F) :=
   (@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced
-    (FunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F))
+    (DFunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F))
 #align continuous_linear_map.strong_topology ContinuousLinearMap.strongTopology
 
 /-- The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure
@@ -83,7 +83,7 @@ that this has nice definitional properties. -/
 def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     UniformSpace (E β†’SL[Οƒ] F) :=
   @UniformSpace.replaceTopology _ (strongTopology Οƒ F 𝔖)
-    ((UniformOnFun.uniformSpace E F 𝔖).comap (FunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F)))
+    ((UniformOnFun.uniformSpace E F 𝔖).comap (DFunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F)))
     (by rw [strongTopology, UniformAddGroup.toUniformSpace_eq]; rfl)
 #align continuous_linear_map.strong_uniformity ContinuousLinearMap.strongUniformity
 
@@ -96,14 +96,14 @@ theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
-      (UniformOnFun.uniformSpace E F 𝔖) FunLike.coe :=
+      (UniformOnFun.uniformSpace E F 𝔖) DFunLike.coe :=
   letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
-  ⟨⟨rfl⟩, FunLike.coe_injective⟩
+  ⟨⟨rfl⟩, DFunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖)
-    (UniformOnFun.topologicalSpace E F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ FunLike.coe) :=
+    (UniformOnFun.topologicalSpace E F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) :=
   @UniformEmbedding.embedding _ _ (_root_.id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
 
@@ -111,7 +111,7 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ := by
   letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F :=
-    ⟨⟨(FunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’α΅€[𝔖] F), rfl⟩, fun _ _ => rfl⟩
+    ⟨⟨(DFunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’α΅€[𝔖] F), rfl⟩, fun _ _ => rfl⟩
   exact (strongUniformity.uniformEmbedding_coeFn _ _ _).uniformAddGroup Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
@@ -142,7 +142,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
   let Ο† : (E β†’SL[Οƒ] F) β†’β‚—[π•œβ‚‚] E β†’α΅€[𝔖] F :=
-    ⟨⟨(FunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’ F), fun _ _ => rfl⟩, fun _ _ => rfl⟩
+    ⟨⟨(DFunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’ F), fun _ _ => rfl⟩, fun _ _ => rfl⟩
   exact
     UniformOnFun.continuousSMul_induced_of_image_bounded π•œβ‚‚ E F (E β†’SL[Οƒ] F) h𝔖₁ h𝔖₂ Ο† ⟨rfl⟩
       fun u s hs => (h𝔖₃ s hs).image u
@@ -160,7 +160,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
   -- `letI`) so that Lean doesn't try to use the product topology
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
   rw [(strongTopology.embedding_coeFn Οƒ F 𝔖).toInducing.nhds_eq_comap]
-  exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap FunLike.coe
+  exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap DFunLike.coe
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
 
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
@@ -271,7 +271,7 @@ def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurj
     haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
     rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
     -- Porting note: without this, the following doesn't work
-    change Continuous ((Ξ» f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ FunLike.coe)
+    change Continuous ((Ξ» f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ DFunLike.coe)
     exact (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp
         (strongTopology.embedding_coeFn _ _ _).continuous
 #align continuous_linear_map.precomp ContinuousLinearMap.precomp
feat: action on UniformOnFun is uniformly continuous (#9714)
  • add UniformInducing.uniformContinuousConstSMul and its additive version;
  • use it to prove that the pointwise actions on Ξ± β†’α΅€ X and Ξ± β†’α΅€[𝔖] X are uniformly continuous;
  • use the latter facts to prove that the pointwise action on E β†’SL[Οƒ] F is uniformly continuous;
  • make M explicit in ContinuousLinearMap.strongTopology.continuousConstSMul, drop unneeded arguments.
Diff
@@ -171,20 +171,24 @@ theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGr
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
 
-theorem strongTopology.continuousConstSMul {M : Type*}
+theorem strongTopology.uniformContinuousConstSMul (M : Type*)
     [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
-    [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E))
-    (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
-    @ContinuousConstSMul M (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ := by
-  letI := strongTopology Οƒ F 𝔖
-  haveI : TopologicalAddGroup (E β†’SL[Οƒ] F) := strongTopology.topologicalAddGroup Οƒ F 𝔖
-  refine ⟨fun c ↦ continuous_of_continuousAt_zero (DistribSMul.toAddMonoidHom _ c) ?_⟩
-  have H₁ := strongTopology.hasBasis_nhds_zero Οƒ F _ h𝔖₁ h𝔖₂
-  have Hβ‚‚ : Filter.Tendsto (c β€’ Β·) (𝓝 0 : Filter F) (𝓝 0) :=
-    (continuous_const_smul c).tendsto' 0 _ (smul_zero _)
-  rw [ContinuousAt, map_zero, H₁.tendsto_iff H₁]
-  rintro ⟨s, t⟩ ⟨hs : s ∈ 𝔖, ht : t ∈ 𝓝 0⟩
-  exact ⟨(s, (c β€’ Β·) ⁻¹' t), ⟨hs, Hβ‚‚ ht⟩, fun f  ↦ _root_.id⟩
+    [UniformSpace F] [UniformAddGroup F] [UniformContinuousConstSMul M F] (𝔖 : Set (Set E)) :
+    @UniformContinuousConstSMul M (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ :=
+  let _ := strongUniformity Οƒ F 𝔖
+  (strongUniformity.uniformEmbedding_coeFn Οƒ F 𝔖).toUniformInducing.uniformContinuousConstSMul
+    fun _ _ ↦ rfl
+
+theorem strongTopology.continuousConstSMul (M : Type*)
+    [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
+    [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E)) :
+    @ContinuousConstSMul M (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ :=
+  let _ := TopologicalAddGroup.toUniformSpace F
+  have _ : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
+  let _ := strongUniformity Οƒ F 𝔖
+  have _ := uniformContinuousConstSMul_of_continuousConstSMul M F
+  have _ := strongTopology.uniformContinuousConstSMul Οƒ F M 𝔖
+  inferInstance
 
 end General
 
@@ -239,12 +243,16 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 
+instance uniformContinuousConstSMul
+    {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
+    [UniformSpace F] [UniformAddGroup F] [UniformContinuousConstSMul M F] :
+    UniformContinuousConstSMul M (E β†’SL[Οƒ] F) :=
+  strongTopology.uniformContinuousConstSMul Οƒ F _ _
+
 instance continuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] :
     ContinuousConstSMul M (E β†’SL[Οƒ] F) :=
-  strongTopology.continuousConstSMul Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
-    βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
-    (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union)
+  strongTopology.continuousConstSMul Οƒ F _ _
 
 variable (G) [TopologicalSpace F] [TopologicalSpace G]
 
feat(UniformGroup): add UniformInducing.uniformGroup (#8813)
Diff
@@ -110,10 +110,9 @@ theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ := by
   letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
-  rw [strongUniformity, UniformSpace.replaceTopology_eq]
   let Ο† : (E β†’SL[Οƒ] F) β†’+ E β†’α΅€[𝔖] F :=
     ⟨⟨(FunLike.coe : (E β†’SL[Οƒ] F) β†’ E β†’α΅€[𝔖] F), rfl⟩, fun _ _ => rfl⟩
-  exact uniformAddGroup_comap Ο†
+  exact (strongUniformity.uniformEmbedding_coeFn _ _ _).uniformAddGroup Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
refactor: review normed group structure on ContinuousLinearMap (#8725)

Move parts of the proof of "two uniformities are equal" up while generalizing it. Also add a ContinuousConstSMul instance that needs less assumptions than ContinuousSMul.

Diff
@@ -172,6 +172,21 @@ theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGr
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero ContinuousLinearMap.strongTopology.hasBasis_nhds_zero
 
+theorem strongTopology.continuousConstSMul {M : Type*}
+    [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
+    [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E))
+    (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
+    @ContinuousConstSMul M (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ := by
+  letI := strongTopology Οƒ F 𝔖
+  haveI : TopologicalAddGroup (E β†’SL[Οƒ] F) := strongTopology.topologicalAddGroup Οƒ F 𝔖
+  refine ⟨fun c ↦ continuous_of_continuousAt_zero (DistribSMul.toAddMonoidHom _ c) ?_⟩
+  have H₁ := strongTopology.hasBasis_nhds_zero Οƒ F _ h𝔖₁ h𝔖₂
+  have Hβ‚‚ : Filter.Tendsto (c β€’ Β·) (𝓝 0 : Filter F) (𝓝 0) :=
+    (continuous_const_smul c).tendsto' 0 _ (smul_zero _)
+  rw [ContinuousAt, map_zero, H₁.tendsto_iff H₁]
+  rintro ⟨s, t⟩ ⟨hs : s ∈ 𝔖, ht : t ∈ 𝓝 0⟩
+  exact ⟨(s, (c β€’ Β·) ⁻¹' t), ⟨hs, Hβ‚‚ ht⟩, fun f  ↦ _root_.id⟩
+
 end General
 
 section BoundedSets
@@ -225,6 +240,13 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 
+instance continuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass π•œβ‚‚ M F]
+    [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul M F] :
+    ContinuousConstSMul M (E β†’SL[Οƒ] F) :=
+  strongTopology.continuousConstSMul Οƒ F {S | Bornology.IsVonNBounded π•œβ‚ S}
+    βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
+    (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union)
+
 variable (G) [TopologicalSpace F] [TopologicalSpace G]
 
 /-- Pre-composition by a *fixed* continuous linear map as a continuous linear map.
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -62,7 +62,7 @@ namespace ContinuousLinearMap
 
 section General
 
-variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] (Οƒ : π•œβ‚ β†’+* π•œβ‚‚) {E E' F F' : Type _}
+variable {π•œβ‚ π•œβ‚‚ : Type*} [NormedField π•œβ‚] [NormedField π•œβ‚‚] (Οƒ : π•œβ‚ β†’+* π•œβ‚‚) {E E' F F' : Type*}
   [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
   [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E] [TopologicalSpace E'] (F)
 
@@ -150,7 +150,7 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
-    {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
+    {ΞΉ : Type*} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
       (fun Si : Set E Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2)
@@ -176,8 +176,8 @@ end General
 
 section BoundedSets
 
-variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] [NormedField π•œβ‚ƒ] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚}
-  {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [RingHomCompTriple Οƒ Ο„ ρ] {E E' F F' G : Type _} [AddCommGroup E]
+variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type*} [NormedField π•œβ‚] [NormedField π•œβ‚‚] [NormedField π•œβ‚ƒ] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚}
+  {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [RingHomCompTriple Οƒ Ο„ ρ] {E E' F F' G : Type*} [AddCommGroup E]
   [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F] [AddCommGroup F']
   [Module ℝ F'] [AddCommGroup G] [Module π•œβ‚ƒ G] [TopologicalSpace E]
 
@@ -210,7 +210,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
-    {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
+    {ΞΉ : Type*} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
       fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
   strongTopology.hasBasis_nhds_zero_of_basis Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
@@ -280,8 +280,8 @@ namespace ContinuousLinearEquiv
 
 section Semilinear
 
-variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _} {E : Type _} {F : Type _}
-  {G : Type _} {H : Type _} [AddCommGroup E] [AddCommGroup F] [AddCommGroup G] [AddCommGroup H]
+variable {π•œ : Type*} {π•œβ‚‚ : Type*} {π•œβ‚ƒ : Type*} {π•œβ‚„ : Type*} {E : Type*} {F : Type*}
+  {G : Type*} {H : Type*} [AddCommGroup E] [AddCommGroup F] [AddCommGroup G] [AddCommGroup H]
   [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ]
   [NontriviallyNormedField π•œβ‚„] [Module π•œ E] [Module π•œβ‚‚ F] [Module π•œβ‚ƒ G] [Module π•œβ‚„ H]
   [TopologicalSpace E] [TopologicalSpace F] [TopologicalSpace G] [TopologicalSpace H]
@@ -338,7 +338,7 @@ end Semilinear
 
 section Linear
 
-variable {π•œ : Type _} {E : Type _} {F : Type _} {G : Type _} {H : Type _} [AddCommGroup E]
+variable {π•œ : Type*} {E : Type*} {F : Type*} {G : Type*} {H : Type*} [AddCommGroup E]
   [AddCommGroup F] [AddCommGroup G] [AddCommGroup H] [NontriviallyNormedField π•œ] [Module π•œ E]
   [Module π•œ F] [Module π•œ G] [Module π•œ H] [TopologicalSpace E] [TopologicalSpace F]
   [TopologicalSpace G] [TopologicalSpace H] [TopologicalAddGroup G] [TopologicalAddGroup H]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit 8905e5ed90859939681a725b00f6063e65096d95
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Algebra.UniformConvergence
 
+#align_import topology.algebra.module.strong_topology from "leanprover-community/mathlib"@"8905e5ed90859939681a725b00f6063e65096d95"
+
 /-!
 # Strong topologies on the space of continuous linear maps
 
feat: forward port leanprover-community/mathlib#19128 (#5791)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit f7ebde7ee0d1505dfccac8644ae12371aa3c1c9f
+! leanprover-community/mathlib commit 8905e5ed90859939681a725b00f6063e65096d95
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -179,9 +179,10 @@ end General
 
 section BoundedSets
 
-variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {E E' F F' : Type _}
-  [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
-  [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E]
+variable {π•œβ‚ π•œβ‚‚ π•œβ‚ƒ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚] [NormedField π•œβ‚ƒ] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚}
+  {Ο„ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {ρ : π•œβ‚ β†’+* π•œβ‚ƒ} [RingHomCompTriple Οƒ Ο„ ρ] {E E' F F' G : Type _} [AddCommGroup E]
+  [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F] [AddCommGroup F']
+  [Module ℝ F'] [AddCommGroup G] [Module π•œβ‚ƒ G] [TopologicalSpace E]
 
 /-- The topology of bounded convergence on `E β†’L[π•œ] F`. This coincides with the topology induced by
 the operator norm when `E` and `F` are normed spaces. -/
@@ -227,6 +228,51 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
   ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
 #align continuous_linear_map.has_basis_nhds_zero ContinuousLinearMap.hasBasis_nhds_zero
 
+variable (G) [TopologicalSpace F] [TopologicalSpace G]
+
+/-- Pre-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps]
+def precomp [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G] [RingHomSurjective Οƒ]
+    [RingHomIsometric Οƒ] (L : E β†’SL[Οƒ] F) : (F β†’SL[Ο„] G) β†’L[π•œβ‚ƒ] E β†’SL[ρ] G
+    where
+  toFun f := f.comp L
+  map_add' f g := add_comp f g L
+  map_smul' a f := smul_comp a f L
+  cont := by
+    letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G
+    haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
+    rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
+    -- Porting note: without this, the following doesn't work
+    change Continuous ((Ξ» f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ FunLike.coe)
+    exact (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp
+        (strongTopology.embedding_coeFn _ _ _).continuous
+#align continuous_linear_map.precomp ContinuousLinearMap.precomp
+
+variable (E) {G}
+
+/-- Post-composition by a *fixed* continuous linear map as a continuous linear map.
+Note that in non-normed space it is not always true that composition is continuous
+in both variables, so we have to fix one of them. -/
+@[simps]
+def postcomp [TopologicalAddGroup F] [TopologicalAddGroup G] [ContinuousConstSMul π•œβ‚ƒ G]
+    [ContinuousConstSMul π•œβ‚‚ F] (L : F β†’SL[Ο„] G) : (E β†’SL[Οƒ] F) β†’SL[Ο„] E β†’SL[ρ] G
+    where
+  toFun f := L.comp f
+  map_add' := comp_add L
+  map_smul' := comp_smulβ‚›β‚— L
+  cont := by
+    letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G
+    haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform
+    letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
+    haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
+    rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff]
+    exact
+      (UniformOnFun.postcomp_uniformContinuous L.uniformContinuous).continuous.comp
+        (strongTopology.embedding_coeFn _ _ _).continuous
+#align continuous_linear_map.postcomp ContinuousLinearMap.postcomp
+
 end BoundedSets
 
 end ContinuousLinearMap
@@ -247,56 +293,49 @@ variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _
   {σ₃₄ : π•œβ‚ƒ β†’+* π•œβ‚„} {σ₄₃ : π•œβ‚„ β†’+* π•œβ‚ƒ} {Οƒβ‚‚β‚„ : π•œβ‚‚ β†’+* π•œβ‚„} {σ₁₄ : π•œ β†’+* π•œβ‚„} [RingHomInvPair σ₁₂ σ₂₁]
   [RingHomInvPair σ₂₁ σ₁₂] [RingHomInvPair σ₃₄ σ₄₃] [RingHomInvPair σ₄₃ σ₃₄]
   [RingHomCompTriple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [RingHomCompTriple Οƒβ‚‚β‚„ σ₄₃ σ₂₃] [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
-  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄]
+  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄] [RingHomCompTriple σ₂₃ σ₃₄ Οƒβ‚‚β‚„] [RingHomCompTriple σ₁₂ Οƒβ‚‚β‚„ σ₁₄]
+  [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₁]
 
 /-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
 spaces of continuous (semi)linear maps. -/
 @[simps]
-def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G :=
-  { e₁₂.arrowCongrEquiv e₄₃ with
+def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+    (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
+{ e₁₂.arrowCongrEquiv e₄₃ with
     -- given explicitly to help `simps`
     toFun := fun L => (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E))
     -- given explicitly to help `simps`
     invFun := fun L => (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F))
     map_add' := fun f g => by simp only [add_comp, comp_add]
-    map_smul' := fun t f => by simp only [smul_comp, comp_smulβ‚›β‚—] }
-#align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
-#align continuous_linear_equiv.arrow_congrβ‚›β‚—_apply ContinuousLinearEquiv.arrowCongrβ‚›β‚—_apply
-#align continuous_linear_equiv.arrow_congrβ‚›β‚—_symm_apply ContinuousLinearEquiv.arrowCongrβ‚›β‚—_symm_apply
-
-variable [RingHomIsometric σ₂₁]
-
-theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
-    Continuous (id (e₁₂.arrowCongrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G)) := by
-  apply continuous_of_continuousAt_zero
-  show Filter.Tendsto _ _ _
-  simp_rw [(arrowCongrβ‚›β‚— e₁₂ e₄₃).map_zero]
-  rw [ContinuousLinearMap.hasBasis_nhds_zero.tendsto_iff ContinuousLinearMap.hasBasis_nhds_zero]
-  rintro ⟨sF, sG⟩ ⟨h1 : Bornology.IsVonNBounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0 : G)⟩
-  dsimp
-  refine' ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩, fun _ h _ hx =>
-    h _ (Set.mem_image_of_mem _ hx)⟩
-  apply e₄₃.continuous.continuousAt
-  simpa using h2
-#align continuous_linear_equiv.arrow_congrβ‚›β‚—_continuous ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous
-
-variable [RingHomIsometric σ₁₂]
-
-/-- A pair of continuous (semi)linear equivalences generates a continuous (semi)linear equivalence
-between the spaces of continuous (semi)linear maps. -/
-@[simps! apply symm_apply toLinearEquiv]
-def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
-  { e₁₂.arrowCongrβ‚›β‚— e₄₃ with
-    continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
-    continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
+    map_smul' := fun t f => by simp only [smul_comp, comp_smulβ‚›β‚—]
+    continuous_toFun := ((postcomp F e₄₃.toContinuousLinearMap).comp
+      (precomp H e₁₂.symm.toContinuousLinearMap)).continuous
+    continuous_invFun := ((precomp H e₁₂.toContinuousLinearMap).comp
+      (postcomp F e₄₃.symm.toContinuousLinearMap)).continuous }
 set_option linter.uppercaseLean3 false in
 #align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
 set_option linter.uppercaseLean3 false in
 #align continuous_linear_equiv.arrow_congrSL_apply ContinuousLinearEquiv.arrowCongrSL_apply
 set_option linter.uppercaseLean3 false in
 #align continuous_linear_equiv.arrow_congrSL_symm_apply ContinuousLinearEquiv.arrowCongrSL_symm_apply
+
+-- Porting note: the following two lemmas were autogenerated by `simps` in Lean3, but this is
+-- no longer the case. The first one can already be proven by `simp`, but the second can't.
+
+theorem arrowCongrSL_toLinearEquiv_apply (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G)
+    (L : E β†’SL[σ₁₄] H) : (e₁₂.arrowCongrSL e₄₃).toLinearEquiv L =
+      (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E)) :=
+  rfl
+set_option linter.uppercaseLean3 false in
+#align continuous_linear_equiv.arrow_congrSL_to_linear_equiv_apply ContinuousLinearEquiv.arrowCongrSL_toLinearEquiv_apply
+
+@[simp]
+theorem arrowCongrSL_toLinearEquiv_symm_apply (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G)
+    (L : F β†’SL[σ₂₃] G) : (e₁₂.arrowCongrSL e₄₃).toLinearEquiv.symm L =
+      (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F)) :=
+  rfl
 set_option linter.uppercaseLean3 false in
-#align continuous_linear_equiv.arrow_congrSL_to_linear_equiv ContinuousLinearEquiv.arrowCongrSL_toLinearEquiv
+#align continuous_linear_equiv.arrow_congrSL_to_linear_equiv_symm_apply ContinuousLinearEquiv.arrowCongrSL_toLinearEquiv_symm_apply
 
 end Semilinear
 
feat: port Topology.VectorBundle.Hom (#4514)
Diff
@@ -59,7 +59,7 @@ uniform convergence, bounded convergence
 -/
 
 
-open Topology UniformConvergence
+open scoped Topology UniformConvergence
 
 namespace ContinuousLinearMap
 
@@ -261,6 +261,8 @@ def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃
     map_add' := fun f g => by simp only [add_comp, comp_add]
     map_smul' := fun t f => by simp only [smul_comp, comp_smulβ‚›β‚—] }
 #align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
+#align continuous_linear_equiv.arrow_congrβ‚›β‚—_apply ContinuousLinearEquiv.arrowCongrβ‚›β‚—_apply
+#align continuous_linear_equiv.arrow_congrβ‚›β‚—_symm_apply ContinuousLinearEquiv.arrowCongrβ‚›β‚—_symm_apply
 
 variable [RingHomIsometric σ₂₁]
 
@@ -282,13 +284,19 @@ variable [RingHomIsometric σ₁₂]
 
 /-- A pair of continuous (semi)linear equivalences generates a continuous (semi)linear equivalence
 between the spaces of continuous (semi)linear maps. -/
-@[simps!]
+@[simps! apply symm_apply toLinearEquiv]
 def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
   { e₁₂.arrowCongrβ‚›β‚— e₄₃ with
     continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
     continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
 set_option linter.uppercaseLean3 false in
 #align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
+set_option linter.uppercaseLean3 false in
+#align continuous_linear_equiv.arrow_congrSL_apply ContinuousLinearEquiv.arrowCongrSL_apply
+set_option linter.uppercaseLean3 false in
+#align continuous_linear_equiv.arrow_congrSL_symm_apply ContinuousLinearEquiv.arrowCongrSL_symm_apply
+set_option linter.uppercaseLean3 false in
+#align continuous_linear_equiv.arrow_congrSL_to_linear_equiv ContinuousLinearEquiv.arrowCongrSL_toLinearEquiv
 
 end Semilinear
 
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -280,7 +280,7 @@ theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H
 
 variable [RingHomIsometric σ₁₂]
 
-/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
+/-- A pair of continuous (semi)linear equivalences generates a continuous (semi)linear equivalence
 between the spaces of continuous (semi)linear maps. -/
 @[simps!]
 def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
@@ -300,7 +300,7 @@ variable {π•œ : Type _} {E : Type _} {F : Type _} {G : Type _} {H : Type _} [Ad
   [TopologicalSpace G] [TopologicalSpace H] [TopologicalAddGroup G] [TopologicalAddGroup H]
   [ContinuousConstSMul π•œ G] [ContinuousConstSMul π•œ H]
 
-/-- A pair of continuous linear equivalences generates an continuous linear equivalence between
+/-- A pair of continuous linear equivalences generates a continuous linear equivalence between
 the spaces of continuous linear maps. -/
 def arrowCongr (e₁ : E ≃L[π•œ] F) (eβ‚‚ : H ≃L[π•œ] G) : (E β†’L[π•œ] H) ≃L[π•œ] F β†’L[π•œ] G :=
   e₁.arrowCongrSL eβ‚‚
feat: forward-port 19107 (#4470)

Forward-port leanprover-community/mathlib#19107

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.module.strong_topology
-! leanprover-community/mathlib commit b8627dbac120a9ad6267a75575ae1e070d5bff5b
+! leanprover-community/mathlib commit f7ebde7ee0d1505dfccac8644ae12371aa3c1c9f
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -230,3 +230,82 @@ protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F
 end BoundedSets
 
 end ContinuousLinearMap
+
+open ContinuousLinearMap
+
+namespace ContinuousLinearEquiv
+
+section Semilinear
+
+variable {π•œ : Type _} {π•œβ‚‚ : Type _} {π•œβ‚ƒ : Type _} {π•œβ‚„ : Type _} {E : Type _} {F : Type _}
+  {G : Type _} {H : Type _} [AddCommGroup E] [AddCommGroup F] [AddCommGroup G] [AddCommGroup H]
+  [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ]
+  [NontriviallyNormedField π•œβ‚„] [Module π•œ E] [Module π•œβ‚‚ F] [Module π•œβ‚ƒ G] [Module π•œβ‚„ H]
+  [TopologicalSpace E] [TopologicalSpace F] [TopologicalSpace G] [TopologicalSpace H]
+  [TopologicalAddGroup G] [TopologicalAddGroup H] [ContinuousConstSMul π•œβ‚ƒ G]
+  [ContinuousConstSMul π•œβ‚„ H] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {σ₁₃ : π•œ β†’+* π•œβ‚ƒ}
+  {σ₃₄ : π•œβ‚ƒ β†’+* π•œβ‚„} {σ₄₃ : π•œβ‚„ β†’+* π•œβ‚ƒ} {Οƒβ‚‚β‚„ : π•œβ‚‚ β†’+* π•œβ‚„} {σ₁₄ : π•œ β†’+* π•œβ‚„} [RingHomInvPair σ₁₂ σ₂₁]
+  [RingHomInvPair σ₂₁ σ₁₂] [RingHomInvPair σ₃₄ σ₄₃] [RingHomInvPair σ₄₃ σ₃₄]
+  [RingHomCompTriple σ₂₁ σ₁₄ Οƒβ‚‚β‚„] [RingHomCompTriple Οƒβ‚‚β‚„ σ₄₃ σ₂₃] [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
+  [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄]
+
+/-- A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the
+spaces of continuous (semi)linear maps. -/
+@[simps]
+def arrowCongrβ‚›β‚— (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G :=
+  { e₁₂.arrowCongrEquiv e₄₃ with
+    -- given explicitly to help `simps`
+    toFun := fun L => (e₄₃ : H β†’SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F β†’SL[σ₂₁] E))
+    -- given explicitly to help `simps`
+    invFun := fun L => (e₄₃.symm : G β†’SL[σ₃₄] H).comp (L.comp (e₁₂ : E β†’SL[σ₁₂] F))
+    map_add' := fun f g => by simp only [add_comp, comp_add]
+    map_smul' := fun t f => by simp only [smul_comp, comp_smulβ‚›β‚—] }
+#align continuous_linear_equiv.arrow_congrβ‚›β‚— ContinuousLinearEquiv.arrowCongrβ‚›β‚—
+
+variable [RingHomIsometric σ₂₁]
+
+theorem arrowCongrβ‚›β‚—_continuous (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) :
+    Continuous (id (e₁₂.arrowCongrβ‚›β‚— e₄₃ : (E β†’SL[σ₁₄] H) ≃ₛₗ[σ₄₃] F β†’SL[σ₂₃] G)) := by
+  apply continuous_of_continuousAt_zero
+  show Filter.Tendsto _ _ _
+  simp_rw [(arrowCongrβ‚›β‚— e₁₂ e₄₃).map_zero]
+  rw [ContinuousLinearMap.hasBasis_nhds_zero.tendsto_iff ContinuousLinearMap.hasBasis_nhds_zero]
+  rintro ⟨sF, sG⟩ ⟨h1 : Bornology.IsVonNBounded π•œβ‚‚ sF, h2 : sG ∈ nhds (0 : G)⟩
+  dsimp
+  refine' ⟨(e₁₂.symm '' sF, e₄₃ ⁻¹' sG), ⟨h1.image (e₁₂.symm : F β†’SL[σ₂₁] E), _⟩, fun _ h _ hx =>
+    h _ (Set.mem_image_of_mem _ hx)⟩
+  apply e₄₃.continuous.continuousAt
+  simpa using h2
+#align continuous_linear_equiv.arrow_congrβ‚›β‚—_continuous ContinuousLinearEquiv.arrowCongrβ‚›β‚—_continuous
+
+variable [RingHomIsometric σ₁₂]
+
+/-- A pair of continuous (semi)linear equivalences generates an continuous (semi)linear equivalence
+between the spaces of continuous (semi)linear maps. -/
+@[simps!]
+def arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E β†’SL[σ₁₄] H) ≃SL[σ₄₃] F β†’SL[σ₂₃] G :=
+  { e₁₂.arrowCongrβ‚›β‚— e₄₃ with
+    continuous_toFun := e₁₂.arrowCongrβ‚›β‚—_continuous e₄₃
+    continuous_invFun := e₁₂.symm.arrowCongrβ‚›β‚—_continuous e₄₃.symm }
+set_option linter.uppercaseLean3 false in
+#align continuous_linear_equiv.arrow_congrSL ContinuousLinearEquiv.arrowCongrSL
+
+end Semilinear
+
+section Linear
+
+variable {π•œ : Type _} {E : Type _} {F : Type _} {G : Type _} {H : Type _} [AddCommGroup E]
+  [AddCommGroup F] [AddCommGroup G] [AddCommGroup H] [NontriviallyNormedField π•œ] [Module π•œ E]
+  [Module π•œ F] [Module π•œ G] [Module π•œ H] [TopologicalSpace E] [TopologicalSpace F]
+  [TopologicalSpace G] [TopologicalSpace H] [TopologicalAddGroup G] [TopologicalAddGroup H]
+  [ContinuousConstSMul π•œ G] [ContinuousConstSMul π•œ H]
+
+/-- A pair of continuous linear equivalences generates an continuous linear equivalence between
+the spaces of continuous linear maps. -/
+def arrowCongr (e₁ : E ≃L[π•œ] F) (eβ‚‚ : H ≃L[π•œ] G) : (E β†’L[π•œ] H) ≃L[π•œ] F β†’L[π•œ] G :=
+  e₁.arrowCongrSL eβ‚‚
+#align continuous_linear_equiv.arrow_congr ContinuousLinearEquiv.arrowCongr
+
+end Linear
+
+end ContinuousLinearEquiv
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -160,7 +160,7 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
       fun Si => { f : E β†’SL[Οƒ] F | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
-  -- Porting note: replace `nhds_induced` by `inducing.nhds_eq_comap` (which needs an additional
+  -- Porting note: replace `nhds_induced` by `Inducing.nhds_eq_comap` (which needs an additional
   -- `letI`) so that Lean doesn't try to use the product topology
   letI : TopologicalSpace (E β†’SL[Οƒ] F) := strongTopology Οƒ F 𝔖
   rw [(strongTopology.embedding_coeFn Οƒ F 𝔖).toInducing.nhds_eq_comap]
feat: port Analysis.NormedSpace.OperatorNorm (#3903)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Arien Malec <arien.malec@gmail.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Mauricio Collares <mauricio@collares.org> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -199,10 +199,10 @@ instance continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [Topologica
     βŸ¨βˆ…, Bornology.isVonNBounded_empty π•œβ‚ E⟩
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) fun _ hs => hs
 
-instance [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
+instance uniformSpace [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
   strongUniformity Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
 
-instance [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
+instance uniformAddGroup [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
   strongUniformity.uniformAddGroup Οƒ F _
 
 instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E] [T2Space F] :
chore: reenable eta, bump to nightly 2023-05-16 (#3414)

Now that leanprover/lean4#2210 has been merged, this PR:

  • removes all the set_option synthInstance.etaExperiment true commands (and some etaExperiment% term elaborators)
  • removes many but not quite all set_option maxHeartbeats commands
  • makes various other changes required to cope with leanprover/lean4#2210.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -69,7 +69,6 @@ variable {π•œβ‚ π•œβ‚‚ : Type _} [NormedField π•œβ‚] [NormedField π•œβ‚‚]
   [AddCommGroup E] [Module π•œβ‚ E] [AddCommGroup E'] [Module ℝ E'] [AddCommGroup F] [Module π•œβ‚‚ F]
   [AddCommGroup F'] [Module ℝ F'] [TopologicalSpace E] [TopologicalSpace E'] (F)
 
-set_option synthInstance.etaExperiment true in
 /-- Given `E` and `F` two topological vector spaces and `𝔖 : Set (Set E)`, then
 `strongTopology Οƒ F 𝔖` is the "topology of uniform convergence on the elements of `𝔖`" on
 `E β†’L[π•œ] F`.
@@ -82,7 +81,6 @@ def strongTopology [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set
     (FunLike.coe : (E β†’SL[Οƒ] F) β†’ (E β†’α΅€[𝔖] F))
 #align continuous_linear_map.strong_topology ContinuousLinearMap.strongTopology
 
-set_option synthInstance.etaExperiment true in
 /-- The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure
 that this has nice definitional properties. -/
 def strongUniformity [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
@@ -98,7 +96,6 @@ theorem strongUniformity_topology_eq [UniformSpace F] [UniformAddGroup F] (𝔖
   rfl
 #align continuous_linear_map.strong_uniformity_topology_eq ContinuousLinearMap.strongUniformity_topology_eq
 
-set_option synthInstance.etaExperiment true in
 theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
     (𝔖 : Set (Set E)) :
     @UniformEmbedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongUniformity Οƒ F 𝔖)
@@ -107,14 +104,12 @@ theorem strongUniformity.uniformEmbedding_coeFn [UniformSpace F] [UniformAddGrou
   ⟨⟨rfl⟩, FunLike.coe_injective⟩
 #align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
 
-set_option synthInstance.etaExperiment true in
 theorem strongTopology.embedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @Embedding (E β†’SL[Οƒ] F) (E β†’α΅€[𝔖] F) (strongTopology Οƒ F 𝔖)
     (UniformOnFun.topologicalSpace E F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ FunLike.coe) :=
   @UniformEmbedding.embedding _ _ (_root_.id _) _ _ (strongUniformity.uniformEmbedding_coeFn _ _ _)
 #align continuous_linear_map.strong_topology.embedding_coe_fn ContinuousLinearMap.strongTopology.embedding_coeFn
 
-set_option synthInstance.etaExperiment true in
 theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
     @UniformAddGroup (E β†’SL[Οƒ] F) (strongUniformity Οƒ F 𝔖) _ := by
   letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
@@ -124,16 +119,13 @@ theorem strongUniformity.uniformAddGroup [UniformSpace F] [UniformAddGroup F] (
   exact uniformAddGroup_comap Ο†
 #align continuous_linear_map.strong_uniformity.uniform_add_group ContinuousLinearMap.strongUniformity.uniformAddGroup
 
-set_option synthInstance.etaExperiment true in
 theorem strongTopology.topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) : @TopologicalAddGroup (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) _ := by
   letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F
   haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
   letI : UniformSpace (E β†’SL[Οƒ] F) := strongUniformity Οƒ F 𝔖
   haveI : UniformAddGroup (E β†’SL[Οƒ] F) := strongUniformity.uniformAddGroup Οƒ F 𝔖
-  -- Porting note: this type inference is slow, so instead we provide the answer:
-  -- set_option synthInstance.maxHeartbeats 80000 in exact inferInstance
-  exact UniformAddGroup.to_topologicalAddGroup
+  infer_instance
 #align continuous_linear_map.strong_topology.topological_add_group ContinuousLinearMap.strongTopology.topologicalAddGroup
 
 theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2Space F]
@@ -145,7 +137,6 @@ theorem strongTopology.t2Space [TopologicalSpace F] [TopologicalAddGroup F] [T2S
   exact (strongTopology.embedding_coeFn Οƒ F 𝔖).t2Space
 #align continuous_linear_map.strong_topology.t2_space ContinuousLinearMap.strongTopology.t2Space
 
-set_option synthInstance.etaExperiment true in
 theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ]
     [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] (𝔖 : Set (Set E))
     (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖)
@@ -161,7 +152,6 @@ theorem strongTopology.continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric 
       fun u s hs => (h𝔖₃ s hs).image u
 #align continuous_linear_map.strong_topology.has_continuous_smul ContinuousLinearMap.strongTopology.continuousSMul
 
-set_option synthInstance.etaExperiment true in
 theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop}
     {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
@@ -177,7 +167,6 @@ theorem strongTopology.hasBasis_nhds_zero_of_basis [TopologicalSpace F] [Topolog
   exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap FunLike.coe
 #align continuous_linear_map.strong_topology.has_basis_nhds_zero_of_basis ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
 
-set_option synthInstance.etaExperiment true in
 theorem strongTopology.hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F]
     (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (@nhds (E β†’SL[Οƒ] F) (strongTopology Οƒ F 𝔖) 0).HasBasis
@@ -200,12 +189,10 @@ instance topologicalSpace [TopologicalSpace F] [TopologicalAddGroup F] :
     TopologicalSpace (E β†’SL[Οƒ] F) :=
   strongTopology Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
 
-set_option synthInstance.etaExperiment true in
 instance topologicalAddGroup [TopologicalSpace F] [TopologicalAddGroup F] :
     TopologicalAddGroup (E β†’SL[Οƒ] F) :=
   strongTopology.topologicalAddGroup Οƒ F _
 
-set_option synthInstance.etaExperiment true in
 instance continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [TopologicalSpace F]
     [TopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] : ContinuousSMul π•œβ‚‚ (E β†’SL[Οƒ] F) :=
   strongTopology.continuousSMul Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
@@ -215,7 +202,6 @@ instance continuousSMul [RingHomSurjective Οƒ] [RingHomIsometric Οƒ] [Topologica
 instance [UniformSpace F] [UniformAddGroup F] : UniformSpace (E β†’SL[Οƒ] F) :=
   strongUniformity Οƒ F { S | Bornology.IsVonNBounded π•œβ‚ S }
 
-set_option synthInstance.etaExperiment true in
 instance [UniformSpace F] [UniformAddGroup F] : UniformAddGroup (E β†’SL[Οƒ] F) :=
   strongUniformity.uniformAddGroup Οƒ F _
 
@@ -225,7 +211,6 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     (Set.eq_univ_of_forall fun x =>
       Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
-set_option synthInstance.etaExperiment true in
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
     {ΞΉ : Type _} {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set F} (h : (𝓝 0 : Filter F).HasBasis p b) :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis (fun Si : Set E Γ— ΞΉ => Bornology.IsVonNBounded π•œβ‚ Si.1 ∧ p Si.2)
@@ -235,7 +220,6 @@ protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalA
     (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) h
 #align continuous_linear_map.has_basis_nhds_zero_of_basis ContinuousLinearMap.hasBasis_nhds_zero_of_basis
 
-set_option synthInstance.etaExperiment true in
 protected theorem hasBasis_nhds_zero [TopologicalSpace F] [TopologicalAddGroup F] :
     (𝓝 (0 : E β†’SL[Οƒ] F)).HasBasis
       (fun SV : Set E Γ— Set F => Bornology.IsVonNBounded π•œβ‚ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F))
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supβ‚› β†’ sSup
  • infβ‚› β†’ sInf
  • supα΅’ β†’ iSup
  • infα΅’ β†’ iInf
  • bsupβ‚› β†’ bsSup
  • binfβ‚› β†’ bsInf
  • bsupα΅’ β†’ biSup
  • binfα΅’ β†’ biInf
  • csupβ‚› β†’ csSup
  • cinfβ‚› β†’ csInf
  • csupα΅’ β†’ ciSup
  • cinfα΅’ β†’ ciInf
  • unionβ‚› β†’ sUnion
  • interβ‚› β†’ sInter
  • unionα΅’ β†’ iUnion
  • interα΅’ β†’ iInter
  • bunionβ‚› β†’ bsUnion
  • binterβ‚› β†’ bsInter
  • bunionα΅’ β†’ biUnion
  • binterα΅’ β†’ biInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -223,7 +223,7 @@ instance [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œβ‚ E]
     T2Space (E β†’SL[Οƒ] F) :=
   strongTopology.t2Space Οƒ F _
     (Set.eq_univ_of_forall fun x =>
-      Set.mem_unionβ‚›_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
+      Set.mem_sUnion_of_mem (Set.mem_singleton x) (Bornology.isVonNBounded_singleton x))
 
 set_option synthInstance.etaExperiment true in
 protected theorem hasBasis_nhds_zero_of_basis [TopologicalSpace F] [TopologicalAddGroup F]
feat: port Topology.Algebra.Module.StrongTopology (#3684)

Co-authored-by: ADedecker <anatolededecker@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 10 + 630

631 files ported (98.4%)
276893 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file