topology.algebra.nonarchimedean.adic_topology
⟷
Mathlib.Topology.Algebra.Nonarchimedean.AdicTopology
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -121,7 +121,7 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
by
letI := I.adic_topology
have := I.has_basis_nhds_zero_adic.map fun y => x + y
- rwa [map_add_left_nhds_zero x] at this
+ rwa [map_add_left_nhds_zero x] at this
#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adic
-/
@@ -186,7 +186,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
by
constructor
· intro H
- change _ = _ at H
+ change _ = _ at H
rw [H]
letI := J.adic_topology
constructor
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -60,7 +60,7 @@ theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
{ inter := by
suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by simpa
intro i j
- exact ⟨max i j, pow_le_pow (le_max_left i j), pow_le_pow (le_max_right i j)⟩
+ exact ⟨max i j, pow_le_pow_right (le_max_left i j), pow_le_pow_right (le_max_right i j)⟩
leftMul := by
suffices ∀ (a : R) (i : ℕ), ∃ j : ℕ, a • I ^ j ≤ I ^ i by simpa
intro r n
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -236,7 +236,7 @@ theorem is_bot_adic_iff {A : Type _} [CommRing A] [TopologicalSpace A] [Topologi
rw [isAdic_iff]
constructor
· rintro ⟨h, h'⟩
- rw [discreteTopology_iff_open_singleton_zero]
+ rw [discreteTopology_iff_isOpen_singleton_zero]
simpa using h 1
· intros
constructor
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-/
-import Mathbin.RingTheory.Ideal.Operations
-import Mathbin.Topology.Algebra.Nonarchimedean.Bases
-import Mathbin.Topology.UniformSpace.Completion
-import Mathbin.Topology.Algebra.UniformRing
+import RingTheory.Ideal.Operations
+import Topology.Algebra.Nonarchimedean.Bases
+import Topology.UniformSpace.Completion
+import Topology.Algebra.UniformRing
#align_import topology.algebra.nonarchimedean.adic_topology from "leanprover-community/mathlib"@"7d34004e19699895c13c86b78ae62bbaea0bc893"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.nonarchimedean.adic_topology
-! leanprover-community/mathlib commit 7d34004e19699895c13c86b78ae62bbaea0bc893
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.RingTheory.Ideal.Operations
import Mathbin.Topology.Algebra.Nonarchimedean.Bases
import Mathbin.Topology.UniformSpace.Completion
import Mathbin.Topology.Algebra.UniformRing
+#align_import topology.algebra.nonarchimedean.adic_topology from "leanprover-community/mathlib"@"7d34004e19699895c13c86b78ae62bbaea0bc893"
+
/-!
# Adic topology
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -100,6 +100,7 @@ theorem nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology :=
#align ideal.nonarchimedean Ideal.nonarchimedean
-/
+#print Ideal.hasBasis_nhds_zero_adic /-
/-- For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`. -/
theorem hasBasis_nhds_zero_adic (I : Ideal R) :
HasBasis (@nhds R I.adicTopology (0 : R)) (fun n : ℕ => True) fun n =>
@@ -114,7 +115,9 @@ theorem hasBasis_nhds_zero_adic (I : Ideal R) :
· rintro ⟨i, -, h⟩
exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩⟩
#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adic
+-/
+#print Ideal.hasBasis_nhds_adic /-
theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
HasBasis (@nhds R I.adicTopology x) (fun n : ℕ => True) fun n =>
(fun y => x + y) '' (I ^ n : Ideal R) :=
@@ -123,9 +126,11 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
have := I.has_basis_nhds_zero_adic.map fun y => x + y
rwa [map_add_left_nhds_zero x] at this
#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adic
+-/
variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
+#print Ideal.adic_module_basis /-
theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
{ inter := fun i j =>
@@ -139,6 +144,7 @@ theorem adic_module_basis :
replace a_in : a ∈ I ^ i := by simpa [(I ^ i).mul_top] using a_in
exact smul_mem_smul a_in mem_top⟩ }
#align ideal.adic_module_basis Ideal.adic_module_basis
+-/
#print Ideal.adicModuleTopology /-
/-- The topology on a `R`-module `M` associated to an ideal `M`. Submodules $I^n M$,
@@ -149,6 +155,7 @@ def adicModuleTopology : TopologicalSpace M :=
#align ideal.adic_module_topology Ideal.adicModuleTopology
-/
+#print Ideal.openAddSubgroup /-
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
on a `R`-module `M`, seen as open additive subgroups of `M`. -/
def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
@@ -158,6 +165,7 @@ def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
convert (I.adic_basis.to_ring_subgroups_basis.open_add_subgroup n).IsOpen
simp }
#align ideal.open_add_subgroup Ideal.openAddSubgroup
+-/
end Ideal
@@ -171,6 +179,7 @@ def IsAdic [H : TopologicalSpace R] (J : Ideal R) : Prop :=
#align is_adic IsAdic
-/
+#print isAdic_iff /-
/-- A topological ring is `J`-adic if and only if it admits the powers of `J` as a basis of
open neighborhoods of zero. -/
theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R} :
@@ -202,6 +211,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
rw [mem_nhds_iff]
refine' ⟨_, hn, H₁ n, (J ^ n).zero_mem⟩
#align is_adic_iff isAdic_iff
+-/
variable [TopologicalSpace R] [TopologicalRing R]
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -155,7 +155,7 @@ def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
{ (I ^ n).toAddSubgroup with
is_open' := by
letI := I.adic_topology
- convert(I.adic_basis.to_ring_subgroups_basis.open_add_subgroup n).IsOpen
+ convert (I.adic_basis.to_ring_subgroups_basis.open_add_subgroup n).IsOpen
simp }
#align ideal.open_add_subgroup Ideal.openAddSubgroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -121,7 +121,7 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
by
letI := I.adic_topology
have := I.has_basis_nhds_zero_adic.map fun y => x + y
- rwa [map_add_left_nhds_zero x] at this
+ rwa [map_add_left_nhds_zero x] at this
#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adic
variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
@@ -180,7 +180,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
by
constructor
· intro H
- change _ = _ at H
+ change _ = _ at H
rw [H]
letI := J.adic_topology
constructor
@@ -208,7 +208,7 @@ variable [TopologicalSpace R] [TopologicalRing R]
#print is_ideal_adic_pow /-
theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) : IsAdic (J ^ n) :=
by
- rw [isAdic_iff] at h⊢
+ rw [isAdic_iff] at h ⊢
constructor
· intro m; rw [← pow_mul]; apply h.left
· intro V hV
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -54,7 +54,7 @@ variable {R : Type _} [CommRing R]
open Set TopologicalAddGroup Submodule Filter
-open Topology Pointwise
+open scoped Topology Pointwise
namespace Ideal
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -100,12 +100,6 @@ theorem nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology :=
#align ideal.nonarchimedean Ideal.nonarchimedean
-/
-/- warning: ideal.has_basis_nhds_zero_adic -> Ideal.hasBasis_nhds_zero_adic is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (fun (n : Nat) => True) (fun (n : Nat) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (fun (n : Nat) => True) (fun (n : Nat) => SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
-Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adicₓ'. -/
/-- For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`. -/
theorem hasBasis_nhds_zero_adic (I : Ideal R) :
HasBasis (@nhds R I.adicTopology (0 : R)) (fun n : ℕ => True) fun n =>
@@ -121,12 +115,6 @@ theorem hasBasis_nhds_zero_adic (I : Ideal R) :
exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩⟩
#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adic
-/- warning: ideal.has_basis_nhds_adic -> Ideal.hasBasis_nhds_adic is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
-Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adicₓ'. -/
theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
HasBasis (@nhds R I.adicTopology x) (fun n : ℕ => True) fun n =>
(fun y => x + y) '' (I ^ n : Ideal R) :=
@@ -138,12 +126,6 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
-/- warning: ideal.adic_module_basis -> Ideal.adic_module_basis is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (M : Type.{u2}) [_inst_2 : AddCommGroup.{u2} M] [_inst_3 : Module.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u1, u2} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u1} R _inst_1 I) (fun (n : Nat) => SMul.smul.{u1, u2} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasSMul'.{u1, u2} R M (CommRing.toCommSemiring.{u1} R _inst_1) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n) (Top.top.{u2} (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasTop.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3)))
-but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSMul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align ideal.adic_module_basis Ideal.adic_module_basisₓ'. -/
theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
{ inter := fun i j =>
@@ -167,12 +149,6 @@ def adicModuleTopology : TopologicalSpace M :=
#align ideal.adic_module_topology Ideal.adicModuleTopology
-/
-/- warning: ideal.open_add_subgroup -> Ideal.openAddSubgroup is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Ideal.adicTopology.{u1} R _inst_1 I))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ideal.adicTopology.{u1} R _inst_1 I))
-Case conversion may be inaccurate. Consider using '#align ideal.open_add_subgroup Ideal.openAddSubgroupₓ'. -/
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
on a `R`-module `M`, seen as open additive subgroups of `M`. -/
def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
@@ -195,12 +171,6 @@ def IsAdic [H : TopologicalSpace R] (J : Ideal R) : Prop :=
#align is_adic IsAdic
-/
-/- warning: is_adic_iff -> isAdic_iff is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.Mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (Filter.hasMem.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (instMembershipSetFilter.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.instHasSubsetSet.{u1} R) (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
-Case conversion may be inaccurate. Consider using '#align is_adic_iff isAdic_iffₓ'. -/
/-- A topological ring is `J`-adic if and only if it admits the powers of `J` as a basis of
open neighborhoods of zero. -/
theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R} :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -240,16 +240,12 @@ theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) :
by
rw [isAdic_iff] at h⊢
constructor
- · intro m
- rw [← pow_mul]
- apply h.left
+ · intro m; rw [← pow_mul]; apply h.left
· intro V hV
cases' h.right V hV with m hm
use m
refine' Set.Subset.trans _ hm
- cases n
- · exfalso
- exact Nat.not_succ_le_zero 0 hn
+ cases n; · exfalso; exact Nat.not_succ_le_zero 0 hn
rw [← pow_mul, Nat.succ_mul]
apply Ideal.pow_le_pow
apply Nat.le_add_left
mathlib commit https://github.com/leanprover-community/mathlib/commit/cc5dd6244981976cc9da7afc4eee5682b037a013
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
! This file was ported from Lean 3 source module topology.algebra.nonarchimedean.adic_topology
-! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
+! leanprover-community/mathlib commit 7d34004e19699895c13c86b78ae62bbaea0bc893
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,6 +16,9 @@ import Mathbin.Topology.Algebra.UniformRing
/-!
# Adic topology
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Given a commutative ring `R` and an ideal `I` in `R`, this file constructs the unique
topology on `R` which is compatible with the ring structure and such that a set is a neighborhood
of zero if and only if it contains a power of `I`. This topology is non-archimedean: every
mathlib commit https://github.com/leanprover-community/mathlib/commit/d4437c68c8d350fc9d4e95e1e174409db35e30d7
@@ -137,9 +137,9 @@ variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
/- warning: ideal.adic_module_basis -> Ideal.adic_module_basis is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (M : Type.{u2}) [_inst_2 : AddCommGroup.{u2} M] [_inst_3 : Module.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u1, u2} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u1} R _inst_1 I) (fun (n : Nat) => SMul.smul.{u1, u2} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasSmul'.{u1, u2} R M (CommRing.toCommSemiring.{u1} R _inst_1) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n) (Top.top.{u2} (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasTop.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (M : Type.{u2}) [_inst_2 : AddCommGroup.{u2} M] [_inst_3 : Module.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u1, u2} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u1} R _inst_1 I) (fun (n : Nat) => SMul.smul.{u1, u2} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasSMul'.{u1, u2} R M (CommRing.toCommSemiring.{u1} R _inst_1) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n) (Top.top.{u2} (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasTop.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3)))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSmul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
+ forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSMul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
Case conversion may be inaccurate. Consider using '#align ideal.adic_module_basis Ideal.adic_module_basisₓ'. -/
theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -101,7 +101,7 @@ theorem nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (fun (n : Nat) => True) (fun (n : Nat) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (fun (n : Nat) => True) (fun (n : Nat) => SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (fun (n : Nat) => True) (fun (n : Nat) => SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adicₓ'. -/
/-- For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`. -/
theorem hasBasis_nhds_zero_adic (I : Ideal R) :
@@ -122,7 +122,7 @@ theorem hasBasis_nhds_zero_adic (I : Ideal R) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adicₓ'. -/
theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
HasBasis (@nhds R I.adicTopology x) (fun n : ℕ => True) fun n =>
@@ -139,7 +139,7 @@ variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (M : Type.{u2}) [_inst_2 : AddCommGroup.{u2} M] [_inst_3 : Module.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u1, u2} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u1} R _inst_1 I) (fun (n : Nat) => SMul.smul.{u1, u2} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasSmul'.{u1, u2} R M (CommRing.toCommSemiring.{u1} R _inst_1) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n) (Top.top.{u2} (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasTop.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3)))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSmul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) Nat (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
+ forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSmul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
Case conversion may be inaccurate. Consider using '#align ideal.adic_module_basis Ideal.adic_module_basisₓ'. -/
theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
@@ -168,7 +168,7 @@ def adicModuleTopology : TopologicalSpace M :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Ideal.adicTopology.{u1} R _inst_1 I))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ideal.adicTopology.{u1} R _inst_1 I))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ideal.adicTopology.{u1} R _inst_1 I))
Case conversion may be inaccurate. Consider using '#align ideal.open_add_subgroup Ideal.openAddSubgroupₓ'. -/
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
on a `R`-module `M`, seen as open additive subgroups of `M`. -/
@@ -196,7 +196,7 @@ def IsAdic [H : TopologicalSpace R] (J : Ideal R) : Prop :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.Mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (Filter.hasMem.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (instMembershipSetFilter.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.instHasSubsetSet.{u1} R) (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (instMembershipSetFilter.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.instHasSubsetSet.{u1} R) (SetLike.coe.{u1, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
Case conversion may be inaccurate. Consider using '#align is_adic_iff isAdic_iffₓ'. -/
/-- A topological ring is `J`-adic if and only if it admits the powers of `J` as a basis of
open neighborhoods of zero. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -55,6 +55,7 @@ open Topology Pointwise
namespace Ideal
+#print Ideal.adic_basis /-
theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n • ⊤ : Ideal R) :=
{ inter := by
suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by simpa
@@ -73,22 +74,35 @@ theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
rintro a ⟨x, b, hx, hb, rfl⟩
exact (I ^ n).smul_mem x hb }
#align ideal.adic_basis Ideal.adic_basis
+-/
+#print Ideal.ringFilterBasis /-
/-- The adic ring filter basis associated to an ideal `I` is made of powers of `I`. -/
def ringFilterBasis (I : Ideal R) :=
I.adic_basis.toRing_subgroups_basis.toRingFilterBasis
#align ideal.ring_filter_basis Ideal.ringFilterBasis
+-/
+#print Ideal.adicTopology /-
/-- The adic topology associated to an ideal `I`. This topology admits powers of `I` as a basis of
neighborhoods of zero. It is compatible with the ring structure and is non-archimedean. -/
def adicTopology (I : Ideal R) : TopologicalSpace R :=
(adic_basis I).topology
#align ideal.adic_topology Ideal.adicTopology
+-/
+#print Ideal.nonarchimedean /-
theorem nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology :=
I.adic_basis.toRing_subgroups_basis.nonarchimedean
#align ideal.nonarchimedean Ideal.nonarchimedean
+-/
+/- warning: ideal.has_basis_nhds_zero_adic -> Ideal.hasBasis_nhds_zero_adic is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))) (fun (n : Nat) => True) (fun (n : Nat) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (fun (n : Nat) => True) (fun (n : Nat) => SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n))
+Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adicₓ'. -/
/-- For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`. -/
theorem hasBasis_nhds_zero_adic (I : Ideal R) :
HasBasis (@nhds R I.adicTopology (0 : R)) (fun n : ℕ => True) fun n =>
@@ -104,6 +118,12 @@ theorem hasBasis_nhds_zero_adic (I : Ideal R) :
exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩⟩
#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adic
+/- warning: ideal.has_basis_nhds_adic -> Ideal.hasBasis_nhds_adic is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x y) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x : R), Filter.HasBasis.{u1, 1} R Nat (nhds.{u1} R (Ideal.adicTopology.{u1} R _inst_1 I) x) (fun (n : Nat) => True) (fun (n : Nat) => Set.image.{u1, u1} R R (fun (y : R) => HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n)))
+Case conversion may be inaccurate. Consider using '#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adicₓ'. -/
theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
HasBasis (@nhds R I.adicTopology x) (fun n : ℕ => True) fun n =>
(fun y => x + y) '' (I ^ n : Ideal R) :=
@@ -115,6 +135,12 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
+/- warning: ideal.adic_module_basis -> Ideal.adic_module_basis is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (M : Type.{u2}) [_inst_2 : AddCommGroup.{u2} M] [_inst_3 : Module.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u1, u2} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u1} R _inst_1 I) (fun (n : Nat) => SMul.smul.{u1, u2} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasSmul'.{u1, u2} R M (CommRing.toCommSemiring.{u1} R _inst_1) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) I n) (Top.top.{u2} (Submodule.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3) (Submodule.hasTop.{u1, u2} R M (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} M _inst_2) _inst_3)))
+but is expected to have type
+ forall {R : Type.{u2}} [_inst_1 : CommRing.{u2} R] (I : Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (M : Type.{u1}) [_inst_2 : AddCommGroup.{u1} M] [_inst_3 : Module.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2)], RingFilterBasis.SubmodulesBasis.{0, u2, u1} Nat R _inst_1 M _inst_2 _inst_3 (Ideal.ringFilterBasis.{u2} R _inst_1 I) (fun (n : Nat) => HSMul.hSMul.{u2, u1, u1} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (instHSMul.{u2, u1} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.hasSmul'.{u2, u1} R M (CommRing.toCommSemiring.{u2} R _inst_1) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)) (HPow.hPow.{u2, 0, u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) Nat (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (instHPow.{u2, 0} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) Nat (Monoid.Pow.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (MonoidWithZero.toMonoid.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Semiring.toMonoidWithZero.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (IdemSemiring.toSemiring.{u2} (Ideal.{u2} R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1))) (Submodule.idemSemiring.{u2, u2} R (CommRing.toCommSemiring.{u2} R _inst_1) R (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (Algebra.id.{u2} R (CommRing.toCommSemiring.{u2} R _inst_1)))))))) I n) (Top.top.{u1} (Submodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3) (Submodule.instTopSubmodule.{u2, u1} R M (Ring.toSemiring.{u2} R (CommRing.toRing.{u2} R _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} M _inst_2) _inst_3)))
+Case conversion may be inaccurate. Consider using '#align ideal.adic_module_basis Ideal.adic_module_basisₓ'. -/
theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
{ inter := fun i j =>
@@ -129,13 +155,21 @@ theorem adic_module_basis :
exact smul_mem_smul a_in mem_top⟩ }
#align ideal.adic_module_basis Ideal.adic_module_basis
+#print Ideal.adicModuleTopology /-
/-- The topology on a `R`-module `M` associated to an ideal `M`. Submodules $I^n M$,
written `I^n • ⊤` form a basis of neighborhoods of zero. -/
def adicModuleTopology : TopologicalSpace M :=
@ModuleFilterBasis.topology R M _ I.adic_basis.topology _ _
(I.RingFilterBasis.ModuleFilterBasis (I.adic_module_basis M))
#align ideal.adic_module_topology Ideal.adicModuleTopology
+-/
+/- warning: ideal.open_add_subgroup -> Ideal.openAddSubgroup is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Ideal.adicTopology.{u1} R _inst_1 I))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (I : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Nat -> (OpenAddSubgroup.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ideal.adicTopology.{u1} R _inst_1 I))
+Case conversion may be inaccurate. Consider using '#align ideal.open_add_subgroup Ideal.openAddSubgroupₓ'. -/
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
on a `R`-module `M`, seen as open additive subgroups of `M`. -/
def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
@@ -150,12 +184,20 @@ end Ideal
section IsAdic
+#print IsAdic /-
/-- Given a topology on a ring `R` and an ideal `J`, `is_adic J` means the topology is the
`J`-adic one. -/
def IsAdic [H : TopologicalSpace R] (J : Ideal R) : Prop :=
H = J.adicTopology
#align is_adic IsAdic
+-/
+/- warning: is_adic_iff -> isAdic_iff is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.Mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (Filter.hasMem.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (HasLiftT.mk.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (CoeTCₓ.coe.{succ u1, succ u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} R) (SetLike.Set.hasCoeT.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [top : TopologicalSpace.{u1} R] [_inst_2 : TopologicalRing.{u1} R top (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))] {J : Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (IsAdic.{u1} R _inst_1 top J) (And (forall (n : Nat), IsOpen.{u1} R top (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n))) (forall (s : Set.{u1} R), (Membership.mem.{u1, u1} (Set.{u1} R) (Filter.{u1} R) (instMembershipSetFilter.{u1} R) s (nhds.{u1} R top (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) -> (Exists.{1} Nat (fun (n : Nat) => HasSubset.Subset.{u1} (Set.{u1} R) (Set.instHasSubsetSet.{u1} R) (SetLike.coe.{u1, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) R (Submodule.setLike.{u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (IdemSemiring.toSemiring.{u1} (Ideal.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Submodule.idemSemiring.{u1, u1} R (CommRing.toCommSemiring.{u1} R _inst_1) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Algebra.id.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) J n)) s))))
+Case conversion may be inaccurate. Consider using '#align is_adic_iff isAdic_iffₓ'. -/
/-- A topological ring is `J`-adic if and only if it admits the powers of `J` as a basis of
open neighborhoods of zero. -/
theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R} :
@@ -190,6 +232,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
variable [TopologicalSpace R] [TopologicalRing R]
+#print is_ideal_adic_pow /-
theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) : IsAdic (J ^ n) :=
by
rw [isAdic_iff] at h⊢
@@ -208,7 +251,9 @@ theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) :
apply Ideal.pow_le_pow
apply Nat.le_add_left
#align is_ideal_adic_pow is_ideal_adic_pow
+-/
+#print is_bot_adic_iff /-
theorem is_bot_adic_iff {A : Type _} [CommRing A] [TopologicalSpace A] [TopologicalRing A] :
IsAdic (⊥ : Ideal A) ↔ DiscreteTopology A :=
by
@@ -224,13 +269,16 @@ theorem is_bot_adic_iff {A : Type _} [CommRing A] [TopologicalSpace A] [Topologi
use 1
simp [mem_of_mem_nhds U_nhds]
#align is_bot_adic_iff is_bot_adic_iff
+-/
end IsAdic
+#print WithIdeal /-
/-- The ring `R` is equipped with a preferred ideal. -/
class WithIdeal (R : Type _) [CommRing R] where
i : Ideal R
#align with_ideal WithIdeal
+-/
namespace WithIdeal
@@ -248,11 +296,13 @@ instance (priority := 100) : UniformSpace R :=
instance (priority := 100) : UniformAddGroup R :=
comm_topologicalAddGroup_is_uniform
+#print WithIdeal.topologicalSpaceModule /-
/-- The adic topology on a `R` module coming from the ideal `with_ideal.I`.
This cannot be an instance because `R` cannot be inferred from `M`. -/
def topologicalSpaceModule (M : Type _) [AddCommGroup M] [Module R M] : TopologicalSpace M :=
(i : Ideal R).adicModuleTopology M
#align with_ideal.topological_space_module WithIdeal.topologicalSpaceModule
+-/
/-
The next examples are kept to make sure potential future refactors won't break the instance
mathlib commit https://github.com/leanprover-community/mathlib/commit/738054fa93d43512da144ec45ce799d18fd44248
@@ -4,12 +4,13 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
! This file was ported from Lean 3 source module topology.algebra.nonarchimedean.adic_topology
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.RingTheory.Ideal.Operations
import Mathbin.Topology.Algebra.Nonarchimedean.Bases
+import Mathbin.Topology.UniformSpace.Completion
import Mathbin.Topology.Algebra.UniformRing
/-!
mathlib commit https://github.com/leanprover-community/mathlib/commit/17ad94b4953419f3e3ce3e77da3239c62d1d09f0
@@ -54,7 +54,7 @@ open Topology Pointwise
namespace Ideal
-theorem adicBasis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n • ⊤ : Ideal R) :=
+theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n • ⊤ : Ideal R) :=
{ inter := by
suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by simpa
intro i j
@@ -71,21 +71,21 @@ theorem adicBasis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
use n
rintro a ⟨x, b, hx, hb, rfl⟩
exact (I ^ n).smul_mem x hb }
-#align ideal.adic_basis Ideal.adicBasis
+#align ideal.adic_basis Ideal.adic_basis
/-- The adic ring filter basis associated to an ideal `I` is made of powers of `I`. -/
def ringFilterBasis (I : Ideal R) :=
- I.adicBasis.toRing_subgroups_basis.toRingFilterBasis
+ I.adic_basis.toRing_subgroups_basis.toRingFilterBasis
#align ideal.ring_filter_basis Ideal.ringFilterBasis
/-- The adic topology associated to an ideal `I`. This topology admits powers of `I` as a basis of
neighborhoods of zero. It is compatible with the ring structure and is non-archimedean. -/
def adicTopology (I : Ideal R) : TopologicalSpace R :=
- (adicBasis I).topology
+ (adic_basis I).topology
#align ideal.adic_topology Ideal.adicTopology
theorem nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology :=
- I.adicBasis.toRing_subgroups_basis.nonarchimedean
+ I.adic_basis.toRing_subgroups_basis.nonarchimedean
#align ideal.nonarchimedean Ideal.nonarchimedean
/-- For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`. -/
@@ -114,7 +114,7 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
-theorem adicModuleBasis :
+theorem adic_module_basis :
I.RingFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
{ inter := fun i j =>
⟨max i j,
@@ -126,13 +126,13 @@ theorem adicModuleBasis :
by
replace a_in : a ∈ I ^ i := by simpa [(I ^ i).mul_top] using a_in
exact smul_mem_smul a_in mem_top⟩ }
-#align ideal.adic_module_basis Ideal.adicModuleBasis
+#align ideal.adic_module_basis Ideal.adic_module_basis
/-- The topology on a `R`-module `M` associated to an ideal `M`. Submodules $I^n M$,
written `I^n • ⊤` form a basis of neighborhoods of zero. -/
def adicModuleTopology : TopologicalSpace M :=
- @ModuleFilterBasis.topology R M _ I.adicBasis.topology _ _
- (I.RingFilterBasis.ModuleFilterBasis (I.adicModuleBasis M))
+ @ModuleFilterBasis.topology R M _ I.adic_basis.topology _ _
+ (I.RingFilterBasis.ModuleFilterBasis (I.adic_module_basis M))
#align ideal.adic_module_topology Ideal.adicModuleTopology
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
@@ -177,7 +177,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
· apply @TopologicalRing.to_topologicalAddGroup
· apply (RingSubgroupsBasis.toRingFilterBasis _).toAddGroupFilterBasis.isTopologicalAddGroup
· ext s
- letI := Ideal.adicBasis J
+ letI := Ideal.adic_basis J
rw [J.has_basis_nhds_zero_adic.mem_iff]
constructor <;> intro H
· rcases H₂ s H with ⟨n, h⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/06a655b5fcfbda03502f9158bbf6c0f1400886f9
@@ -175,7 +175,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
· rintro ⟨H₁, H₂⟩
apply TopologicalAddGroup.ext
· apply @TopologicalRing.to_topologicalAddGroup
- · apply (RingSubgroupsBasis.toRingFilterBasis _).toAddGroupFilterBasis.is_topological_add_group
+ · apply (RingSubgroupsBasis.toRingFilterBasis _).toAddGroupFilterBasis.isTopologicalAddGroup
· ext s
letI := Ideal.adicBasis J
rw [J.has_basis_nhds_zero_adic.mem_iff]
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -141,7 +141,7 @@ def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology :=
{ (I ^ n).toAddSubgroup with
is_open' := by
letI := I.adic_topology
- convert (I.adic_basis.to_ring_subgroups_basis.open_add_subgroup n).IsOpen
+ convert(I.adic_basis.to_ring_subgroups_basis.open_add_subgroup n).IsOpen
simp }
#align ideal.open_add_subgroup Ideal.openAddSubgroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/eb0cb4511aaef0da2462207b67358a0e1fe1e2ee
@@ -245,7 +245,7 @@ instance (priority := 100) : UniformSpace R :=
TopologicalAddGroup.toUniformSpace R
instance (priority := 100) : UniformAddGroup R :=
- topological_add_commGroup_is_uniform
+ comm_topologicalAddGroup_is_uniform
/-- The adic topology on a `R` module coming from the ideal `with_ideal.I`.
This cannot be an instance because `R` cannot be inferred from `M`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -229,7 +229,6 @@ class WithIdeal (R : Type*) [CommRing R] where
namespace WithIdeal
variable (R)
-
variable [WithIdeal R]
instance (priority := 100) : TopologicalSpace R :=
refine
s (#10762)
I replaced a few "terminal" refine/refine'
s with exact
.
The strategy was very simple-minded: essentially any refine
whose following line had smaller indentation got replaced by exact
and then I cleaned up the mess.
This PR certainly leaves some further terminal refine
s, but maybe the current change is beneficial.
@@ -181,7 +181,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
exact ⟨n, trivial, h⟩
· rcases H with ⟨n, -, hn⟩
rw [mem_nhds_iff]
- refine' ⟨_, hn, H₁ n, (J ^ n).zero_mem⟩
+ exact ⟨_, hn, H₁ n, (J ^ n).zero_mem⟩
#align is_adic_iff isAdic_iff
variable [TopologicalSpace R] [TopologicalRing R]
@@ -5,7 +5,6 @@ Authors: Patrick Massot
-/
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.Topology.Algebra.Nonarchimedean.Bases
-import Mathlib.Topology.UniformSpace.Completion
import Mathlib.Topology.Algebra.UniformRing
#align_import topology.algebra.nonarchimedean.adic_topology from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
Set.image2
etc (#9275)
Set.image2
to use ∃ a ∈ s, ∃ b ∈ t, f a b = c
instead of ∃ a b, a ∈ s ∧ b ∈ t ∧ f a b = c
.Set.seq
as Set.image2
. The new definition is equal to the old one but rw [Set.seq]
gives a different result.Filter.map₂
to use ∃ u ∈ f, ∃ v ∈ g, image2 m u v ⊆ s
instead of ∃ u v, u ∈ f ∧ v ∈ g ∧ ...
Set.mem_image2
, Finset.mem_image₂
, Set.mem_mul
, Finset.mem_div
etcThe two reasons to make the change are:
∃ a ∈ s, ∃ b ∈ t, _
is a simp
-normal form, and@@ -70,7 +70,7 @@ theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this
intro n
use n
- rintro a ⟨x, b, _hx, hb, rfl⟩
+ rintro a ⟨x, _hx, b, hb, rfl⟩
exact (I ^ n).smul_mem x hb }
#align ideal.adic_basis Ideal.adic_basis
The names for lemmas about monotonicity of (a ^ ·)
and (· ^ n)
were a mess. This PR tidies up everything related by following the naming convention for (a * ·)
and (· * b)
. Namely, (a ^ ·)
is pow_right
and (· ^ n)
is pow_left
in lemma names. All lemma renames follow the corresponding multiplication lemma names closely.
Algebra.GroupPower.Order
pow_mono
→ pow_right_mono
pow_le_pow
→ pow_le_pow_right
pow_le_pow_of_le_left
→ pow_le_pow_left
pow_lt_pow_of_lt_left
→ pow_lt_pow_left
strictMonoOn_pow
→ pow_left_strictMonoOn
pow_strictMono_right
→ pow_right_strictMono
pow_lt_pow
→ pow_lt_pow_right
pow_lt_pow_iff
→ pow_lt_pow_iff_right
pow_le_pow_iff
→ pow_le_pow_iff_right
self_lt_pow
→ lt_self_pow
strictAnti_pow
→ pow_right_strictAnti
pow_lt_pow_iff_of_lt_one
→ pow_lt_pow_iff_right_of_lt_one
pow_lt_pow_of_lt_one
→ pow_lt_pow_right_of_lt_one
lt_of_pow_lt_pow
→ lt_of_pow_lt_pow_left
le_of_pow_le_pow
→ le_of_pow_le_pow_left
pow_lt_pow₀
→ pow_lt_pow_right₀
Algebra.GroupPower.CovariantClass
pow_le_pow_of_le_left'
→ pow_le_pow_left'
nsmul_le_nsmul_of_le_right
→ nsmul_le_nsmul_right
pow_lt_pow'
→ pow_lt_pow_right'
nsmul_lt_nsmul
→ nsmul_lt_nsmul_left
pow_strictMono_left
→ pow_right_strictMono'
nsmul_strictMono_right
→ nsmul_left_strictMono
StrictMono.pow_right'
→ StrictMono.pow_const
StrictMono.nsmul_left
→ StrictMono.const_nsmul
pow_strictMono_right'
→ pow_left_strictMono
nsmul_strictMono_left
→ nsmul_right_strictMono
Monotone.pow_right
→ Monotone.pow_const
Monotone.nsmul_left
→ Monotone.const_nsmul
lt_of_pow_lt_pow'
→ lt_of_pow_lt_pow_left'
lt_of_nsmul_lt_nsmul
→ lt_of_nsmul_lt_nsmul_right
pow_le_pow'
→ pow_le_pow_right'
nsmul_le_nsmul
→ nsmul_le_nsmul_left
pow_le_pow_of_le_one'
→ pow_le_pow_right_of_le_one'
nsmul_le_nsmul_of_nonpos
→ nsmul_le_nsmul_left_of_nonpos
le_of_pow_le_pow'
→ le_of_pow_le_pow_left'
le_of_nsmul_le_nsmul'
→ le_of_nsmul_le_nsmul_right'
pow_le_pow_iff'
→ pow_le_pow_iff_right'
nsmul_le_nsmul_iff
→ nsmul_le_nsmul_iff_left
pow_lt_pow_iff'
→ pow_lt_pow_iff_right'
nsmul_lt_nsmul_iff
→ nsmul_lt_nsmul_iff_left
Data.Nat.Pow
Nat.pow_lt_pow_of_lt_left
→ Nat.pow_lt_pow_left
Nat.pow_le_iff_le_left
→ Nat.pow_le_pow_iff_left
Nat.pow_lt_iff_lt_left
→ Nat.pow_lt_pow_iff_left
pow_le_pow_iff_left
pow_lt_pow_iff_left
pow_right_injective
pow_right_inj
Nat.pow_le_pow_left
to have the correct name since Nat.pow_le_pow_of_le_left
is in Std.Nat.pow_le_pow_right
to have the correct name since Nat.pow_le_pow_of_le_right
is in Std.self_le_pow
was a duplicate of le_self_pow
.Nat.pow_lt_pow_of_lt_right
is defeq to pow_lt_pow_right
.Nat.pow_right_strictMono
is defeq to pow_right_strictMono
.Nat.pow_le_iff_le_right
is defeq to pow_le_pow_iff_right
.Nat.pow_lt_iff_lt_right
is defeq to pow_lt_pow_iff_right
.0 < n
or 1 ≤ n
to n ≠ 0
.Nat
lemmas have been protected
.@@ -57,7 +57,7 @@ theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by
simpa only [smul_eq_mul, mul_top, Algebra.id.map_eq_id, map_id, le_inf_iff] using this
intro i j
- exact ⟨max i j, pow_le_pow (le_max_left i j), pow_le_pow (le_max_right i j)⟩
+ exact ⟨max i j, pow_le_pow_right (le_max_left i j), pow_le_pow_right (le_max_right i j)⟩
leftMul := by
suffices ∀ (a : R) (i : ℕ), ∃ j : ℕ, a • I ^ j ≤ I ^ i by
simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this
@@ -119,8 +119,8 @@ theorem adic_module_basis :
{ inter := fun i j =>
⟨max i j,
le_inf_iff.mpr
- ⟨smul_mono_left <| pow_le_pow (le_max_left i j),
- smul_mono_left <| pow_le_pow (le_max_right i j)⟩⟩
+ ⟨smul_mono_left <| pow_le_pow_right (le_max_left i j),
+ smul_mono_left <| pow_le_pow_right (le_max_right i j)⟩⟩
smul := fun m i =>
⟨(I ^ i • ⊤ : Ideal R), ⟨i, by simp⟩, fun a a_in => by
replace a_in : a ∈ I ^ i := by simpa [(I ^ i).mul_top] using a_in
@@ -201,7 +201,7 @@ theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) :
· exfalso
exact Nat.not_succ_le_zero 0 hn
rw [← pow_mul, Nat.succ_mul]
- apply Ideal.pow_le_pow
+ apply Ideal.pow_le_pow_right
apply Nat.le_add_left
#align is_ideal_adic_pow is_ideal_adic_pow
Mostly, this means replacing "of_open" by "of_isOpen". A few lemmas names were misleading and are corrected differently. Zulip discussion.
@@ -210,7 +210,7 @@ theorem is_bot_adic_iff {A : Type*} [CommRing A] [TopologicalSpace A] [Topologic
rw [isAdic_iff]
constructor
· rintro ⟨h, _h'⟩
- rw [discreteTopology_iff_open_singleton_zero]
+ rw [discreteTopology_iff_isOpen_singleton_zero]
simpa using h 1
· intros
constructor
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -66,7 +66,7 @@ theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n •
rintro a ⟨x, hx, rfl⟩
exact (I ^ n).smul_mem r hx
mul := by
- suffices ∀ i : ℕ, ∃ j : ℕ, (I ^ j: Set R) * (I ^ j : Set R) ⊆ (I ^ i : Set R) by
+ suffices ∀ i : ℕ, ∃ j : ℕ, (↑(I ^ j) * ↑(I ^ j) : Set R) ⊆ (↑(I ^ i) : Set R) by
simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this
intro n
use n
@@ -140,7 +140,7 @@ def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology := by
letI := I.adicTopology
refine ⟨(I ^ n).toAddSubgroup, ?_⟩
convert (I.adic_basis.toRing_subgroups_basis.openAddSubgroup n).isOpen
- change (I ^ n : Set R) = (I ^ n • (⊤ : Ideal R) : Set R)
+ change (↑(I ^ n) : Set R) = ↑(I ^ n • (⊤ : Ideal R))
simp [smul_top_eq_map, Algebra.id.map_eq_id, map_id, restrictScalars_self]
#align ideal.open_add_subgroup Ideal.openAddSubgroup
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -44,7 +44,7 @@ to make sure it is definitionally equal to the `I`-topology on `R` seen as an `R
-/
-variable {R : Type _} [CommRing R]
+variable {R : Type*} [CommRing R]
open Set TopologicalAddGroup Submodule Filter
@@ -112,7 +112,7 @@ theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
rwa [map_add_left_nhds_zero x] at this
#align ideal.has_basis_nhds_adic Ideal.hasBasis_nhds_adic
-variable (I : Ideal R) (M : Type _) [AddCommGroup M] [Module R M]
+variable (I : Ideal R) (M : Type*) [AddCommGroup M] [Module R M]
theorem adic_module_basis :
I.ringFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) :=
@@ -205,7 +205,7 @@ theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) :
apply Nat.le_add_left
#align is_ideal_adic_pow is_ideal_adic_pow
-theorem is_bot_adic_iff {A : Type _} [CommRing A] [TopologicalSpace A] [TopologicalRing A] :
+theorem is_bot_adic_iff {A : Type*} [CommRing A] [TopologicalSpace A] [TopologicalRing A] :
IsAdic (⊥ : Ideal A) ↔ DiscreteTopology A := by
rw [isAdic_iff]
constructor
@@ -223,7 +223,7 @@ theorem is_bot_adic_iff {A : Type _} [CommRing A] [TopologicalSpace A] [Topologi
end IsAdic
/-- The ring `R` is equipped with a preferred ideal. -/
-class WithIdeal (R : Type _) [CommRing R] where
+class WithIdeal (R : Type*) [CommRing R] where
i : Ideal R
#align with_ideal WithIdeal
@@ -247,7 +247,7 @@ instance (priority := 100) : UniformAddGroup R :=
/-- The adic topology on an `R` module coming from the ideal `WithIdeal.I`.
This cannot be an instance because `R` cannot be inferred from `M`. -/
-def topologicalSpaceModule (M : Type _) [AddCommGroup M] [Module R M] : TopologicalSpace M :=
+def topologicalSpaceModule (M : Type*) [AddCommGroup M] [Module R M] : TopologicalSpace M :=
(i : Ideal R).adicModuleTopology M
#align with_ideal.topological_space_module WithIdeal.topologicalSpaceModule
@@ -259,13 +259,13 @@ example : NonarchimedeanRing R := by infer_instance
example : TopologicalRing (UniformSpace.Completion R) := by infer_instance
-example (M : Type _) [AddCommGroup M] [Module R M] :
+example (M : Type*) [AddCommGroup M] [Module R M] :
@TopologicalAddGroup M (WithIdeal.topologicalSpaceModule R M) _ := by infer_instance
-example (M : Type _) [AddCommGroup M] [Module R M] :
+example (M : Type*) [AddCommGroup M] [Module R M] :
@ContinuousSMul R M _ _ (WithIdeal.topologicalSpaceModule R M) := by infer_instance
-example (M : Type _) [AddCommGroup M] [Module R M] :
+example (M : Type*) [AddCommGroup M] [Module R M] :
@NonarchimedeanAddGroup M _ (WithIdeal.topologicalSpaceModule R M) :=
SubmodulesBasis.nonarchimedean _
@@ -2,17 +2,14 @@
Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.nonarchimedean.adic_topology
-! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.Topology.Algebra.Nonarchimedean.Bases
import Mathlib.Topology.UniformSpace.Completion
import Mathlib.Topology.Algebra.UniformRing
+#align_import topology.algebra.nonarchimedean.adic_topology from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
+
/-!
# Adic topology
@@ -248,7 +248,7 @@ instance (priority := 100) : UniformSpace R :=
instance (priority := 100) : UniformAddGroup R :=
comm_topologicalAddGroup_is_uniform
-/-- The adic topology on a `R` module coming from the ideal `WithIdeal.I`.
+/-- The adic topology on an `R` module coming from the ideal `WithIdeal.I`.
This cannot be an instance because `R` cannot be inferred from `M`. -/
def topologicalSpaceModule (M : Type _) [AddCommGroup M] [Module R M] : TopologicalSpace M :=
(i : Ideal R).adicModuleTopology M
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -191,7 +191,7 @@ theorem isAdic_iff [top : TopologicalSpace R] [TopologicalRing R] {J : Ideal R}
variable [TopologicalSpace R] [TopologicalRing R]
theorem is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) : IsAdic (J ^ n) := by
- rw [isAdic_iff] at h⊢
+ rw [isAdic_iff] at h ⊢
constructor
· intro m
rw [← pow_mul]
@@ -42,7 +42,7 @@ corresponding adic topology to the type class inference system.
## Implementation notes
The `I`-adic topology on a ring `R` has a contrived definition using `I^n • ⊤` instead of `I`
-to make sure it is definitionally equal to the `I`-topology on `R` seen as a `R`-module.
+to make sure it is definitionally equal to the `I`-topology on `R` seen as an `R`-module.
-/
@@ -130,7 +130,7 @@ theorem adic_module_basis :
exact smul_mem_smul a_in mem_top⟩ }
#align ideal.adic_module_basis Ideal.adic_module_basis
-/-- The topology on a `R`-module `M` associated to an ideal `M`. Submodules $I^n M$,
+/-- The topology on an `R`-module `M` associated to an ideal `M`. Submodules $I^n M$,
written `I^n • ⊤` form a basis of neighborhoods of zero. -/
def adicModuleTopology : TopologicalSpace M :=
@ModuleFilterBasis.topology R M _ I.adic_basis.topology _ _
@@ -138,7 +138,7 @@ def adicModuleTopology : TopologicalSpace M :=
#align ideal.adic_module_topology Ideal.adicModuleTopology
/-- The elements of the basis of neighborhoods of zero for the `I`-adic topology
-on a `R`-module `M`, seen as open additive subgroups of `M`. -/
+on an `R`-module `M`, seen as open additive subgroups of `M`. -/
def openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology := by
letI := I.adicTopology
refine ⟨(I ^ n).toAddSubgroup, ?_⟩
Now that leanprover/lean4#2210 has been merged, this PR:
set_option synthInstance.etaExperiment true
commands (and some etaExperiment%
term elaborators)set_option maxHeartbeats
commandsCo-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>
@@ -55,8 +55,6 @@ open Topology Pointwise
namespace Ideal
-set_option synthInstance.maxHeartbeats 40000 in -- Porting note : added
-set_option synthInstance.etaExperiment true in -- Porting note: added
theorem adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n • ⊤ : Ideal R) :=
{ inter := by
suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by
@@ -109,7 +107,6 @@ theorem hasBasis_nhds_zero_adic (I : Ideal R) :
exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩⟩
#align ideal.has_basis_nhds_zero_adic Ideal.hasBasis_nhds_zero_adic
-set_option synthInstance.etaExperiment true in -- Porting note: added
theorem hasBasis_nhds_adic (I : Ideal R) (x : R) :
HasBasis (@nhds R I.adicTopology x) (fun _n : ℕ => True) fun n =>
(fun y => x + y) '' (I ^ n : Ideal R) := by
@@ -265,7 +262,6 @@ example : NonarchimedeanRing R := by infer_instance
example : TopologicalRing (UniformSpace.Completion R) := by infer_instance
-set_option synthInstance.etaExperiment true in -- Porting note: added
example (M : Type _) [AddCommGroup M] [Module R M] :
@TopologicalAddGroup M (WithIdeal.topologicalSpaceModule R M) _ := by infer_instance
The unported dependencies are