topology.algebra.order.compactMathlib.Topology.Algebra.Order.Compact

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(topology/algebra/order/compact): remove conditional completeness assumption in is_compact.exists_forall_le (#18991)
Diff
@@ -136,80 +136,39 @@ is_compact_iff_compact_space.mp is_compact_Icc
 end
 
 /-!
-### Min and max elements of a compact set
+### Extreme value theorem
 -/
 
-variables {α β γ : Type*} [conditionally_complete_linear_order α] [topological_space α]
-  [order_topology α] [topological_space β] [topological_space γ]
-
-lemma is_compact.Inf_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
-  Inf s ∈ s :=
-hs.is_closed.cInf_mem ne_s hs.bdd_below
-
-lemma is_compact.Sup_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : Sup s ∈ s :=
-@is_compact.Inf_mem αᵒᵈ _ _ _ _ hs ne_s
-
-lemma is_compact.is_glb_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
-  is_glb s (Inf s) :=
-is_glb_cInf ne_s hs.bdd_below
-
-lemma is_compact.is_lub_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
-  is_lub s (Sup s) :=
-@is_compact.is_glb_Inf αᵒᵈ _ _ _ _ hs ne_s
-
-lemma is_compact.is_least_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
-  is_least s (Inf s) :=
-⟨hs.Inf_mem ne_s, (hs.is_glb_Inf ne_s).1⟩
+section linear_order
 
-lemma is_compact.is_greatest_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
-  is_greatest s (Sup s) :=
-@is_compact.is_least_Inf αᵒᵈ _ _ _ _ hs ne_s
+variables {α β γ : Type*} [linear_order α] [topological_space α]
+  [order_closed_topology α] [topological_space β] [topological_space γ]
 
 lemma is_compact.exists_is_least {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
   ∃ x, is_least s x :=
-⟨_, hs.is_least_Inf ne_s⟩
+begin
+  haveI : nonempty s := ne_s.to_subtype,
+  suffices : (s ∩ ⋂ x ∈ s, Iic x).nonempty,
+    from ⟨this.some, this.some_spec.1, mem_Inter₂.mp this.some_spec.2⟩,
+  rw bInter_eq_Inter,
+  by_contra H,
+  rw not_nonempty_iff_eq_empty at H,
+  rcases hs.elim_directed_family_closed (λ x : s, Iic ↑x) (λ x, is_closed_Iic) H
+    ((is_total.directed coe).mono_comp _ (λ _ _, Iic_subset_Iic.mpr)) with ⟨x, hx⟩,
+  exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩
+end
 
 lemma is_compact.exists_is_greatest {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
   ∃ x, is_greatest s x :=
-⟨_, hs.is_greatest_Sup ne_s⟩
+@is_compact.exists_is_least αᵒᵈ _ _ _ _ hs ne_s
 
 lemma is_compact.exists_is_glb {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
   ∃ x ∈ s, is_glb s x :=
-⟨_, hs.Inf_mem ne_s, hs.is_glb_Inf ne_s⟩
+exists_imp_exists (λ x (hx : is_least s x), ⟨hx.1, hx.is_glb⟩) (hs.exists_is_least ne_s)
 
 lemma is_compact.exists_is_lub {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
   ∃ x ∈ s, is_lub s x :=
-⟨_, hs.Sup_mem ne_s, hs.is_lub_Sup ne_s⟩
-
-lemma is_compact.exists_Inf_image_eq_and_le {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
-  {f : β → α} (hf : continuous_on f s) :
-  ∃ x ∈ s, Inf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
-let ⟨x, hxs, hx⟩ := (hs.image_of_continuous_on hf).Inf_mem (ne_s.image f)
-in ⟨x, hxs, hx.symm, λ y hy,
-  hx.trans_le $ cInf_le (hs.image_of_continuous_on hf).bdd_below $ mem_image_of_mem f hy⟩
-
-lemma is_compact.exists_Sup_image_eq_and_ge {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
-  {f : β → α} (hf : continuous_on f s) :
-  ∃ x ∈ s, Sup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-@is_compact.exists_Inf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
-
-lemma is_compact.exists_Inf_image_eq {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
-  {f : β → α} (hf : continuous_on f s) :
-  ∃ x ∈ s,  Inf (f '' s) = f x :=
-let ⟨x, hxs, hx, _⟩ := hs.exists_Inf_image_eq_and_le ne_s hf in ⟨x, hxs, hx⟩
-
-lemma is_compact.exists_Sup_image_eq :
-  ∀ {s : set β}, is_compact s → s.nonempty → ∀ {f : β → α}, continuous_on f s →
-  ∃ x ∈ s, Sup (f '' s) = f x :=
-@is_compact.exists_Inf_image_eq αᵒᵈ _ _ _ _ _
-
-lemma eq_Icc_of_connected_compact {s : set α} (h₁ : is_connected s) (h₂ : is_compact s) :
-  s = Icc (Inf s) (Sup s) :=
-eq_Icc_cInf_cSup_of_connected_bdd_closed h₁ h₂.bdd_below h₂.bdd_above h₂.is_closed
-
-/-!
-### Extreme value theorem
--/
+@is_compact.exists_is_glb αᵒᵈ _ _ _ _ hs ne_s
 
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 lemma is_compact.exists_forall_le {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
@@ -277,6 +236,68 @@ lemma continuous.exists_forall_ge [nonempty β] {f : β → α}
   ∃ x, ∀ y, f y ≤ f x :=
 @continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 
+/-- A continuous function with compact support has a global minimum. -/
+@[to_additive "A continuous function with compact support has a global minimum."]
+lemma continuous.exists_forall_le_of_has_compact_mul_support [nonempty β] [has_one α]
+  {f : β → α} (hf : continuous f) (h : has_compact_mul_support f) :
+  ∃ (x : β), ∀ (y : β), f x ≤ f y :=
+begin
+  obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_is_least (range_nonempty _),
+  rw [mem_lower_bounds, forall_range_iff] at hx,
+  exact ⟨x, hx⟩,
+end
+
+/-- A continuous function with compact support has a global maximum. -/
+@[to_additive "A continuous function with compact support has a global maximum."]
+lemma continuous.exists_forall_ge_of_has_compact_mul_support [nonempty β] [has_one α]
+  {f : β → α} (hf : continuous f) (h : has_compact_mul_support f) :
+  ∃ (x : β), ∀ (y : β), f y ≤ f x :=
+@continuous.exists_forall_le_of_has_compact_mul_support αᵒᵈ _ _ _ _ _ _ _ _ hf h
+
+/-- A compact set is bounded below -/
+lemma is_compact.bdd_below [nonempty α] {s : set α} (hs : is_compact s) : bdd_below s :=
+begin
+  cases s.eq_empty_or_nonempty,
+  { rw h,
+    exact bdd_below_empty },
+  { obtain ⟨a, ha, has⟩ := hs.exists_is_least h,
+    exact ⟨a, has⟩ },
+end
+
+/-- A compact set is bounded above -/
+lemma is_compact.bdd_above [nonempty α] {s : set α} (hs : is_compact s) : bdd_above s :=
+@is_compact.bdd_below αᵒᵈ _ _ _ _ _ hs
+
+/-- A continuous function is bounded below on a compact set. -/
+lemma is_compact.bdd_below_image [nonempty α] {f : β → α} {K : set β}
+  (hK : is_compact K) (hf : continuous_on f K) : bdd_below (f '' K) :=
+(hK.image_of_continuous_on hf).bdd_below
+
+/-- A continuous function is bounded above on a compact set. -/
+lemma is_compact.bdd_above_image [nonempty α] {f : β → α} {K : set β}
+  (hK : is_compact K) (hf : continuous_on f K) : bdd_above (f '' K) :=
+@is_compact.bdd_below_image αᵒᵈ _ _ _ _ _ _ _ _ hK hf
+
+/-- A continuous function with compact support is bounded below. -/
+@[to_additive /-" A continuous function with compact support is bounded below. "-/]
+lemma continuous.bdd_below_range_of_has_compact_mul_support [has_one α] {f : β → α}
+  (hf : continuous f) (h : has_compact_mul_support f) : bdd_below (range f) :=
+(h.is_compact_range hf).bdd_below
+
+/-- A continuous function with compact support is bounded above. -/
+@[to_additive /-" A continuous function with compact support is bounded above. "-/]
+lemma continuous.bdd_above_range_of_has_compact_mul_support [has_one α]
+  {f : β → α} (hf : continuous f) (h : has_compact_mul_support f) :
+  bdd_above (range f) :=
+@continuous.bdd_below_range_of_has_compact_mul_support αᵒᵈ _ _ _ _ _ _ _ hf h
+
+end linear_order
+
+section conditionally_complete_linear_order
+
+variables {α β γ : Type*} [conditionally_complete_linear_order α] [topological_space α]
+  [order_closed_topology α] [topological_space β] [topological_space γ]
+
 lemma is_compact.Sup_lt_iff_of_continuous {f : β → α}
   {K : set β} (hK : is_compact K) (h0K : K.nonempty) (hf : continuous_on f K) (y : α) :
   Sup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
@@ -294,23 +315,71 @@ lemma is_compact.lt_Inf_iff_of_continuous {α β : Type*}
   y < Inf (f '' K) ↔ ∀ x ∈ K, y < f x :=
 @is_compact.Sup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
 
-/-- A continuous function with compact support has a global minimum. -/
-@[to_additive "A continuous function with compact support has a global minimum."]
-lemma continuous.exists_forall_le_of_has_compact_mul_support [nonempty β] [has_one α]
-  {f : β → α} (hf : continuous f) (h : has_compact_mul_support f) :
-  ∃ (x : β), ∀ (y : β), f x ≤ f y :=
-begin
-  obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_is_least (range_nonempty _),
-  rw [mem_lower_bounds, forall_range_iff] at hx,
-  exact ⟨x, hx⟩,
-end
+end conditionally_complete_linear_order
 
-/-- A continuous function with compact support has a global maximum. -/
-@[to_additive "A continuous function with compact support has a global maximum."]
-lemma continuous.exists_forall_ge_of_has_compact_mul_support [nonempty β] [has_one α]
-  {f : β → α} (hf : continuous f) (h : has_compact_mul_support f) :
-  ∃ (x : β), ∀ (y : β), f y ≤ f x :=
-@continuous.exists_forall_le_of_has_compact_mul_support αᵒᵈ _ _ _ _ _ _ _ _ hf h
+/-!
+### Min and max elements of a compact set
+-/
+
+section order_closed_topology
+
+variables {α β γ : Type*} [conditionally_complete_linear_order α] [topological_space α]
+  [order_closed_topology α] [topological_space β] [topological_space γ]
+
+lemma is_compact.Inf_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
+  Inf s ∈ s :=
+let ⟨a, ha⟩ := hs.exists_is_least ne_s in
+ha.Inf_mem
+
+lemma is_compact.Sup_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : Sup s ∈ s :=
+@is_compact.Inf_mem αᵒᵈ _ _ _ _ hs ne_s
+
+lemma is_compact.is_glb_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
+  is_glb s (Inf s) :=
+is_glb_cInf ne_s hs.bdd_below
+
+lemma is_compact.is_lub_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
+  is_lub s (Sup s) :=
+@is_compact.is_glb_Inf αᵒᵈ _ _ _ _ hs ne_s
+
+lemma is_compact.is_least_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
+  is_least s (Inf s) :=
+⟨hs.Inf_mem ne_s, (hs.is_glb_Inf ne_s).1⟩
+
+lemma is_compact.is_greatest_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) :
+  is_greatest s (Sup s) :=
+@is_compact.is_least_Inf αᵒᵈ _ _ _ _ hs ne_s
+
+lemma is_compact.exists_Inf_image_eq_and_le {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
+  {f : β → α} (hf : continuous_on f s) :
+  ∃ x ∈ s, Inf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+let ⟨x, hxs, hx⟩ := (hs.image_of_continuous_on hf).Inf_mem (ne_s.image f)
+in ⟨x, hxs, hx.symm, λ y hy,
+  hx.trans_le $ cInf_le (hs.image_of_continuous_on hf).bdd_below $ mem_image_of_mem f hy⟩
+
+lemma is_compact.exists_Sup_image_eq_and_ge {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
+  {f : β → α} (hf : continuous_on f s) :
+  ∃ x ∈ s, Sup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+@is_compact.exists_Inf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+
+lemma is_compact.exists_Inf_image_eq {s : set β} (hs : is_compact s) (ne_s : s.nonempty)
+  {f : β → α} (hf : continuous_on f s) :
+  ∃ x ∈ s,  Inf (f '' s) = f x :=
+let ⟨x, hxs, hx, _⟩ := hs.exists_Inf_image_eq_and_le ne_s hf in ⟨x, hxs, hx⟩
+
+lemma is_compact.exists_Sup_image_eq :
+  ∀ {s : set β}, is_compact s → s.nonempty → ∀ {f : β → α}, continuous_on f s →
+  ∃ x ∈ s, Sup (f '' s) = f x :=
+@is_compact.exists_Inf_image_eq αᵒᵈ _ _ _ _ _
+
+end order_closed_topology
+
+variables {α β γ : Type*} [conditionally_complete_linear_order α] [topological_space α]
+  [order_topology α] [topological_space β] [topological_space γ]
+
+lemma eq_Icc_of_connected_compact {s : set α} (h₁ : is_connected s) (h₂ : is_compact s) :
+  s = Icc (Inf s) (Sup s) :=
+eq_Icc_cInf_cSup_of_connected_bdd_closed h₁ h₂.bdd_below h₂.bdd_above h₂.is_closed
 
 lemma is_compact.continuous_Sup {f : γ → β → α}
   {K : set β} (hK : is_compact K) (hf : continuous ↿f) :

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Patrick Massot. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
 -/
-import Topology.Algebra.Order.IntermediateValue
-import Topology.LocalExtr
+import Topology.Order.IntermediateValue
+import Topology.Order.LocalExtr
 
 #align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
 
Diff
@@ -173,7 +173,7 @@ theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonem
   exact ⟨this.some, this.some_spec.1, mem_Inter₂.mp this.some_spec.2⟩
   rw [bInter_eq_Inter]
   by_contra H
-  rw [not_nonempty_iff_eq_empty] at H 
+  rw [not_nonempty_iff_eq_empty] at H
   rcases hs.elim_directed_family_closed (fun x : s => Iic ↑x) (fun x => isClosed_Iic) H
       ((IsTotal.directed coe).mono_comp _ fun _ _ => Iic_subset_Iic.mpr) with
     ⟨x, hx⟩
@@ -294,7 +294,7 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
     (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y :=
   by
   obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_isLeast (range_nonempty _)
-  rw [mem_lowerBounds, forall_range_iff] at hx 
+  rw [mem_lowerBounds, forall_range_iff] at hx
   exact ⟨x, hx⟩
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Patrick Massot. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
 -/
-import Mathbin.Topology.Algebra.Order.IntermediateValue
-import Mathbin.Topology.LocalExtr
+import Topology.Algebra.Order.IntermediateValue
+import Topology.LocalExtr
 
 #align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Patrick Massot. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.algebra.order.compact
-! leanprover-community/mathlib commit 3efd324a3a31eaa40c9d5bfc669c4fafee5f9423
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Algebra.Order.IntermediateValue
 import Mathbin.Topology.LocalExtr
 
+#align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
+
 /-!
 # Compactness of a closed interval
 
Diff
@@ -616,13 +616,13 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β}
 #align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
 -/
 
-#print IsCompact.exists_local_min_mem_open /-
-theorem IsCompact.exists_local_min_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
+#print IsCompact.exists_isLocalMin_mem_open /-
+theorem IsCompact.exists_isLocalMin_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
     (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z')
     (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
   by
   obtain ⟨x, hx, hfx⟩ := ht.exists_local_min_on_mem_subset hf hz hfz
   exact ⟨x, hx, hfx.is_local_min (Filter.mem_of_superset (hs.mem_nhds hx) hst)⟩
-#align is_compact.exists_local_min_mem_open IsCompact.exists_local_min_mem_open
+#align is_compact.exists_local_min_mem_open IsCompact.exists_isLocalMin_mem_open
 -/
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module topology.algebra.order.compact
-! leanprover-community/mathlib commit 50832daea47b195a48b5b33b1c8b2162c48c3afc
+! leanprover-community/mathlib commit 3efd324a3a31eaa40c9d5bfc669c4fafee5f9423
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -159,125 +159,52 @@ instance compactSpace_Icc (a b : α) : CompactSpace (Icc a b) :=
 end
 
 /-!
-### Min and max elements of a compact set
--/
-
-
-variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
-  [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
-
-#print IsCompact.sInf_mem /-
-theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
-  hs.IsClosed.csInf_mem ne_s hs.BddBelow
-#align is_compact.Inf_mem IsCompact.sInf_mem
--/
-
-#print IsCompact.sSup_mem /-
-theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
-  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.Sup_mem IsCompact.sSup_mem
--/
-
-#print IsCompact.isGLB_sInf /-
-theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGLB s (sInf s) :=
-  isGLB_csInf ne_s hs.BddBelow
-#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
+### Extreme value theorem
 -/
 
-#print IsCompact.isLUB_sSup /-
-theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLUB s (sSup s) :=
-  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
--/
 
-#print IsCompact.isLeast_sInf /-
-theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLeast s (sInf s) :=
-  ⟨hs.csInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
-#align is_compact.is_least_Inf IsCompact.isLeast_sInf
--/
+section LinearOrder
 
-#print IsCompact.isGreatest_sSup /-
-theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGreatest s (sSup s) :=
-  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
--/
+variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace α] [OrderClosedTopology α]
+  [TopologicalSpace β] [TopologicalSpace γ]
 
 #print IsCompact.exists_isLeast /-
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x, IsLeast s x :=
-  ⟨_, hs.isLeast_csInf ne_s⟩
+    ∃ x, IsLeast s x := by
+  haveI : Nonempty s := ne_s.to_subtype
+  suffices : (s ∩ ⋂ x ∈ s, Iic x).Nonempty
+  exact ⟨this.some, this.some_spec.1, mem_Inter₂.mp this.some_spec.2⟩
+  rw [bInter_eq_Inter]
+  by_contra H
+  rw [not_nonempty_iff_eq_empty] at H 
+  rcases hs.elim_directed_family_closed (fun x : s => Iic ↑x) (fun x => isClosed_Iic) H
+      ((IsTotal.directed coe).mono_comp _ fun _ _ => Iic_subset_Iic.mpr) with
+    ⟨x, hx⟩
+  exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 -/
 
 #print IsCompact.exists_isGreatest /-
 theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsGreatest s x :=
-  ⟨_, hs.isGreatest_sSup ne_s⟩
+  @IsCompact.exists_isLeast αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 -/
 
 #print IsCompact.exists_isGLB /-
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
-  ⟨_, hs.csInf_mem ne_s, hs.isGLB_sInf ne_s⟩
+  Exists.imp (fun x (hx : IsLeast s x) => ⟨hx.1, hx.IsGLB⟩) (hs.exists_isLeast ne_s)
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 -/
 
 #print IsCompact.exists_isLUB /-
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
-  ⟨_, hs.csSup_mem ne_s, hs.isLUB_sSup ne_s⟩
+  @IsCompact.exists_isGLB αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 -/
 
-#print IsCompact.exists_sInf_image_eq_and_le /-
-theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
-  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).csInf_mem (ne_s.image f)
-  ⟨x, hxs, hx.symm, fun y hy =>
-    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
-#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
--/
-
-#print IsCompact.exists_sSup_image_eq_and_ge /-
-theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
-#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
--/
-
-#print IsCompact.exists_sInf_image_eq /-
-theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
-  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
-  ⟨x, hxs, hx⟩
-#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
--/
-
-#print IsCompact.exists_sSup_image_eq /-
-theorem IsCompact.exists_sSup_image_eq :
-    ∀ {s : Set β},
-      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
-  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
-#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
--/
-
-#print eq_Icc_of_connected_compact /-
-theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
-    s = Icc (sInf s) (sSup s) :=
-  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
-#align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
--/
-
-/-!
-### Extreme value theorem
--/
-
-
 #print IsCompact.exists_forall_le /-
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
@@ -363,6 +290,91 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 -/
 
+#print Continuous.exists_forall_le_of_hasCompactMulSupport /-
+/-- A continuous function with compact support has a global minimum. -/
+@[to_additive "A continuous function with compact support has a global minimum."]
+theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
+    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y :=
+  by
+  obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_isLeast (range_nonempty _)
+  rw [mem_lowerBounds, forall_range_iff] at hx 
+  exact ⟨x, hx⟩
+#align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
+#align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
+-/
+
+#print Continuous.exists_forall_ge_of_hasCompactMulSupport /-
+/-- A continuous function with compact support has a global maximum. -/
+@[to_additive "A continuous function with compact support has a global maximum."]
+theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
+    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f y ≤ f x :=
+  @Continuous.exists_forall_le_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ _ hf h
+#align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
+#align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
+-/
+
+#print IsCompact.bddBelow /-
+/-- A compact set is bounded below -/
+theorem IsCompact.bddBelow [Nonempty α] {s : Set α} (hs : IsCompact s) : BddBelow s :=
+  by
+  cases s.eq_empty_or_nonempty
+  · rw [h]
+    exact bddBelow_empty
+  · obtain ⟨a, ha, has⟩ := hs.exists_is_least h
+    exact ⟨a, has⟩
+#align is_compact.bdd_below IsCompact.bddBelow
+-/
+
+#print IsCompact.bddAbove /-
+/-- A compact set is bounded above -/
+theorem IsCompact.bddAbove [Nonempty α] {s : Set α} (hs : IsCompact s) : BddAbove s :=
+  @IsCompact.bddBelow αᵒᵈ _ _ _ _ _ hs
+#align is_compact.bdd_above IsCompact.bddAbove
+-/
+
+#print IsCompact.bddBelow_image /-
+/-- A continuous function is bounded below on a compact set. -/
+theorem IsCompact.bddBelow_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
+    (hf : ContinuousOn f K) : BddBelow (f '' K) :=
+  (hK.image_of_continuousOn hf).BddBelow
+#align is_compact.bdd_below_image IsCompact.bddBelow_image
+-/
+
+#print IsCompact.bddAbove_image /-
+/-- A continuous function is bounded above on a compact set. -/
+theorem IsCompact.bddAbove_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
+    (hf : ContinuousOn f K) : BddAbove (f '' K) :=
+  @IsCompact.bddBelow_image αᵒᵈ _ _ _ _ _ _ _ _ hK hf
+#align is_compact.bdd_above_image IsCompact.bddAbove_image
+-/
+
+#print Continuous.bddBelow_range_of_hasCompactMulSupport /-
+/-- A continuous function with compact support is bounded below. -/
+@[to_additive " A continuous function with compact support is bounded below. "]
+theorem Continuous.bddBelow_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
+    (h : HasCompactMulSupport f) : BddBelow (range f) :=
+  (h.isCompact_range hf).BddBelow
+#align continuous.bdd_below_range_of_has_compact_mul_support Continuous.bddBelow_range_of_hasCompactMulSupport
+#align continuous.bdd_below_range_of_has_compact_support Continuous.bddBelow_range_of_hasCompactSupport
+-/
+
+#print Continuous.bddAbove_range_of_hasCompactMulSupport /-
+/-- A continuous function with compact support is bounded above. -/
+@[to_additive " A continuous function with compact support is bounded above. "]
+theorem Continuous.bddAbove_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
+    (h : HasCompactMulSupport f) : BddAbove (range f) :=
+  @Continuous.bddBelow_range_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ hf h
+#align continuous.bdd_above_range_of_has_compact_mul_support Continuous.bddAbove_range_of_hasCompactMulSupport
+#align continuous.bdd_above_range_of_has_compact_support Continuous.bddAbove_range_of_hasCompactSupport
+-/
+
+end LinearOrder
+
+section ConditionallyCompleteLinearOrder
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
 #print IsCompact.sSup_lt_iff_of_continuous /-
 theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
     (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
@@ -385,27 +397,101 @@ theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompl
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 -/
 
-#print Continuous.exists_forall_le_of_hasCompactMulSupport /-
-/-- A continuous function with compact support has a global minimum. -/
-@[to_additive "A continuous function with compact support has a global minimum."]
-theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
-    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y :=
-  by
-  obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_isLeast (range_nonempty _)
-  rw [mem_lowerBounds, forall_range_iff] at hx 
-  exact ⟨x, hx⟩
-#align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
-#align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
+end ConditionallyCompleteLinearOrder
+
+/-!
+### Min and max elements of a compact set
 -/
 
-#print Continuous.exists_forall_ge_of_hasCompactMulSupport /-
-/-- A continuous function with compact support has a global maximum. -/
-@[to_additive "A continuous function with compact support has a global maximum."]
-theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
-    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f y ≤ f x :=
-  @Continuous.exists_forall_le_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ _ hf h
-#align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
-#align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
+
+section OrderClosedTopology
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
+#print IsCompact.sInf_mem /-
+theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
+  let ⟨a, ha⟩ := hs.exists_isLeast ne_s
+  ha.csInf_mem
+#align is_compact.Inf_mem IsCompact.sInf_mem
+-/
+
+#print IsCompact.sSup_mem /-
+theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
+  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.Sup_mem IsCompact.sSup_mem
+-/
+
+#print IsCompact.isGLB_sInf /-
+theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGLB s (sInf s) :=
+  isGLB_csInf ne_s hs.BddBelow
+#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
+-/
+
+#print IsCompact.isLUB_sSup /-
+theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLUB s (sSup s) :=
+  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
+-/
+
+#print IsCompact.isLeast_sInf /-
+theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLeast s (sInf s) :=
+  ⟨hs.csInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
+#align is_compact.is_least_Inf IsCompact.isLeast_sInf
+-/
+
+#print IsCompact.isGreatest_sSup /-
+theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGreatest s (sSup s) :=
+  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
+-/
+
+#print IsCompact.exists_sInf_image_eq_and_le /-
+theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).csInf_mem (ne_s.image f)
+  ⟨x, hxs, hx.symm, fun y hy =>
+    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
+#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
+-/
+
+#print IsCompact.exists_sSup_image_eq_and_ge /-
+theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
+-/
+
+#print IsCompact.exists_sInf_image_eq /-
+theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
+  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
+  ⟨x, hxs, hx⟩
+#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
+-/
+
+#print IsCompact.exists_sSup_image_eq /-
+theorem IsCompact.exists_sSup_image_eq :
+    ∀ {s : Set β},
+      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
+  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
+#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
+-/
+
+end OrderClosedTopology
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
+#print eq_Icc_of_connected_compact /-
+theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
+    s = Icc (sInf s) (sSup s) :=
+  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
+#align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
 -/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
Diff
@@ -166,33 +166,45 @@ end
 variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
+#print IsCompact.sInf_mem /-
 theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
   hs.IsClosed.csInf_mem ne_s hs.BddBelow
 #align is_compact.Inf_mem IsCompact.sInf_mem
+-/
 
+#print IsCompact.sSup_mem /-
 theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
   @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.Sup_mem IsCompact.sSup_mem
+-/
 
+#print IsCompact.isGLB_sInf /-
 theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsGLB s (sInf s) :=
   isGLB_csInf ne_s hs.BddBelow
 #align is_compact.is_glb_Inf IsCompact.isGLB_sInf
+-/
 
+#print IsCompact.isLUB_sSup /-
 theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsLUB s (sSup s) :=
   @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.is_lub_Sup IsCompact.isLUB_sSup
+-/
 
+#print IsCompact.isLeast_sInf /-
 theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsLeast s (sInf s) :=
   ⟨hs.csInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
 #align is_compact.is_least_Inf IsCompact.isLeast_sInf
+-/
 
+#print IsCompact.isGreatest_sSup /-
 theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsGreatest s (sSup s) :=
   @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
+-/
 
 #print IsCompact.exists_isLeast /-
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
@@ -208,50 +220,65 @@ theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.No
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 -/
 
+#print IsCompact.exists_isGLB /-
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
   ⟨_, hs.csInf_mem ne_s, hs.isGLB_sInf ne_s⟩
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
+-/
 
+#print IsCompact.exists_isLUB /-
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
   ⟨_, hs.csSup_mem ne_s, hs.isLUB_sSup ne_s⟩
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
+-/
 
+#print IsCompact.exists_sInf_image_eq_and_le /-
 theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
   let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).csInf_mem (ne_s.image f)
   ⟨x, hxs, hx.symm, fun y hy =>
     hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
 #align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
+-/
 
+#print IsCompact.exists_sSup_image_eq_and_ge /-
 theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
   @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
 #align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
+-/
 
+#print IsCompact.exists_sInf_image_eq /-
 theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
   let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
   ⟨x, hxs, hx⟩
 #align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
+-/
 
+#print IsCompact.exists_sSup_image_eq /-
 theorem IsCompact.exists_sSup_image_eq :
     ∀ {s : Set β},
       IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
   @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
 #align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
+-/
 
+#print eq_Icc_of_connected_compact /-
 theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
     s = Icc (sInf s) (sSup s) :=
   eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
 #align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
+-/
 
 /-!
 ### Extreme value theorem
 -/
 
 
+#print IsCompact.exists_forall_le /-
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
     (hf : ContinuousOn f s) : ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
@@ -259,14 +286,18 @@ theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Non
   rcases(hs.image_of_continuous_on hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩
   exact ⟨x, hxs, ball_image_iff.1 hx⟩
 #align is_compact.exists_forall_le IsCompact.exists_forall_le
+-/
 
+#print IsCompact.exists_forall_ge /-
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 theorem IsCompact.exists_forall_ge :
     ∀ {s : Set β},
       IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
   @IsCompact.exists_forall_le αᵒᵈ _ _ _ _ _
 #align is_compact.exists_forall_ge IsCompact.exists_forall_ge
+-/
 
+#print ContinuousOn.exists_forall_le' /-
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
 theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
@@ -281,7 +312,9 @@ theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : Contin
   by_cases hyK : y ∈ K
   exacts [hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
 #align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'
+-/
 
+#print ContinuousOn.exists_forall_ge' /-
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/
 theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
@@ -289,6 +322,7 @@ theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : Contin
     ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
   @ContinuousOn.exists_forall_le' αᵒᵈ _ _ _ _ _ _ _ hf hsc _ h₀ hc
 #align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'
+-/
 
 #print Continuous.exists_forall_le' /-
 /-- The **extreme value theorem**: if a continuous function `f` is larger than a value in its range
@@ -329,6 +363,7 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 -/
 
+#print IsCompact.sSup_lt_iff_of_continuous /-
 theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
     (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
   by
@@ -339,13 +374,16 @@ theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : I
   refine' (csSup_le (h0K.image f) _).trans_lt (h x hx)
   rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
 #align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
+-/
 
+#print IsCompact.lt_sInf_iff_of_continuous /-
 theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
     y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
   @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
+-/
 
 #print Continuous.exists_forall_le_of_hasCompactMulSupport /-
 /-- A continuous function with compact support has a global minimum. -/
@@ -371,6 +409,7 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
 -/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print IsCompact.continuous_sSup /-
 theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) :=
   by
@@ -400,11 +439,14 @@ theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCo
         (show Continuous (f x') from hf.comp <| Continuous.Prod.mk x').ContinuousOn]
     exact fun y' hy' => huv (mk_mem_prod hx' (hKv hy'))
 #align is_compact.continuous_Sup IsCompact.continuous_sSup
+-/
 
+#print IsCompact.continuous_sInf /-
 theorem IsCompact.continuous_sInf {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sInf (f x '' K) :=
   @IsCompact.continuous_sSup αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
 #align is_compact.continuous_Inf IsCompact.continuous_sInf
+-/
 
 namespace ContinuousOn
 
@@ -418,12 +460,15 @@ variable [DenselyOrdered α] [ConditionallyCompleteLinearOrder β] [OrderTopolog
 
 open scoped Interval
 
+#print ContinuousOn.image_Icc /-
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
     f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
   eq_Icc_of_connected_compact ⟨(nonempty_Icc.2 hab).image f, isPreconnected_Icc.image f h⟩
     (isCompact_Icc.image_of_continuousOn h)
 #align continuous_on.image_Icc ContinuousOn.image_Icc
+-/
 
+#print ContinuousOn.image_uIcc_eq_Icc /-
 theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = Icc (sInf (f '' [a, b])) (sSup (f '' [a, b])) :=
   by
@@ -431,7 +476,9 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
   · simp_rw [uIcc_of_le h2] at h ⊢; exact h.image_Icc h2
   · simp_rw [uIcc_of_ge h2] at h ⊢; exact h.image_Icc h2
 #align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Icc
+-/
 
+#print ContinuousOn.image_uIcc /-
 theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = [sInf (f '' [a, b]), sSup (f '' [a, b])] :=
   by
@@ -439,7 +486,9 @@ theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
   refine' csInf_le_csSup _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
   exacts [bddBelow_Icc, bddAbove_Icc]
 #align continuous_on.image_uIcc ContinuousOn.image_uIcc
+-/
 
+#print ContinuousOn.sInf_image_Icc_le /-
 theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
     sInf (f '' Icc a b) ≤ f c :=
   by
@@ -450,7 +499,9 @@ theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
         ⟨csInf_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
           le_csSup (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
 #align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_le
+-/
 
+#print ContinuousOn.le_sSup_image_Icc /-
 theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
     f c ≤ sSup (f '' Icc a b) :=
   by
@@ -461,9 +512,11 @@ theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
         ⟨csInf_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
           le_csSup (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
 #align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Icc
+-/
 
 end ContinuousOn
 
+#print IsCompact.exists_isLocalMinOn_mem_subset /-
 theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β} {z : β}
     (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z') :
     ∃ x ∈ s, IsLocalMinOn f t x :=
@@ -475,7 +528,9 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β}
   have h2 : x ∈ s := key hx h1
   refine' ⟨x, h2, eventually_nhdsWithin_of_forall hfx⟩
 #align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
+-/
 
+#print IsCompact.exists_local_min_mem_open /-
 theorem IsCompact.exists_local_min_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
     (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z')
     (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
@@ -483,4 +538,5 @@ theorem IsCompact.exists_local_min_mem_open {f : β → α} {s t : Set β} {z :
   obtain ⟨x, hx, hfx⟩ := ht.exists_local_min_on_mem_subset hf hz hfz
   exact ⟨x, hx, hfx.is_local_min (Filter.mem_of_superset (hs.mem_nhds hx) hst)⟩
 #align is_compact.exists_local_min_mem_open IsCompact.exists_local_min_mem_open
+-/
 
Diff
@@ -72,7 +72,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   rw [le_principal_iff]
   have hpt : ∀ x ∈ Icc a b, {x} ∉ f := fun x hx hxf =>
     hf x hx ((le_pure_iff.2 hxf).trans (pure_le_nhds x))
-  set s := { x ∈ Icc a b | Icc a x ∉ f }
+  set s := {x ∈ Icc a b | Icc a x ∉ f}
   have hsb : b ∈ upperBounds s := fun x hx => hx.1.2
   have sbd : BddAbove s := ⟨b, hsb⟩
   have ha : a ∈ s := by simp [hpt, hab]
Diff
@@ -279,7 +279,7 @@ theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : Contin
     ((hK.inter_right hsc).insert x₀).exists_forall_le (insert_nonempty _ _) (hf.mono hsub)
   refine' ⟨x, hsub hx, fun y hy => _⟩
   by_cases hyK : y ∈ K
-  exacts[hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
+  exacts [hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
 #align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
@@ -354,7 +354,7 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
     (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y :=
   by
   obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.is_compact_range hf).exists_isLeast (range_nonempty _)
-  rw [mem_lowerBounds, forall_range_iff] at hx
+  rw [mem_lowerBounds, forall_range_iff] at hx 
   exact ⟨x, hx⟩
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
@@ -428,8 +428,8 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = Icc (sInf (f '' [a, b])) (sSup (f '' [a, b])) :=
   by
   cases' le_total a b with h2 h2
-  · simp_rw [uIcc_of_le h2] at h⊢; exact h.image_Icc h2
-  · simp_rw [uIcc_of_ge h2] at h⊢; exact h.image_Icc h2
+  · simp_rw [uIcc_of_le h2] at h ⊢; exact h.image_Icc h2
+  · simp_rw [uIcc_of_ge h2] at h ⊢; exact h.image_Icc h2
 #align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Icc
 
 theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
@@ -437,7 +437,7 @@ theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
   by
   refine' h.image_uIcc_eq_Icc.trans (uIcc_of_le _).symm
   refine' csInf_le_csSup _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
-  exacts[bddBelow_Icc, bddAbove_Icc]
+  exacts [bddBelow_Icc, bddAbove_Icc]
 #align continuous_on.image_uIcc ContinuousOn.image_uIcc
 
 theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
Diff
@@ -35,7 +35,7 @@ compact, extreme value theorem
 
 open Filter OrderDual TopologicalSpace Function Set
 
-open Filter Topology
+open scoped Filter Topology
 
 /-!
 ### Compactness of a closed interval
@@ -290,6 +290,7 @@ theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : Contin
   @ContinuousOn.exists_forall_le' αᵒᵈ _ _ _ _ _ _ _ hf hsc _ h₀ hc
 #align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'
 
+#print Continuous.exists_forall_le' /-
 /-- The **extreme value theorem**: if a continuous function `f` is larger than a value in its range
 away from compact sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ : β)
@@ -299,27 +300,34 @@ theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ :
       (by rwa [principal_univ, inf_top_eq])
   ⟨x, fun y => hx y (mem_univ y)⟩
 #align continuous.exists_forall_le' Continuous.exists_forall_le'
+-/
 
+#print Continuous.exists_forall_ge' /-
 /-- The **extreme value theorem**: if a continuous function `f` is smaller than a value in its range
 away from compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge' {f : β → α} (hf : Continuous f) (x₀ : β)
     (h : ∀ᶠ x in cocompact β, f x ≤ f x₀) : ∃ x : β, ∀ y : β, f y ≤ f x :=
   @Continuous.exists_forall_le' αᵒᵈ _ _ _ _ _ _ hf x₀ h
 #align continuous.exists_forall_ge' Continuous.exists_forall_ge'
+-/
 
+#print Continuous.exists_forall_le /-
 /-- The **extreme value theorem**: if a continuous function `f` tends to infinity away from compact
 sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuous f)
     (hlim : Tendsto f (cocompact β) atTop) : ∃ x, ∀ y, f x ≤ f y := by inhabit β;
   exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_at_top _)
 #align continuous.exists_forall_le Continuous.exists_forall_le
+-/
 
+#print Continuous.exists_forall_ge /-
 /-- The **extreme value theorem**: if a continuous function `f` tends to negative infinity away from
 compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuous f)
     (hlim : Tendsto f (cocompact β) atBot) : ∃ x, ∀ y, f y ≤ f x :=
   @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
+-/
 
 theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
     (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
@@ -339,6 +347,7 @@ theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompl
   @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
+#print Continuous.exists_forall_le_of_hasCompactMulSupport /-
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
 theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -349,7 +358,9 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
   exact ⟨x, hx⟩
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
+-/
 
+#print Continuous.exists_forall_ge_of_hasCompactMulSupport /-
 /-- A continuous function with compact support has a global maximum. -/
 @[to_additive "A continuous function with compact support has a global maximum."]
 theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -357,6 +368,7 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
   @Continuous.exists_forall_le_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ _ hf h
 #align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
@@ -404,7 +416,7 @@ namespace ContinuousOn
 variable [DenselyOrdered α] [ConditionallyCompleteLinearOrder β] [OrderTopology β] {f : α → β}
   {a b c : α}
 
-open Interval
+open scoped Interval
 
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
     f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
Diff
@@ -166,65 +166,29 @@ end
 variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
-/- warning: is_compact.Inf_mem -> IsCompact.sInf_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align is_compact.Inf_mem IsCompact.sInf_memₓ'. -/
 theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
   hs.IsClosed.csInf_mem ne_s hs.BddBelow
 #align is_compact.Inf_mem IsCompact.sInf_mem
 
-/- warning: is_compact.Sup_mem -> IsCompact.sSup_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align is_compact.Sup_mem IsCompact.sSup_memₓ'. -/
 theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
   @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.Sup_mem IsCompact.sSup_mem
 
-/- warning: is_compact.is_glb_Inf -> IsCompact.isGLB_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_glb_Inf IsCompact.isGLB_sInfₓ'. -/
 theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsGLB s (sInf s) :=
   isGLB_csInf ne_s hs.BddBelow
 #align is_compact.is_glb_Inf IsCompact.isGLB_sInf
 
-/- warning: is_compact.is_lub_Sup -> IsCompact.isLUB_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_lub_Sup IsCompact.isLUB_sSupₓ'. -/
 theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsLUB s (sSup s) :=
   @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
 #align is_compact.is_lub_Sup IsCompact.isLUB_sSup
 
-/- warning: is_compact.is_least_Inf -> IsCompact.isLeast_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_least_Inf IsCompact.isLeast_sInfₓ'. -/
 theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsLeast s (sInf s) :=
   ⟨hs.csInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
 #align is_compact.is_least_Inf IsCompact.isLeast_sInf
 
-/- warning: is_compact.is_greatest_Sup -> IsCompact.isGreatest_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSupₓ'. -/
 theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     IsGreatest s (sSup s) :=
   @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
@@ -244,34 +208,16 @@ theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.No
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 -/
 
-/- warning: is_compact.exists_is_glb -> IsCompact.exists_isGLB is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s x)))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_is_glb IsCompact.exists_isGLBₓ'. -/
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
   ⟨_, hs.csInf_mem ne_s, hs.isGLB_sInf ne_s⟩
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 
-/- warning: is_compact.exists_is_lub -> IsCompact.exists_isLUB is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s x)))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_is_lub IsCompact.exists_isLUBₓ'. -/
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
   ⟨_, hs.csSup_mem ne_s, hs.isLUB_sSup ne_s⟩
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
-/- warning: is_compact.exists_Inf_image_eq_and_le -> IsCompact.exists_sInf_image_eq_and_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_leₓ'. -/
 theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
   let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).csInf_mem (ne_s.image f)
@@ -279,47 +225,23 @@ theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (n
     hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
 #align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
 
-/- warning: is_compact.exists_Sup_image_eq_and_ge -> IsCompact.exists_sSup_image_eq_and_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_geₓ'. -/
 theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
   @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
 #align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
 
-/- warning: is_compact.exists_Inf_image_eq -> IsCompact.exists_sInf_image_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eqₓ'. -/
 theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
     {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
   let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
   ⟨x, hxs, hx⟩
 #align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
 
-/- warning: is_compact.exists_Sup_image_eq -> IsCompact.exists_sSup_image_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eqₓ'. -/
 theorem IsCompact.exists_sSup_image_eq :
     ∀ {s : Set β},
       IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
   @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
 #align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
 
-/- warning: eq_Icc_of_connected_compact -> eq_Icc_of_connected_compact is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
-Case conversion may be inaccurate. Consider using '#align eq_Icc_of_connected_compact eq_Icc_of_connected_compactₓ'. -/
 theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
     s = Icc (sInf s) (sSup s) :=
   eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
@@ -330,12 +252,6 @@ theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ :
 -/
 
 
-/- warning: is_compact.exists_forall_le -> IsCompact.exists_forall_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_forall_le IsCompact.exists_forall_leₓ'. -/
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
     (hf : ContinuousOn f s) : ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
@@ -344,12 +260,6 @@ theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Non
   exact ⟨x, hxs, ball_image_iff.1 hx⟩
 #align is_compact.exists_forall_le IsCompact.exists_forall_le
 
-/- warning: is_compact.exists_forall_ge -> IsCompact.exists_forall_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_forall_ge IsCompact.exists_forall_geₓ'. -/
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 theorem IsCompact.exists_forall_ge :
     ∀ {s : Set β},
@@ -357,12 +267,6 @@ theorem IsCompact.exists_forall_ge :
   @IsCompact.exists_forall_le αᵒᵈ _ _ _ _ _
 #align is_compact.exists_forall_ge IsCompact.exists_forall_ge
 
-/- warning: continuous_on.exists_forall_le' -> ContinuousOn.exists_forall_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'ₓ'. -/
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
 theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
@@ -378,12 +282,6 @@ theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : Contin
   exacts[hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
 #align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'
 
-/- warning: continuous_on.exists_forall_ge' -> ContinuousOn.exists_forall_ge' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'ₓ'. -/
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/
 theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
@@ -392,12 +290,6 @@ theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : Contin
   @ContinuousOn.exists_forall_le' αᵒᵈ _ _ _ _ _ _ _ hf hsc _ h₀ hc
 #align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'
 
-/- warning: continuous.exists_forall_le' -> Continuous.exists_forall_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le' Continuous.exists_forall_le'ₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` is larger than a value in its range
 away from compact sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ : β)
@@ -408,12 +300,6 @@ theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ :
   ⟨x, fun y => hx y (mem_univ y)⟩
 #align continuous.exists_forall_le' Continuous.exists_forall_le'
 
-/- warning: continuous.exists_forall_ge' -> Continuous.exists_forall_ge' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge' Continuous.exists_forall_ge'ₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` is smaller than a value in its range
 away from compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge' {f : β → α} (hf : Continuous f) (x₀ : β)
@@ -421,12 +307,6 @@ theorem Continuous.exists_forall_ge' {f : β → α} (hf : Continuous f) (x₀ :
   @Continuous.exists_forall_le' αᵒᵈ _ _ _ _ _ _ hf x₀ h
 #align continuous.exists_forall_ge' Continuous.exists_forall_ge'
 
-/- warning: continuous.exists_forall_le -> Continuous.exists_forall_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le Continuous.exists_forall_leₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` tends to infinity away from compact
 sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuous f)
@@ -434,12 +314,6 @@ theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuo
   exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_at_top _)
 #align continuous.exists_forall_le Continuous.exists_forall_le
 
-/- warning: continuous.exists_forall_ge -> Continuous.exists_forall_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge Continuous.exists_forall_geₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` tends to negative infinity away from
 compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuous f)
@@ -447,12 +321,6 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
   @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 
-/- warning: is_compact.Sup_lt_iff_of_continuous -> IsCompact.sSup_lt_iff_of_continuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
-Case conversion may be inaccurate. Consider using '#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuousₓ'. -/
 theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
     (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
   by
@@ -464,12 +332,6 @@ theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : I
   rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
 #align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
 
-/- warning: is_compact.lt_Inf_iff_of_continuous -> IsCompact.lt_sInf_iff_of_continuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_6 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_7 : TopologicalSpace.{u1} α] [_inst_8 : OrderTopology.{u1} α _inst_7 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_9 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)) (Set.image.{u2, u1} β α f K))) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (f x))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_6 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_7 : TopologicalSpace.{u2} α] [_inst_8 : OrderTopology.{u2} α _inst_7 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u1} β] {f : β -> α} {K : Set.{u1} β}, (IsCompact.{u1} β _inst_9 K) -> (Set.Nonempty.{u1} β K) -> (ContinuousOn.{u1, u2} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)) (Set.image.{u1, u2} β α f K))) (forall (x : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x K) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (f x))))
-Case conversion may be inaccurate. Consider using '#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuousₓ'. -/
 theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
@@ -477,12 +339,6 @@ theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompl
   @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
-/- warning: continuous.exists_forall_le_of_has_compact_mul_support -> Continuous.exists_forall_le_of_hasCompactMulSupport is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupportₓ'. -/
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
 theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -494,12 +350,6 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
 
-/- warning: continuous.exists_forall_ge_of_has_compact_mul_support -> Continuous.exists_forall_ge_of_hasCompactMulSupport is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
-Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupportₓ'. -/
 /-- A continuous function with compact support has a global maximum. -/
 @[to_additive "A continuous function with compact support has a global maximum."]
 theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -508,12 +358,6 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
 #align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
 
-/- warning: is_compact.continuous_Sup -> IsCompact.continuous_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
-Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Sup IsCompact.continuous_sSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) :=
@@ -545,12 +389,6 @@ theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCo
     exact fun y' hy' => huv (mk_mem_prod hx' (hKv hy'))
 #align is_compact.continuous_Sup IsCompact.continuous_sSup
 
-/- warning: is_compact.continuous_Inf -> IsCompact.continuous_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
-Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Inf IsCompact.continuous_sInfₓ'. -/
 theorem IsCompact.continuous_sInf {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sInf (f x '' K) :=
   @IsCompact.continuous_sSup αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
@@ -568,24 +406,12 @@ variable [DenselyOrdered α] [ConditionallyCompleteLinearOrder β] [OrderTopolog
 
 open Interval
 
-/- warning: continuous_on.image_Icc -> ContinuousOn.image_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b) -> (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))) a b) -> (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.image_Icc ContinuousOn.image_Iccₓ'. -/
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
     f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
   eq_Icc_of_connected_compact ⟨(nonempty_Icc.2 hab).image f, isPreconnected_Icc.image f h⟩
     (isCompact_Icc.image_of_continuousOn h)
 #align continuous_on.image_Icc ContinuousOn.image_Icc
 
-/- warning: continuous_on.image_uIcc_eq_Icc -> ContinuousOn.image_uIcc_eq_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Iccₓ'. -/
 theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = Icc (sInf (f '' [a, b])) (sSup (f '' [a, b])) :=
   by
@@ -594,12 +420,6 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
   · simp_rw [uIcc_of_ge h2] at h⊢; exact h.image_Icc h2
 #align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Icc
 
-/- warning: continuous_on.image_uIcc -> ContinuousOn.image_uIcc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.uIcc.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.uIcc.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc ContinuousOn.image_uIccₓ'. -/
 theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = [sInf (f '' [a, b]), sSup (f '' [a, b])] :=
   by
@@ -608,12 +428,6 @@ theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
   exacts[bddBelow_Icc, bddAbove_Icc]
 #align continuous_on.image_uIcc ContinuousOn.image_uIcc
 
-/- warning: continuous_on.Inf_image_Icc_le -> ContinuousOn.sInf_image_Icc_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (f c))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (f c))
-Case conversion may be inaccurate. Consider using '#align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_leₓ'. -/
 theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
     sInf (f '' Icc a b) ≤ f c :=
   by
@@ -625,12 +439,6 @@ theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
           le_csSup (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
 #align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_le
 
-/- warning: continuous_on.le_Sup_image_Icc -> ContinuousOn.le_sSup_image_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Iccₓ'. -/
 theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
     f c ≤ sSup (f '' Icc a b) :=
   by
@@ -644,12 +452,6 @@ theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
 
 end ContinuousOn
 
-/- warning: is_compact.exists_local_min_on_mem_subset -> IsCompact.exists_isLocalMinOn_mem_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMinOn.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f t x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z t) -> (forall (z' : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (Set.instSDiffSet.{u2} β) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (IsLocalMinOn.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f t x)))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subsetₓ'. -/
 theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β} {z : β}
     (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z') :
     ∃ x ∈ s, IsLocalMinOn f t x :=
@@ -662,12 +464,6 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β}
   refine' ⟨x, h2, eventually_nhdsWithin_of_forall hfx⟩
 #align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
 
-/- warning: is_compact.exists_local_min_mem_open -> IsCompact.exists_local_min_mem_open is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (IsOpen.{u2} β _inst_4 s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMin.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z t) -> (forall (z' : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (Set.instSDiffSet.{u2} β) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (IsOpen.{u2} β _inst_4 s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (IsLocalMin.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f x)))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_local_min_mem_open IsCompact.exists_local_min_mem_openₓ'. -/
 theorem IsCompact.exists_local_min_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
     (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z')
     (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
Diff
@@ -66,9 +66,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
     CompactIccSpace α := by
   refine' ⟨fun a b => _⟩
-  cases' le_or_lt a b with hab hab
-  swap
-  · simp [hab]
+  cases' le_or_lt a b with hab hab; swap; · simp [hab]
   refine' isCompact_iff_ultrafilter_le_nhds.2 fun f hf => _
   contrapose! hf
   rw [le_principal_iff]
@@ -78,15 +76,13 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   have hsb : b ∈ upperBounds s := fun x hx => hx.1.2
   have sbd : BddAbove s := ⟨b, hsb⟩
   have ha : a ∈ s := by simp [hpt, hab]
-  rcases hab.eq_or_lt with (rfl | hlt)
-  · exact ha.2
+  rcases hab.eq_or_lt with (rfl | hlt); · exact ha.2
   set c := Sup s
   have hsc : IsLUB s c := isLUB_csSup ⟨a, ha⟩ sbd
   have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩
   specialize hf c hc
   have hcs : c ∈ s := by
-    cases' hc.1.eq_or_lt with heq hlt
-    · rwa [← HEq]
+    cases' hc.1.eq_or_lt with heq hlt; · rwa [← HEq]
     refine' ⟨hc, fun hcf => hf fun U hU => _⟩
     rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with
       ⟨x, hxc, hxU⟩
@@ -98,16 +94,13 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
     exact
       subset.trans Icc_subset_Icc_union_Ioc
         (union_subset_union subset.rfl <| Ioc_subset_Ioc_left hy.1.le)
-  cases' hc.2.eq_or_lt with heq hlt
-  · rw [← HEq]
-    exact hcs.2
+  cases' hc.2.eq_or_lt with heq hlt; · rw [← HEq]; exact hcs.2
   contrapose! hf
   intro U hU
   rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
       (mem_nhdsWithin_of_mem_nhds hU) with
     ⟨y, hxy, hyU⟩
-  refine' mem_of_superset _ hyU
-  clear! U
+  refine' mem_of_superset _ hyU; clear! U
   have hy : y ∈ Icc a b := ⟨hc.1.trans hxy.1.le, hxy.2⟩
   by_cases hay : Icc a y ∈ f
   · refine' mem_of_superset (f.diff_mem_iff.2 ⟨f.diff_mem_iff.2 ⟨hay, hcs.2⟩, hpt y hy⟩) _
@@ -437,9 +430,7 @@ Case conversion may be inaccurate. Consider using '#align continuous.exists_fora
 /-- The **extreme value theorem**: if a continuous function `f` tends to infinity away from compact
 sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuous f)
-    (hlim : Tendsto f (cocompact β) atTop) : ∃ x, ∀ y, f x ≤ f y :=
-  by
-  inhabit β
+    (hlim : Tendsto f (cocompact β) atTop) : ∃ x, ∀ y, f x ≤ f y := by inhabit β;
   exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_at_top _)
 #align continuous.exists_forall_le Continuous.exists_forall_le
 
@@ -528,8 +519,7 @@ theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCo
     (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) :=
   by
   rcases eq_empty_or_nonempty K with (rfl | h0K)
-  · simp_rw [image_empty]
-    exact continuous_const
+  · simp_rw [image_empty]; exact continuous_const
   rw [continuous_iff_continuousAt]
   intro x
   obtain ⟨y, hyK, h2y, hy⟩ :=
@@ -545,10 +535,7 @@ theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCo
   · refine'
       (this.1 z hz).mono fun x' hx' => hx'.trans_le <| le_csSup _ <| mem_image_of_mem (f x') hyK
     exact hK.bdd_above_image (hf.comp <| Continuous.Prod.mk x').ContinuousOn
-  · have h : ({x} : Set γ) ×ˢ K ⊆ ↿f ⁻¹' Iio z :=
-      by
-      rintro ⟨x', y'⟩ ⟨hx', hy'⟩
-      cases hx'
+  · have h : ({x} : Set γ) ×ˢ K ⊆ ↿f ⁻¹' Iio z := by rintro ⟨x', y'⟩ ⟨hx', hy'⟩; cases hx';
       exact (hy y' hy').trans_lt hz
     obtain ⟨u, v, hu, hv, hxu, hKv, huv⟩ :=
       generalized_tube_lemma isCompact_singleton hK (is_open_Iio.preimage hf) h
@@ -603,10 +590,8 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
     f '' [a, b] = Icc (sInf (f '' [a, b])) (sSup (f '' [a, b])) :=
   by
   cases' le_total a b with h2 h2
-  · simp_rw [uIcc_of_le h2] at h⊢
-    exact h.image_Icc h2
-  · simp_rw [uIcc_of_ge h2] at h⊢
-    exact h.image_Icc h2
+  · simp_rw [uIcc_of_le h2] at h⊢; exact h.image_Icc h2
+  · simp_rw [uIcc_of_ge h2] at h⊢; exact h.image_Icc h2
 #align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Icc
 
 /- warning: continuous_on.image_uIcc -> ContinuousOn.image_uIcc is a dubious translation:
Diff
@@ -275,7 +275,7 @@ theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempt
 
 /- warning: is_compact.exists_Inf_image_eq_and_le -> IsCompact.exists_sInf_image_eq_and_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_leₓ'. -/
@@ -288,7 +288,7 @@ theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (n
 
 /- warning: is_compact.exists_Sup_image_eq_and_ge -> IsCompact.exists_sSup_image_eq_and_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_geₓ'. -/
@@ -339,7 +339,7 @@ theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ :
 
 /- warning: is_compact.exists_forall_le -> IsCompact.exists_forall_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_forall_le IsCompact.exists_forall_leₓ'. -/
@@ -353,7 +353,7 @@ theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Non
 
 /- warning: is_compact.exists_forall_ge -> IsCompact.exists_forall_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_forall_ge IsCompact.exists_forall_geₓ'. -/
@@ -366,7 +366,7 @@ theorem IsCompact.exists_forall_ge :
 
 /- warning: continuous_on.exists_forall_le' -> ContinuousOn.exists_forall_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'ₓ'. -/
@@ -387,7 +387,7 @@ theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : Contin
 
 /- warning: continuous_on.exists_forall_ge' -> ContinuousOn.exists_forall_ge' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'ₓ'. -/
@@ -399,7 +399,12 @@ theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : Contin
   @ContinuousOn.exists_forall_le' αᵒᵈ _ _ _ _ _ _ _ hf hsc _ h₀ hc
 #align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'
 
-#print Continuous.exists_forall_le' /-
+/- warning: continuous.exists_forall_le' -> Continuous.exists_forall_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le' Continuous.exists_forall_le'ₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` is larger than a value in its range
 away from compact sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ : β)
@@ -409,18 +414,26 @@ theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ :
       (by rwa [principal_univ, inf_top_eq])
   ⟨x, fun y => hx y (mem_univ y)⟩
 #align continuous.exists_forall_le' Continuous.exists_forall_le'
--/
 
-#print Continuous.exists_forall_ge' /-
+/- warning: continuous.exists_forall_ge' -> Continuous.exists_forall_ge' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (forall (x₀ : β), (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Filter.cocompact.{u2} β _inst_4)) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge' Continuous.exists_forall_ge'ₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` is smaller than a value in its range
 away from compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge' {f : β → α} (hf : Continuous f) (x₀ : β)
     (h : ∀ᶠ x in cocompact β, f x ≤ f x₀) : ∃ x : β, ∀ y : β, f y ≤ f x :=
   @Continuous.exists_forall_le' αᵒᵈ _ _ _ _ _ _ hf x₀ h
 #align continuous.exists_forall_ge' Continuous.exists_forall_ge'
--/
 
-#print Continuous.exists_forall_le /-
+/- warning: continuous.exists_forall_le -> Continuous.exists_forall_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le Continuous.exists_forall_leₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` tends to infinity away from compact
 sets, then it has a global minimum. -/
 theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuous f)
@@ -429,20 +442,23 @@ theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuo
   inhabit β
   exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_at_top _)
 #align continuous.exists_forall_le Continuous.exists_forall_le
--/
 
-#print Continuous.exists_forall_ge /-
+/- warning: continuous.exists_forall_ge -> Continuous.exists_forall_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (Filter.Tendsto.{u2, u1} β α f (Filter.cocompact.{u2} β _inst_4) (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge Continuous.exists_forall_geₓ'. -/
 /-- The **extreme value theorem**: if a continuous function `f` tends to negative infinity away from
 compact sets, then it has a global maximum. -/
 theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuous f)
     (hlim : Tendsto f (cocompact β) atBot) : ∃ x, ∀ y, f y ≤ f x :=
   @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
--/
 
 /- warning: is_compact.Sup_lt_iff_of_continuous -> IsCompact.sSup_lt_iff_of_continuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
 Case conversion may be inaccurate. Consider using '#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuousₓ'. -/
@@ -459,7 +475,7 @@ theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : I
 
 /- warning: is_compact.lt_Inf_iff_of_continuous -> IsCompact.lt_sInf_iff_of_continuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_6 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_7 : TopologicalSpace.{u1} α] [_inst_8 : OrderTopology.{u1} α _inst_7 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_9 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)) (Set.image.{u2, u1} β α f K))) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_6 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_7 : TopologicalSpace.{u1} α] [_inst_8 : OrderTopology.{u1} α _inst_7 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_9 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)) (Set.image.{u2, u1} β α f K))) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (f x))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_6 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_7 : TopologicalSpace.{u2} α] [_inst_8 : OrderTopology.{u2} α _inst_7 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u1} β] {f : β -> α} {K : Set.{u1} β}, (IsCompact.{u1} β _inst_9 K) -> (Set.Nonempty.{u1} β K) -> (ContinuousOn.{u1, u2} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)) (Set.image.{u1, u2} β α f K))) (forall (x : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x K) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (f x))))
 Case conversion may be inaccurate. Consider using '#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuousₓ'. -/
@@ -470,7 +486,12 @@ theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompl
   @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
-#print Continuous.exists_forall_le_of_hasCompactMulSupport /-
+/- warning: continuous.exists_forall_le_of_has_compact_mul_support -> Continuous.exists_forall_le_of_hasCompactMulSupport is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupportₓ'. -/
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
 theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -481,9 +502,13 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
   exact ⟨x, hx⟩
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
--/
 
-#print Continuous.exists_forall_ge_of_hasCompactMulSupport /-
+/- warning: continuous.exists_forall_ge_of_has_compact_mul_support -> Continuous.exists_forall_ge_of_hasCompactMulSupport is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : Nonempty.{succ u2} β] [_inst_7 : One.{u1} α] {f : β -> α}, (Continuous.{u2, u1} β α _inst_4 _inst_2 f) -> (HasCompactMulSupport.{u2, u1} β α _inst_4 _inst_7 f) -> (Exists.{succ u2} β (fun (x : β) => forall (y : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))
+Case conversion may be inaccurate. Consider using '#align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupportₓ'. -/
 /-- A continuous function with compact support has a global maximum. -/
 @[to_additive "A continuous function with compact support has a global maximum."]
 theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -491,7 +516,6 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
   @Continuous.exists_forall_le_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ _ hf h
 #align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
--/
 
 /- warning: is_compact.continuous_Sup -> IsCompact.continuous_sSup is a dubious translation:
 lean 3 declaration is
@@ -559,7 +583,7 @@ open Interval
 
 /- warning: continuous_on.image_Icc -> ContinuousOn.image_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b) -> (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b) -> (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))) a b) -> (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_Icc ContinuousOn.image_Iccₓ'. -/
@@ -571,7 +595,7 @@ theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
 
 /- warning: continuous_on.image_uIcc_eq_Icc -> ContinuousOn.image_uIcc_eq_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Iccₓ'. -/
@@ -587,7 +611,7 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
 
 /- warning: continuous_on.image_uIcc -> ContinuousOn.image_uIcc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.uIcc.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.uIcc.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.uIcc.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc ContinuousOn.image_uIccₓ'. -/
@@ -601,7 +625,7 @@ theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
 
 /- warning: continuous_on.Inf_image_Icc_le -> ContinuousOn.sInf_image_Icc_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (f c))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (f c))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (f c))
 Case conversion may be inaccurate. Consider using '#align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_leₓ'. -/
@@ -618,7 +642,7 @@ theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
 
 /- warning: continuous_on.le_Sup_image_Icc -> ContinuousOn.le_sSup_image_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Iccₓ'. -/
@@ -637,7 +661,7 @@ end ContinuousOn
 
 /- warning: is_compact.exists_local_min_on_mem_subset -> IsCompact.exists_isLocalMinOn_mem_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMinOn.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f t x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMinOn.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f t x)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z t) -> (forall (z' : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (Set.instSDiffSet.{u2} β) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (IsLocalMinOn.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f t x)))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subsetₓ'. -/
@@ -655,7 +679,7 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β}
 
 /- warning: is_compact.exists_local_min_mem_open -> IsCompact.exists_local_min_mem_open is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (IsOpen.{u2} β _inst_4 s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMin.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z t) -> (forall (z' : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} β) (Set.booleanAlgebra.{u2} β)) t s)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (IsOpen.{u2} β _inst_4 s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => IsLocalMin.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f x)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β} {z : β}, (IsCompact.{u2} β _inst_4 t) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f t) -> (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z t) -> (forall (z' : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) z' (SDiff.sdiff.{u2} (Set.{u2} β) (Set.instSDiffSet.{u2} β) t s)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f z) (f z'))) -> (IsOpen.{u2} β _inst_4 s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (IsLocalMin.{u2, u1} β α _inst_4 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) f x)))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_local_min_mem_open IsCompact.exists_local_min_mem_openₓ'. -/
Diff
@@ -81,7 +81,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   rcases hab.eq_or_lt with (rfl | hlt)
   · exact ha.2
   set c := Sup s
-  have hsc : IsLUB s c := isLUB_csupₛ ⟨a, ha⟩ sbd
+  have hsc : IsLUB s c := isLUB_csSup ⟨a, ha⟩ sbd
   have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩
   specialize hf c hc
   have hcs : c ∈ s := by
@@ -173,81 +173,81 @@ end
 variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
-/- warning: is_compact.Inf_mem -> IsCompact.infₛ_mem is a dubious translation:
+/- warning: is_compact.Inf_mem -> IsCompact.sInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align is_compact.Inf_mem IsCompact.infₛ_memₓ'. -/
-theorem IsCompact.infₛ_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : infₛ s ∈ s :=
-  hs.IsClosed.cinfₛ_mem ne_s hs.BddBelow
-#align is_compact.Inf_mem IsCompact.infₛ_mem
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+Case conversion may be inaccurate. Consider using '#align is_compact.Inf_mem IsCompact.sInf_memₓ'. -/
+theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
+  hs.IsClosed.csInf_mem ne_s hs.BddBelow
+#align is_compact.Inf_mem IsCompact.sInf_mem
 
-/- warning: is_compact.Sup_mem -> IsCompact.supₛ_mem is a dubious translation:
+/- warning: is_compact.Sup_mem -> IsCompact.sSup_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align is_compact.Sup_mem IsCompact.supₛ_memₓ'. -/
-theorem IsCompact.supₛ_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : supₛ s ∈ s :=
-  @IsCompact.infₛ_mem αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.Sup_mem IsCompact.supₛ_mem
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+Case conversion may be inaccurate. Consider using '#align is_compact.Sup_mem IsCompact.sSup_memₓ'. -/
+theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
+  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.Sup_mem IsCompact.sSup_mem
 
-/- warning: is_compact.is_glb_Inf -> IsCompact.isGLB_infₛ is a dubious translation:
+/- warning: is_compact.is_glb_Inf -> IsCompact.isGLB_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_glb_Inf IsCompact.isGLB_infₛₓ'. -/
-theorem IsCompact.isGLB_infₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGLB s (infₛ s) :=
-  isGLB_cinfₛ ne_s hs.BddBelow
-#align is_compact.is_glb_Inf IsCompact.isGLB_infₛ
-
-/- warning: is_compact.is_lub_Sup -> IsCompact.isLUB_supₛ is a dubious translation:
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align is_compact.is_glb_Inf IsCompact.isGLB_sInfₓ'. -/
+theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGLB s (sInf s) :=
+  isGLB_csInf ne_s hs.BddBelow
+#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
+
+/- warning: is_compact.is_lub_Sup -> IsCompact.isLUB_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_lub_Sup IsCompact.isLUB_supₛₓ'. -/
-theorem IsCompact.isLUB_supₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLUB s (supₛ s) :=
-  @IsCompact.isGLB_infₛ αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_lub_Sup IsCompact.isLUB_supₛ
-
-/- warning: is_compact.is_least_Inf -> IsCompact.isLeast_infₛ is a dubious translation:
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align is_compact.is_lub_Sup IsCompact.isLUB_sSupₓ'. -/
+theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLUB s (sSup s) :=
+  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
+
+/- warning: is_compact.is_least_Inf -> IsCompact.isLeast_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_least_Inf IsCompact.isLeast_infₛₓ'. -/
-theorem IsCompact.isLeast_infₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLeast s (infₛ s) :=
-  ⟨hs.cinfₛ_mem ne_s, (hs.isGLB_infₛ ne_s).1⟩
-#align is_compact.is_least_Inf IsCompact.isLeast_infₛ
-
-/- warning: is_compact.is_greatest_Sup -> IsCompact.isGreatest_supₛ is a dubious translation:
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align is_compact.is_least_Inf IsCompact.isLeast_sInfₓ'. -/
+theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLeast s (sInf s) :=
+  ⟨hs.csInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
+#align is_compact.is_least_Inf IsCompact.isLeast_sInf
+
+/- warning: is_compact.is_greatest_Sup -> IsCompact.isGreatest_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_compact.is_greatest_Sup IsCompact.isGreatest_supₛₓ'. -/
-theorem IsCompact.isGreatest_supₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGreatest s (supₛ s) :=
-  @IsCompact.isLeast_infₛ αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_greatest_Sup IsCompact.isGreatest_supₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_2 s) -> (Set.Nonempty.{u1} α s) -> (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSupₓ'. -/
+theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGreatest s (sSup s) :=
+  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
 
 #print IsCompact.exists_isLeast /-
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsLeast s x :=
-  ⟨_, hs.isLeast_cinfₛ ne_s⟩
+  ⟨_, hs.isLeast_csInf ne_s⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 -/
 
 #print IsCompact.exists_isGreatest /-
 theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsGreatest s x :=
-  ⟨_, hs.isGreatest_supₛ ne_s⟩
+  ⟨_, hs.isGreatest_sSup ne_s⟩
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 -/
 
@@ -259,7 +259,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_is_glb IsCompact.exists_isGLBₓ'. -/
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
-  ⟨_, hs.cinfₛ_mem ne_s, hs.isGLB_infₛ ne_s⟩
+  ⟨_, hs.csInf_mem ne_s, hs.isGLB_sInf ne_s⟩
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 
 /- warning: is_compact.exists_is_lub -> IsCompact.exists_isLUB is a dubious translation:
@@ -270,66 +270,66 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_is_lub IsCompact.exists_isLUBₓ'. -/
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
-  ⟨_, hs.csupₛ_mem ne_s, hs.isLUB_supₛ ne_s⟩
+  ⟨_, hs.csSup_mem ne_s, hs.isLUB_sSup ne_s⟩
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
-/- warning: is_compact.exists_Inf_image_eq_and_le -> IsCompact.exists_infₛ_image_eq_and_le is a dubious translation:
+/- warning: is_compact.exists_Inf_image_eq_and_le -> IsCompact.exists_sInf_image_eq_and_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_infₛ_image_eq_and_leₓ'. -/
-theorem IsCompact.exists_infₛ_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, infₛ (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
-  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).cinfₛ_mem (ne_s.image f)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y)))))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_leₓ'. -/
+theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).csInf_mem (ne_s.image f)
   ⟨x, hxs, hx.symm, fun y hy =>
-    hx.trans_le <| cinfₛ_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
-#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_infₛ_image_eq_and_le
+    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).BddBelow <| mem_image_of_mem f hy⟩
+#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
 
-/- warning: is_compact.exists_Sup_image_eq_and_ge -> IsCompact.exists_supₛ_image_eq_and_ge is a dubious translation:
+/- warning: is_compact.exists_Sup_image_eq_and_ge -> IsCompact.exists_sSup_image_eq_and_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_supₛ_image_eq_and_geₓ'. -/
-theorem IsCompact.exists_supₛ_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, supₛ (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-  @IsCompact.exists_infₛ_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
-#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_supₛ_image_eq_and_ge
-
-/- warning: is_compact.exists_Inf_image_eq -> IsCompact.exists_infₛ_image_eq is a dubious translation:
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (And (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x)))))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_geₓ'. -/
+theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
+
+/- warning: is_compact.exists_Inf_image_eq -> IsCompact.exists_sInf_image_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq IsCompact.exists_infₛ_image_eqₓ'. -/
-theorem IsCompact.exists_infₛ_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, infₛ (f '' s) = f x :=
-  let ⟨x, hxs, hx, _⟩ := hs.exists_infₛ_image_eq_and_le ne_s hf
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eqₓ'. -/
+theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
+  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
   ⟨x, hxs, hx⟩
-#align is_compact.exists_Inf_image_eq IsCompact.exists_infₛ_image_eq
+#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
 
-/- warning: is_compact.exists_Sup_image_eq -> IsCompact.exists_supₛ_image_eq is a dubious translation:
+/- warning: is_compact.exists_Sup_image_eq -> IsCompact.exists_sSup_image_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq IsCompact.exists_supₛ_image_eqₓ'. -/
-theorem IsCompact.exists_supₛ_image_eq :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β}, (IsCompact.{u2} β _inst_4 s) -> (Set.Nonempty.{u2} β s) -> (forall {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (f x)))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eqₓ'. -/
+theorem IsCompact.exists_sSup_image_eq :
     ∀ {s : Set β},
-      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, supₛ (f '' s) = f x :=
-  @IsCompact.exists_infₛ_image_eq αᵒᵈ _ _ _ _ _
-#align is_compact.exists_Sup_image_eq IsCompact.exists_supₛ_image_eq
+      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
+  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
+#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
 
 /- warning: eq_Icc_of_connected_compact -> eq_Icc_of_connected_compact is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] {s : Set.{u1} α}, (IsConnected.{u1} α _inst_2 s) -> (IsCompact.{u1} α _inst_2 s) -> (Eq.{succ u1} (Set.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)))
 Case conversion may be inaccurate. Consider using '#align eq_Icc_of_connected_compact eq_Icc_of_connected_compactₓ'. -/
 theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
-    s = Icc (infₛ s) (supₛ s) :=
-  eq_Icc_cinfₛ_csupₛ_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
+    s = Icc (sInf s) (sSup s) :=
+  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.BddBelow h₂.BddAbove h₂.IsClosed
 #align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
 
 /-!
@@ -440,35 +440,35 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 -/
 
-/- warning: is_compact.Sup_lt_iff_of_continuous -> IsCompact.supₛ_lt_iff_of_continuous is a dubious translation:
+/- warning: is_compact.Sup_lt_iff_of_continuous -> IsCompact.sSup_lt_iff_of_continuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
-Case conversion may be inaccurate. Consider using '#align is_compact.Sup_lt_iff_of_continuous IsCompact.supₛ_lt_iff_of_continuousₓ'. -/
-theorem IsCompact.supₛ_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
-    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : supₛ (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α f K)) y) (forall (x : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) y)))
+Case conversion may be inaccurate. Consider using '#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuousₓ'. -/
+theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
+    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
   by
   refine'
-    ⟨fun h x hx => (le_csupₛ (hK.bdd_above_image hf) <| mem_image_of_mem f hx).trans_lt h, fun h =>
+    ⟨fun h x hx => (le_csSup (hK.bdd_above_image hf) <| mem_image_of_mem f hx).trans_lt h, fun h =>
       _⟩
   obtain ⟨x, hx, h2x⟩ := hK.exists_forall_ge h0K hf
-  refine' (csupₛ_le (h0K.image f) _).trans_lt (h x hx)
+  refine' (csSup_le (h0K.image f) _).trans_lt (h x hx)
   rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
-#align is_compact.Sup_lt_iff_of_continuous IsCompact.supₛ_lt_iff_of_continuous
+#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
 
-/- warning: is_compact.lt_Inf_iff_of_continuous -> IsCompact.lt_infₛ_iff_of_continuous is a dubious translation:
+/- warning: is_compact.lt_Inf_iff_of_continuous -> IsCompact.lt_sInf_iff_of_continuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_6 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_7 : TopologicalSpace.{u1} α] [_inst_8 : OrderTopology.{u1} α _inst_7 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_9 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)) (Set.image.{u2, u1} β α f K))) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_6 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_7 : TopologicalSpace.{u1} α] [_inst_8 : OrderTopology.{u1} α _inst_7 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u2} β] {f : β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_9 K) -> (Set.Nonempty.{u2} β K) -> (ContinuousOn.{u2, u1} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)) (Set.image.{u2, u1} β α f K))) (forall (x : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x K) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_6)))))) y (f x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_6 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_7 : TopologicalSpace.{u2} α] [_inst_8 : OrderTopology.{u2} α _inst_7 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u1} β] {f : β -> α} {K : Set.{u1} β}, (IsCompact.{u1} β _inst_9 K) -> (Set.Nonempty.{u1} β K) -> (ContinuousOn.{u1, u2} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)) (Set.image.{u1, u2} β α f K))) (forall (x : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x K) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (f x))))
-Case conversion may be inaccurate. Consider using '#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_infₛ_iff_of_continuousₓ'. -/
-theorem IsCompact.lt_infₛ_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_6 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_7 : TopologicalSpace.{u2} α] [_inst_8 : OrderTopology.{u2} α _inst_7 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))] [_inst_9 : TopologicalSpace.{u1} β] {f : β -> α} {K : Set.{u1} β}, (IsCompact.{u1} β _inst_9 K) -> (Set.Nonempty.{u1} β K) -> (ContinuousOn.{u1, u2} β α _inst_9 _inst_7 f K) -> (forall (y : α), Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)) (Set.image.{u1, u2} β α f K))) (forall (x : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x K) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_6)))))) y (f x))))
+Case conversion may be inaccurate. Consider using '#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuousₓ'. -/
+theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
-    y < infₛ (f '' K) ↔ ∀ x ∈ K, y < f x :=
-  @IsCompact.supₛ_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
-#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_infₛ_iff_of_continuous
+    y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
+  @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
+#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
 #print Continuous.exists_forall_le_of_hasCompactMulSupport /-
 /-- A continuous function with compact support has a global minimum. -/
@@ -493,15 +493,15 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
 -/
 
-/- warning: is_compact.continuous_Sup -> IsCompact.continuous_supₛ is a dubious translation:
+/- warning: is_compact.continuous_Sup -> IsCompact.continuous_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
-Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Sup IsCompact.continuous_supₛₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
+Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Sup IsCompact.continuous_sSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem IsCompact.continuous_supₛ {f : γ → β → α} {K : Set β} (hK : IsCompact K)
-    (hf : Continuous ↿f) : Continuous fun x => supₛ (f x '' K) :=
+theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
+    (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) :=
   by
   rcases eq_empty_or_nonempty K with (rfl | h0K)
   · simp_rw [image_empty]
@@ -519,7 +519,7 @@ theorem IsCompact.continuous_supₛ {f : γ → β → α} {K : Set β} (hK : Is
         x)
   refine' ⟨fun z hz => _, fun z hz => _⟩
   · refine'
-      (this.1 z hz).mono fun x' hx' => hx'.trans_le <| le_csupₛ _ <| mem_image_of_mem (f x') hyK
+      (this.1 z hz).mono fun x' hx' => hx'.trans_le <| le_csSup _ <| mem_image_of_mem (f x') hyK
     exact hK.bdd_above_image (hf.comp <| Continuous.Prod.mk x').ContinuousOn
   · have h : ({x} : Set γ) ×ˢ K ⊆ ↿f ⁻¹' Iio z :=
       by
@@ -532,18 +532,18 @@ theorem IsCompact.continuous_supₛ {f : γ → β → α} {K : Set β} (hK : Is
     rw [hK.Sup_lt_iff_of_continuous h0K
         (show Continuous (f x') from hf.comp <| Continuous.Prod.mk x').ContinuousOn]
     exact fun y' hy' => huv (mk_mem_prod hx' (hKv hy'))
-#align is_compact.continuous_Sup IsCompact.continuous_supₛ
+#align is_compact.continuous_Sup IsCompact.continuous_sSup
 
-/- warning: is_compact.continuous_Inf -> IsCompact.continuous_infₛ is a dubious translation:
+/- warning: is_compact.continuous_Inf -> IsCompact.continuous_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : TopologicalSpace.{u3} γ] {f : γ -> β -> α} {K : Set.{u2} β}, (IsCompact.{u2} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u3, u2} γ β) α (Prod.topologicalSpace.{u3, u2} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max u3 u2 u1, max u3 u2, u1} (γ -> β -> α) (Prod.{u3, u2} γ β) α (Function.hasUncurryInduction.{u3, max u2 u1, u2, u1} γ (β -> α) β α (Function.hasUncurryBase.{u2, u1} β α)) f)) -> (Continuous.{u3, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u2, u1} β α (f x) K)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
-Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Inf IsCompact.continuous_infₛₓ'. -/
-theorem IsCompact.continuous_infₛ {f : γ → β → α} {K : Set β} (hK : IsCompact K)
-    (hf : Continuous ↿f) : Continuous fun x => infₛ (f x '' K) :=
-  @IsCompact.continuous_supₛ αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
-#align is_compact.continuous_Inf IsCompact.continuous_infₛ
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u3} β] [_inst_5 : TopologicalSpace.{u2} γ] {f : γ -> β -> α} {K : Set.{u3} β}, (IsCompact.{u3} β _inst_4 K) -> (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ β) α (instTopologicalSpaceProd.{u2, u3} γ β _inst_5 _inst_4) _inst_2 (Function.HasUncurry.uncurry.{max (max u1 u3) u2, max u3 u2, u1} (γ -> β -> α) (Prod.{u2, u3} γ β) α (Function.hasUncurryInduction.{u2, max u1 u3, u3, u1} γ (β -> α) β α (Function.hasUncurryBase.{u3, u1} β α)) f)) -> (Continuous.{u2, u1} γ α _inst_5 _inst_2 (fun (x : γ) => InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) (Set.image.{u3, u1} β α (f x) K)))
+Case conversion may be inaccurate. Consider using '#align is_compact.continuous_Inf IsCompact.continuous_sInfₓ'. -/
+theorem IsCompact.continuous_sInf {f : γ → β → α} {K : Set β} (hK : IsCompact K)
+    (hf : Continuous ↿f) : Continuous fun x => sInf (f x '' K) :=
+  @IsCompact.continuous_sSup αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
+#align is_compact.continuous_Inf IsCompact.continuous_sInf
 
 namespace ContinuousOn
 
@@ -559,24 +559,24 @@ open Interval
 
 /- warning: continuous_on.image_Icc -> ContinuousOn.image_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b) -> (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b) -> (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))) a b) -> (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))) a b) -> (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_Icc ContinuousOn.image_Iccₓ'. -/
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
-    f '' Icc a b = Icc (infₛ <| f '' Icc a b) (supₛ <| f '' Icc a b) :=
+    f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
   eq_Icc_of_connected_compact ⟨(nonempty_Icc.2 hab).image f, isPreconnected_Icc.image f h⟩
     (isCompact_Icc.image_of_continuousOn h)
 #align continuous_on.image_Icc ContinuousOn.image_Icc
 
 /- warning: continuous_on.image_uIcc_eq_Icc -> ContinuousOn.image_uIcc_eq_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.Icc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.Icc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Iccₓ'. -/
 theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
-    f '' [a, b] = Icc (infₛ (f '' [a, b])) (supₛ (f '' [a, b])) :=
+    f '' [a, b] = Icc (sInf (f '' [a, b])) (sSup (f '' [a, b])) :=
   by
   cases' le_total a b with h2 h2
   · simp_rw [uIcc_of_le h2] at h⊢
@@ -587,51 +587,51 @@ theorem image_uIcc_eq_Icc (h : ContinuousOn f <| [a, b]) :
 
 /- warning: continuous_on.image_uIcc -> ContinuousOn.image_uIcc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.uIcc.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) -> (Eq.{succ u2} (Set.{u2} β) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)) (Set.uIcc.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.uIcc.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) a b)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.uIcc.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) -> (Eq.{succ u1} (Set.{u1} β) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)) (Set.uIcc.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.uIcc.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)) a b)))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.image_uIcc ContinuousOn.image_uIccₓ'. -/
 theorem image_uIcc (h : ContinuousOn f <| [a, b]) :
-    f '' [a, b] = [infₛ (f '' [a, b]), supₛ (f '' [a, b])] :=
+    f '' [a, b] = [sInf (f '' [a, b]), sSup (f '' [a, b])] :=
   by
   refine' h.image_uIcc_eq_Icc.trans (uIcc_of_le _).symm
-  refine' cinfₛ_le_csupₛ _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
+  refine' csInf_le_csSup _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
   exacts[bddBelow_Icc, bddAbove_Icc]
 #align continuous_on.image_uIcc ContinuousOn.image_uIcc
 
-/- warning: continuous_on.Inf_image_Icc_le -> ContinuousOn.infₛ_image_Icc_le is a dubious translation:
+/- warning: continuous_on.Inf_image_Icc_le -> ContinuousOn.sInf_image_Icc_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (f c))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))) (f c))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (f c))
-Case conversion may be inaccurate. Consider using '#align continuous_on.Inf_image_Icc_le ContinuousOn.infₛ_image_Icc_leₓ'. -/
-theorem infₛ_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
-    infₛ (f '' Icc a b) ≤ f c :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))) (f c))
+Case conversion may be inaccurate. Consider using '#align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_leₓ'. -/
+theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
+    sInf (f '' Icc a b) ≤ f c :=
   by
   rw [h.image_Icc (nonempty_Icc.mp (Set.nonempty_of_mem hc))]
   exact
-    cinfₛ_le bddBelow_Icc
+    csInf_le bddBelow_Icc
       (mem_Icc.mpr
-        ⟨cinfₛ_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
-          le_csupₛ (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
-#align continuous_on.Inf_image_Icc_le ContinuousOn.infₛ_image_Icc_le
+        ⟨csInf_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
+          le_csSup (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
+#align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_le
 
-/- warning: continuous_on.le_Sup_image_Icc -> ContinuousOn.le_supₛ_image_Icc is a dubious translation:
+/- warning: continuous_on.le_Sup_image_Icc -> ContinuousOn.le_sSup_image_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (f c) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] [_inst_6 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u2} β] [_inst_8 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u1, u2} α β _inst_2 _inst_4 f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_7)) (Set.image.{u1, u2} α β f (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) a b))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (f c) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))))
-Case conversion may be inaccurate. Consider using '#align continuous_on.le_Sup_image_Icc ContinuousOn.le_supₛ_image_Iccₓ'. -/
-theorem le_supₛ_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
-    f c ≤ supₛ (f '' Icc a b) :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u1} β] [_inst_6 : DenselyOrdered.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))))] [_inst_7 : ConditionallyCompleteLinearOrder.{u1} β] [_inst_8 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))] {f : α -> β} {a : α} {b : α} {c : α}, (ContinuousOn.{u2, u1} α β _inst_2 _inst_4 f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_7)) (Set.image.{u2, u1} α β f (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α _inst_1))))) a b))))
+Case conversion may be inaccurate. Consider using '#align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Iccₓ'. -/
+theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
+    f c ≤ sSup (f '' Icc a b) :=
   by
   rw [h.image_Icc (nonempty_Icc.mp (Set.nonempty_of_mem hc))]
   exact
-    le_csupₛ bddAbove_Icc
+    le_csSup bddAbove_Icc
       (mem_Icc.mpr
-        ⟨cinfₛ_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
-          le_csupₛ (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
-#align continuous_on.le_Sup_image_Icc ContinuousOn.le_supₛ_image_Icc
+        ⟨csInf_le (is_compact_Icc.bdd_below_image h) ⟨c, hc, rfl⟩,
+          le_csSup (is_compact_Icc.bdd_above_image h) ⟨c, hc, rfl⟩⟩)
+#align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Icc
 
 end ContinuousOn
 
Diff
@@ -366,9 +366,9 @@ theorem IsCompact.exists_forall_ge :
 
 /- warning: continuous_on.exists_forall_le' -> ContinuousOn.exists_forall_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.instHasInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x₀) (f x)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f y))))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'ₓ'. -/
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
@@ -387,9 +387,9 @@ theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : Contin
 
 /- warning: continuous_on.exists_forall_ge' -> ContinuousOn.exists_forall_ge' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => Exists.{0} (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.instHasInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))] [_inst_4 : TopologicalSpace.{u2} β] {s : Set.{u2} β} {f : β -> α}, (ContinuousOn.{u2, u1} β α _inst_4 _inst_2 f s) -> (IsClosed.{u2} β _inst_4 s) -> (forall {x₀ : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x₀ s) -> (Filter.Eventually.{u2} β (fun (x : β) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f x) (f x₀)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (Filter.cocompact.{u2} β _inst_4) (Filter.principal.{u2} β s))) -> (Exists.{succ u2} β (fun (x : β) => And (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f y) (f x))))))
 Case conversion may be inaccurate. Consider using '#align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'ₓ'. -/
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/

Changes in mathlib4

mathlib3
mathlib4
chore: replace refine' that already have a ?_ (#12261)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -78,7 +78,7 @@ instance [TopologicalSpace α] [Preorder α] [CompactIccSpace α] : CompactIccSp
 instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (α : Type*)
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
     CompactIccSpace α := by
-  refine' .mk'' fun {a b} hlt => ?_
+  refine .mk'' fun {a b} hlt => ?_
   rcases le_or_lt a b with hab | hab
   swap
   · simp [hab]
doc: convert many comments into doc comments (#11940)

All of these changes appear to be oversights to me.

Diff
@@ -571,19 +571,17 @@ theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ :
   eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.bddBelow h₂.bddAbove h₂.isClosed
 #align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
 
-/- If `f : γ → β → α` is a function that is continuous as a function on `γ × β`, `α` is a
+/-- If `f : γ → β → α` is a function that is continuous as a function on `γ × β`, `α` is a
 conditionally complete linear order, and `K : Set β` is a compact set, then
-`fun x ↦ sSup (f x '' K)` is a continuous function.
-
-Porting note (#11215): TODO: generalize. The following version seems to be true:
+`fun x ↦ sSup (f x '' K)` is a continuous function. -/
+/- Porting note (#11215): TODO: generalize. The following version seems to be true:
 ```
 theorem IsCompact.tendsto_sSup {f : γ → β → α} {g : β → α} {K : Set β} {l : Filter γ}
     (hK : IsCompact K) (hf : ∀ y ∈ K, Tendsto ↿f (l ×ˢ 𝓝[K] y) (𝓝 (g y)))
     (hgc : ContinuousOn g K) :
     Tendsto (fun x => sSup (f x '' K)) l (𝓝 (sSup (g '' K))) := _
 ```
-Moreover, it seems that `hgc` follows from `hf` (Yury Kudryashov).
--/
+Moreover, it seems that `hgc` follows from `hf` (Yury Kudryashov). -/
 theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) := by
   rcases eq_empty_or_nonempty K with (rfl | h0K)
refactor(Topology/Order/Basic): split up large file (#11992)

This splits up the file Mathlib/Topology/Order/Basic.lean (currently > 2000 lines) into several smaller files.

Diff
@@ -6,6 +6,7 @@ Authors: Patrick Massot, Yury Kudryashov
 import Mathlib.Topology.Order.LocalExtr
 import Mathlib.Topology.Order.IntermediateValue
 import Mathlib.Topology.Support
+import Mathlib.Topology.Order.IsLUB
 
 #align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
 
style: remove redundant instance arguments (#11581)

I removed some redundant instance arguments throughout Mathlib. To do this, I used VS Code's regex search. See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/repeating.20instances.20from.20variable.20command I closed the previous PR for this and reopened it.

Diff
@@ -202,7 +202,7 @@ theorem IsCompact.exists_isLUB [ClosedIciTopology α] {s : Set α} (hs : IsCompa
   IsCompact.exists_isGLB (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
-theorem cocompact_le_atBot_atTop [LinearOrder α] [CompactIccSpace α] :
+theorem cocompact_le_atBot_atTop [CompactIccSpace α] :
     cocompact α ≤ atBot ⊔ atTop := by
   refine fun s hs ↦ mem_cocompact.mpr <| (isEmpty_or_nonempty α).casesOn ?_ ?_ <;> intro
   · exact ⟨∅, isCompact_empty, fun x _ ↦ (IsEmpty.false x).elim⟩
@@ -211,7 +211,7 @@ theorem cocompact_le_atBot_atTop [LinearOrder α] [CompactIccSpace α] :
     refine ⟨Icc t u, isCompact_Icc, fun x hx ↦ ?_⟩
     exact (not_and_or.mp hx).casesOn (fun h ↦ ht x (le_of_not_le h)) fun h ↦ hu x (le_of_not_le h)
 
-theorem cocompact_le_atBot [LinearOrder α] [OrderTop α] [CompactIccSpace α] :
+theorem cocompact_le_atBot [OrderTop α] [CompactIccSpace α] :
     cocompact α ≤ atBot := by
   refine fun _ hs ↦ mem_cocompact.mpr <| (isEmpty_or_nonempty α).casesOn ?_ ?_ <;> intro
   · exact ⟨∅, isCompact_empty, fun x _ ↦ (IsEmpty.false x).elim⟩
@@ -219,11 +219,11 @@ theorem cocompact_le_atBot [LinearOrder α] [OrderTop α] [CompactIccSpace α] :
     refine ⟨Icc t ⊤, isCompact_Icc, fun _ hx ↦ ?_⟩
     exact (not_and_or.mp hx).casesOn (fun h ↦ ht _ (le_of_not_le h)) (fun h ↦ (h le_top).elim)
 
-theorem cocompact_le_atTop [LinearOrder α] [OrderBot α] [CompactIccSpace α] :
+theorem cocompact_le_atTop [OrderBot α] [CompactIccSpace α] :
     cocompact α ≤ atTop :=
   cocompact_le_atBot (α := αᵒᵈ)
 
-theorem atBot_le_cocompact [LinearOrder α] [NoMinOrder α] [ClosedIicTopology α] :
+theorem atBot_le_cocompact [NoMinOrder α] [ClosedIicTopology α] :
     atBot ≤ cocompact α := by
   refine fun s hs ↦ ?_
   obtain ⟨t, ht, hts⟩ := mem_cocompact.mp hs
@@ -236,26 +236,26 @@ theorem atBot_le_cocompact [LinearOrder α] [NoMinOrder α] [ClosedIicTopology 
     exact Filter.mem_atBot_sets.mpr ⟨b, fun b' hb' ↦ hts <| Classical.byContradiction
       fun hc ↦ LT.lt.false <| hb'.trans_lt <| hb.trans_le <| ha.2 (not_not_mem.mp hc)⟩
 
-theorem atTop_le_cocompact [LinearOrder α] [NoMaxOrder α] [ClosedIciTopology α] :
+theorem atTop_le_cocompact [NoMaxOrder α] [ClosedIciTopology α] :
     atTop ≤ cocompact α :=
   atBot_le_cocompact (α := αᵒᵈ)
 
-theorem atBot_atTop_le_cocompact [LinearOrder α] [NoMinOrder α] [NoMaxOrder α]
+theorem atBot_atTop_le_cocompact [NoMinOrder α] [NoMaxOrder α]
     [OrderClosedTopology α] : atBot ⊔ atTop ≤ cocompact α :=
   sup_le atBot_le_cocompact atTop_le_cocompact
 
 @[simp 900]
-theorem cocompact_eq_atBot_atTop [LinearOrder α] [NoMaxOrder α] [NoMinOrder α]
+theorem cocompact_eq_atBot_atTop [NoMaxOrder α] [NoMinOrder α]
     [OrderClosedTopology α] [CompactIccSpace α] : cocompact α = atBot ⊔ atTop :=
   cocompact_le_atBot_atTop.antisymm atBot_atTop_le_cocompact
 
 @[simp]
-theorem cocompact_eq_atBot [LinearOrder α] [NoMinOrder α] [OrderTop α]
+theorem cocompact_eq_atBot [NoMinOrder α] [OrderTop α]
     [ClosedIicTopology α] [CompactIccSpace α] : cocompact α = atBot :=
   cocompact_le_atBot.antisymm atBot_le_cocompact
 
 @[simp]
-theorem cocompact_eq_atTop [LinearOrder α] [NoMaxOrder α] [OrderBot α]
+theorem cocompact_eq_atTop [NoMaxOrder α] [OrderBot α]
     [ClosedIciTopology α] [CompactIccSpace α] : cocompact α = atTop :=
   cocompact_le_atTop.antisymm atTop_le_cocompact
 
move(Topology/Order): Move anything that doesn't concern algebra (#11610)

Move files from Topology.Algebra.Order to Topology.Order when they do not contain any algebra. Also move Topology.LocalExtr to Topology.Order.LocalExtr.

According to git, the moves are:

  • Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
  • Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
  • Mathlib/Topology/{Algebra => }/Order/Filter.lean
  • Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
  • Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
  • Mathlib/Topology/{Algebra => }/Order/T5.lean
  • Mathlib/Topology/{ => Order}/LocalExtr.lean
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Patrick Massot. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
 -/
-import Mathlib.Topology.Algebra.Order.IntermediateValue
-import Mathlib.Topology.LocalExtr
+import Mathlib.Topology.Order.LocalExtr
+import Mathlib.Topology.Order.IntermediateValue
 import Mathlib.Topology.Support
 
 #align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
chore: avoid some unused variables (#11583)

These will be caught by the linter in a future lean version.

Diff
@@ -109,9 +109,10 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
     rw [diff_subset_iff]
     exact Subset.trans Icc_subset_Icc_union_Ioc <| union_subset_union Subset.rfl <|
       Ioc_subset_Ioc_left hy.1.le
-  rcases hc.2.eq_or_lt with (rfl | hlt); · exact hcs.2
-  contrapose! hf
-  intro U hU
+  rcases hc.2.eq_or_lt with (rfl | hlt)
+  · exact hcs.2
+  exfalso
+  refine hf fun U hU => ?_
   rcases (mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
       (mem_nhdsWithin_of_mem_nhds hU) with
     ⟨y, hxy, hyU⟩
chore: classify new theorem / theorem porting notes (#11432)

Classifies by adding issue number #10756 to porting notes claiming anything equivalent to:

  • "added theorem"
  • "added theorems"
  • "new theorem"
  • "new theorems"
  • "added lemma"
  • "new lemma"
  • "new lemmas"
Diff
@@ -55,13 +55,13 @@ export CompactIccSpace (isCompact_Icc)
 
 variable {α : Type*}
 
--- Porting note: new lemma;
+-- Porting note (#10756): new lemma;
 -- Porting note (#11215): TODO: make it the definition
 lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α]
     (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where
   isCompact_Icc {a b} := by_cases h fun hab => by rw [Icc_eq_empty hab]; exact isCompact_empty
 
--- Porting note: new lemma;
+-- Porting note (#10756): new lemma;
 -- Porting note (#11215): TODO: drop one `'`
 lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
     (h : ∀ {a b : α}, a < b → IsCompact (Icc a b)) : CompactIccSpace α :=
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -258,7 +258,7 @@ theorem cocompact_eq_atTop [LinearOrder α] [NoMaxOrder α] [OrderBot α]
     [ClosedIciTopology α] [CompactIccSpace α] : cocompact α = atTop :=
   cocompact_le_atTop.antisymm atTop_le_cocompact
 
--- Porting note: new lemma; defeq to the old one but allows us to use dot notation
+-- Porting note (#10756): new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
     (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
@@ -283,7 +283,7 @@ theorem IsCompact.exists_forall_le [ClosedIicTopology α] {s : Set β} (hs : IsC
   hs.exists_isMinOn ne_s hf
 #align is_compact.exists_forall_le IsCompact.exists_forall_le
 
--- Porting note: new lemma; defeq to the old one but allows us to use dot notation
+-- Porting note (#10756): new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 theorem IsCompact.exists_isMaxOn [ClosedIciTopology α] {s : Set β} (hs : IsCompact s)
     (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMaxOn f s x :=
chore: classify todo porting notes (#11216)

Classifies by adding issue number #11215 to porting notes claiming "TODO".

Diff
@@ -55,12 +55,14 @@ export CompactIccSpace (isCompact_Icc)
 
 variable {α : Type*}
 
--- Porting note: new lemma; TODO: make it the definition
+-- Porting note: new lemma;
+-- Porting note (#11215): TODO: make it the definition
 lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α]
     (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where
   isCompact_Icc {a b} := by_cases h fun hab => by rw [Icc_eq_empty hab]; exact isCompact_empty
 
--- Porting note: new lemma; TODO: drop one `'`
+-- Porting note: new lemma;
+-- Porting note (#11215): TODO: drop one `'`
 lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
     (h : ∀ {a b : α}, a < b → IsCompact (Icc a b)) : CompactIccSpace α :=
   .mk' fun hab => hab.eq_or_lt.elim (by rintro rfl; simp) h
@@ -571,7 +573,7 @@ theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ :
 conditionally complete linear order, and `K : Set β` is a compact set, then
 `fun x ↦ sSup (f x '' K)` is a continuous function.
 
-Porting note: todo: generalize. The following version seems to be true:
+Porting note (#11215): TODO: generalize. The following version seems to be true:
 ```
 theorem IsCompact.tendsto_sSup {f : γ → β → α} {g : β → α} {K : Set β} {l : Filter γ}
     (hK : IsCompact K) (hf : ∀ y ∈ K, Tendsto ↿f (l ×ˢ 𝓝[K] y) (𝓝 (g y)))
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -261,7 +261,7 @@ theorem cocompact_eq_atTop [LinearOrder α] [NoMaxOrder α] [OrderBot α]
 theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
     (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
   rcases (hs.image_of_continuousOn hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩
-  exact ⟨x, hxs, ball_image_iff.1 hx⟩
+  exact ⟨x, hxs, forall_mem_image.1 hx⟩
 
 /-- If a continuous function lies strictly above `a` on a compact set,
   it has a lower bound strictly above `a`. -/
@@ -369,7 +369,7 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [ClosedIicTopology 
     [One α] {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) :
     ∃ x : β, ∀ y : β, f x ≤ f y := by
   obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.isCompact_range hf).exists_isLeast (range_nonempty _)
-  rw [mem_lowerBounds, forall_range_iff] at hx
+  rw [mem_lowerBounds, forall_mem_range] at hx
   exact ⟨x, hx⟩
 #align continuous.exists_forall_le_of_has_compact_mul_support Continuous.exists_forall_le_of_hasCompactMulSupport
 #align continuous.exists_forall_le_of_has_compact_support Continuous.exists_forall_le_of_hasCompactSupport
feat: version of the extreme value theorem without a non-emptiness assumption (#9872)

Adapted and generalised from sphere-eversion; I'm just upstreaming it.

Diff
@@ -263,6 +263,17 @@ theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCom
   rcases (hs.image_of_continuousOn hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩
   exact ⟨x, hxs, ball_image_iff.1 hx⟩
 
+/-- If a continuous function lies strictly above `a` on a compact set,
+  it has a lower bound strictly above `a`. -/
+theorem IsCompact.exists_forall_le' [ClosedIicTopology α] [NoMaxOrder α] {f : β → α}
+    {s : Set β} (hs : IsCompact s) (hf : ContinuousOn f s) {a : α} (hf' : ∀ b ∈ s, a < f b) :
+    ∃ a', a < a' ∧ ∀ b ∈ s, a' ≤ f b := by
+  rcases s.eq_empty_or_nonempty with (rfl | hs')
+  · obtain ⟨a', ha'⟩ := exists_gt a
+    exact ⟨a', ha', fun _ a ↦ a.elim⟩
+  · obtain ⟨x, hx, hx'⟩ := hs.exists_isMinOn hs' hf
+    exact ⟨f x, hf' x hx, hx'⟩
+
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 @[deprecated IsCompact.exists_isMinOn]
 theorem IsCompact.exists_forall_le [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -55,12 +55,12 @@ export CompactIccSpace (isCompact_Icc)
 
 variable {α : Type*}
 
--- porting note: new lemma; TODO: make it the definition
+-- Porting note: new lemma; TODO: make it the definition
 lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α]
     (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where
   isCompact_Icc {a b} := by_cases h fun hab => by rw [Icc_eq_empty hab]; exact isCompact_empty
 
--- porting note: new lemma; TODO: drop one `'`
+-- Porting note: new lemma; TODO: drop one `'`
 lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
     (h : ∀ {a b : α}, a < b → IsCompact (Icc a b)) : CompactIccSpace α :=
   .mk' fun hab => hab.eq_or_lt.elim (by rintro rfl; simp) h
@@ -90,7 +90,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   have ha : a ∈ s := by simp [s, hpt, hab]
   rcases hab.eq_or_lt with (rfl | _hlt)
   · exact ha.2
-  -- porting note: the `obtain` below was instead
+  -- Porting note: the `obtain` below was instead
   -- `set c := Sup s`
   -- `have hsc : IsLUB s c := isLUB_csSup ⟨a, ha⟩ sbd`
   obtain ⟨c, hsc⟩ : ∃ c, IsLUB s c := ⟨sSup s, isLUB_csSup ⟨a, ha⟩ ⟨b, hsb⟩⟩
@@ -256,7 +256,7 @@ theorem cocompact_eq_atTop [LinearOrder α] [NoMaxOrder α] [OrderBot α]
     [ClosedIciTopology α] [CompactIccSpace α] : cocompact α = atTop :=
   cocompact_le_atTop.antisymm atTop_le_cocompact
 
--- porting note: new lemma; defeq to the old one but allows us to use dot notation
+-- Porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
     (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
@@ -270,7 +270,7 @@ theorem IsCompact.exists_forall_le [ClosedIicTopology α] {s : Set β} (hs : IsC
   hs.exists_isMinOn ne_s hf
 #align is_compact.exists_forall_le IsCompact.exists_forall_le
 
--- porting note: new lemma; defeq to the old one but allows us to use dot notation
+-- Porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 theorem IsCompact.exists_isMaxOn [ClosedIciTopology α] {s : Set β} (hs : IsCompact s)
     (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMaxOn f s x :=
@@ -531,7 +531,7 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset [ClosedIicTopology α] {f : β
   ⟨x, hxs, h.localize⟩
 #align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
 
--- porting note: rfc: assume `t ∈ 𝓝ˢ s` (a.k.a. `s ⊆ interior t`) instead of `s ⊆ t` and
+-- Porting note: rfc: assume `t ∈ 𝓝ˢ s` (a.k.a. `s ⊆ interior t`) instead of `s ⊆ t` and
 -- `IsOpen s`?
 theorem IsCompact.exists_isLocalMin_mem_open [ClosedIicTopology α] {f : β → α} {s t : Set β}
     {z : β} (ht : IsCompact t) (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t)
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -87,7 +87,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   set s := { x ∈ Icc a b | Icc a x ∉ f }
   have hsb : b ∈ upperBounds s := fun x hx => hx.1.2
   have sbd : BddAbove s := ⟨b, hsb⟩
-  have ha : a ∈ s := by simp [hpt, hab]
+  have ha : a ∈ s := by simp [s, hpt, hab]
   rcases hab.eq_or_lt with (rfl | _hlt)
   · exact ha.2
   -- porting note: the `obtain` below was instead
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -174,8 +174,8 @@ variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace α]
 theorem IsCompact.exists_isLeast [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
     (ne_s : s.Nonempty) : ∃ x, IsLeast s x := by
   haveI : Nonempty s := ne_s.to_subtype
-  suffices : (s ∩ ⋂ x ∈ s, Iic x).Nonempty
-  · exact ⟨this.choose, this.choose_spec.1, mem_iInter₂.mp this.choose_spec.2⟩
+  suffices (s ∩ ⋂ x ∈ s, Iic x).Nonempty from
+    ⟨this.choose, this.choose_spec.1, mem_iInter₂.mp this.choose_spec.2⟩
   rw [biInter_eq_iInter]
   by_contra H
   rw [not_nonempty_iff_eq_empty] at H
feat: generalize cocompact_eq (#10285)

example use case: cocompact_le with integrable_iff_integrableAtFilter_cocompact from #10248 becomes a way to prove integrability from big-O estimates (e.g. #10258)

Co-authored-by: L Lllvvuu <git@llllvvuu.dev>

Diff
@@ -65,6 +65,12 @@ lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
     (h : ∀ {a b : α}, a < b → IsCompact (Icc a b)) : CompactIccSpace α :=
   .mk' fun hab => hab.eq_or_lt.elim (by rintro rfl; simp) h
 
+instance [TopologicalSpace α] [Preorder α] [CompactIccSpace α] : CompactIccSpace (αᵒᵈ) where
+  isCompact_Icc := by
+    intro a b
+    convert isCompact_Icc (α := α) (a := b) (b := a) using 1
+    exact dual_Icc (α := α)
+
 /-- A closed interval in a conditionally complete linear order is compact. -/
 instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (α : Type*)
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
@@ -193,6 +199,63 @@ theorem IsCompact.exists_isLUB [ClosedIciTopology α] {s : Set α} (hs : IsCompa
   IsCompact.exists_isGLB (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
+theorem cocompact_le_atBot_atTop [LinearOrder α] [CompactIccSpace α] :
+    cocompact α ≤ atBot ⊔ atTop := by
+  refine fun s hs ↦ mem_cocompact.mpr <| (isEmpty_or_nonempty α).casesOn ?_ ?_ <;> intro
+  · exact ⟨∅, isCompact_empty, fun x _ ↦ (IsEmpty.false x).elim⟩
+  · obtain ⟨t, ht⟩ := mem_atBot_sets.mp hs.1
+    obtain ⟨u, hu⟩ := mem_atTop_sets.mp hs.2
+    refine ⟨Icc t u, isCompact_Icc, fun x hx ↦ ?_⟩
+    exact (not_and_or.mp hx).casesOn (fun h ↦ ht x (le_of_not_le h)) fun h ↦ hu x (le_of_not_le h)
+
+theorem cocompact_le_atBot [LinearOrder α] [OrderTop α] [CompactIccSpace α] :
+    cocompact α ≤ atBot := by
+  refine fun _ hs ↦ mem_cocompact.mpr <| (isEmpty_or_nonempty α).casesOn ?_ ?_ <;> intro
+  · exact ⟨∅, isCompact_empty, fun x _ ↦ (IsEmpty.false x).elim⟩
+  · obtain ⟨t, ht⟩ := mem_atBot_sets.mp hs
+    refine ⟨Icc t ⊤, isCompact_Icc, fun _ hx ↦ ?_⟩
+    exact (not_and_or.mp hx).casesOn (fun h ↦ ht _ (le_of_not_le h)) (fun h ↦ (h le_top).elim)
+
+theorem cocompact_le_atTop [LinearOrder α] [OrderBot α] [CompactIccSpace α] :
+    cocompact α ≤ atTop :=
+  cocompact_le_atBot (α := αᵒᵈ)
+
+theorem atBot_le_cocompact [LinearOrder α] [NoMinOrder α] [ClosedIicTopology α] :
+    atBot ≤ cocompact α := by
+  refine fun s hs ↦ ?_
+  obtain ⟨t, ht, hts⟩ := mem_cocompact.mp hs
+  refine (Set.eq_empty_or_nonempty t).casesOn (fun h_empty ↦ ?_) (fun h_nonempty ↦ ?_)
+  · rewrite [compl_univ_iff.mpr h_empty, univ_subset_iff] at hts
+    convert univ_mem
+  · haveI := h_nonempty.nonempty
+    obtain ⟨a, ha⟩ := ht.exists_isLeast h_nonempty
+    obtain ⟨b, hb⟩ := exists_lt a
+    exact Filter.mem_atBot_sets.mpr ⟨b, fun b' hb' ↦ hts <| Classical.byContradiction
+      fun hc ↦ LT.lt.false <| hb'.trans_lt <| hb.trans_le <| ha.2 (not_not_mem.mp hc)⟩
+
+theorem atTop_le_cocompact [LinearOrder α] [NoMaxOrder α] [ClosedIciTopology α] :
+    atTop ≤ cocompact α :=
+  atBot_le_cocompact (α := αᵒᵈ)
+
+theorem atBot_atTop_le_cocompact [LinearOrder α] [NoMinOrder α] [NoMaxOrder α]
+    [OrderClosedTopology α] : atBot ⊔ atTop ≤ cocompact α :=
+  sup_le atBot_le_cocompact atTop_le_cocompact
+
+@[simp 900]
+theorem cocompact_eq_atBot_atTop [LinearOrder α] [NoMaxOrder α] [NoMinOrder α]
+    [OrderClosedTopology α] [CompactIccSpace α] : cocompact α = atBot ⊔ atTop :=
+  cocompact_le_atBot_atTop.antisymm atBot_atTop_le_cocompact
+
+@[simp]
+theorem cocompact_eq_atBot [LinearOrder α] [NoMinOrder α] [OrderTop α]
+    [ClosedIicTopology α] [CompactIccSpace α] : cocompact α = atBot :=
+  cocompact_le_atBot.antisymm atBot_le_cocompact
+
+@[simp]
+theorem cocompact_eq_atTop [LinearOrder α] [NoMaxOrder α] [OrderBot α]
+    [ClosedIciTopology α] [CompactIccSpace α] : cocompact α = atTop :=
+  cocompact_le_atTop.antisymm atTop_le_cocompact
+
 -- porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
chore(Topology): remove autoImplicit from most remaining files (#9865)
Diff
@@ -27,9 +27,6 @@ We also prove that the image of a closed interval under a continuous map is a cl
 compact, extreme value theorem
 -/
 
-set_option autoImplicit true
-
-
 open Filter OrderDual TopologicalSpace Function Set
 
 open scoped Filter Topology
@@ -56,6 +53,8 @@ class CompactIccSpace (α : Type*) [TopologicalSpace α] [Preorder α] : Prop wh
 
 export CompactIccSpace (isCompact_Icc)
 
+variable {α : Type*}
+
 -- porting note: new lemma; TODO: make it the definition
 lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α]
     (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -5,6 +5,7 @@ Authors: Patrick Massot, Yury Kudryashov
 -/
 import Mathlib.Topology.Algebra.Order.IntermediateValue
 import Mathlib.Topology.LocalExtr
+import Mathlib.Topology.Support
 
 #align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
 
chore(*): drop $/<| before fun (#9361)

Subset of #9319

Diff
@@ -58,7 +58,7 @@ export CompactIccSpace (isCompact_Icc)
 -- porting note: new lemma; TODO: make it the definition
 lemma CompactIccSpace.mk' [TopologicalSpace α] [Preorder α]
     (h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b)) : CompactIccSpace α where
-  isCompact_Icc {a b} := by_cases h $ fun hab => by rw [Icc_eq_empty hab]; exact isCompact_empty
+  isCompact_Icc {a b} := by_cases h fun hab => by rw [Icc_eq_empty hab]; exact isCompact_empty
 
 -- porting note: new lemma; TODO: drop one `'`
 lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
@@ -452,13 +452,13 @@ theorem IsCompact.exists_isMinOn_mem_subset [ClosedIicTopology α] {f : β → 
     {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
     (hfz : ∀ z' ∈ t \ s, f z < f z') : ∃ x ∈ s, IsMinOn f t x :=
   let ⟨x, hxt, hfx⟩ := ht.exists_isMinOn ⟨z, hz⟩ hf
-  ⟨x, by_contra <| fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
+  ⟨x, by_contra fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
 
 theorem IsCompact.exists_isMaxOn_mem_subset [ClosedIciTopology α] {f : β → α} {s t : Set β}
     {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
     (hfz : ∀ z' ∈ t \ s, f z' < f z) : ∃ x ∈ s, IsMaxOn f t x :=
   let ⟨x, hxt, hfx⟩ := ht.exists_isMaxOn ⟨z, hz⟩ hf
-  ⟨x, by_contra <| fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
+  ⟨x, by_contra fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
 
 @[deprecated IsCompact.exists_isMinOn_mem_subset]
 theorem IsCompact.exists_isLocalMinOn_mem_subset [ClosedIicTopology α] {f : β → α} {s t : Set β}
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -70,7 +70,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
     CompactIccSpace α := by
   refine' .mk'' fun {a b} hlt => ?_
-  cases' le_or_lt a b with hab hab
+  rcases le_or_lt a b with hab | hab
   swap
   · simp [hab]
   refine' isCompact_iff_ultrafilter_le_nhds.2 fun f hf => _
feat: generalize some lemmas to directed types (#7852)

New lemmas / instances

  • An archimedean ordered semiring is directed upwards.
  • Filter.hasAntitoneBasis_atTop;
  • Filter.HasAntitoneBasis.iInf_principal;

Fix typos

  • Docstrings: "if the agree" -> "if they agree".
  • ProbabilityTheory.measure_eq_zero_or_one_of_indepSetCat_self -> ProbabilityTheory.measure_eq_zero_or_one_of_indepSet_self.

Weaken typeclass assumptions

From a semilattice to a directed type

  • MeasureTheory.tendsto_measure_iUnion;
  • MeasureTheory.tendsto_measure_iInter;
  • Monotone.directed_le, Monotone.directed_ge;
  • Antitone.directed_le, Antitone.directed_ge;
  • directed_of_sup, renamed to directed_of_isDirected_le;
  • directed_of_inf, renamed to directed_of_isDirected_ge;

From a strict ordered semiring to an ordered semiring

  • tendsto_nat_cast_atTop_atTop;
  • Filter.Eventually.nat_cast_atTop;
  • atTop_hasAntitoneBasis_of_archimedean;
Diff
@@ -174,7 +174,7 @@ theorem IsCompact.exists_isLeast [ClosedIicTopology α] {s : Set α} (hs : IsCom
   by_contra H
   rw [not_nonempty_iff_eq_empty] at H
   rcases hs.elim_directed_family_closed (fun x : s => Iic ↑x) (fun x => isClosed_Iic) H
-      (directed_of_inf fun _ _ h => Iic_subset_Iic.mpr h) with ⟨x, hx⟩
+      (Monotone.directed_ge fun _ _ h => Iic_subset_Iic.mpr h) with ⟨x, hx⟩
   exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -104,7 +104,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   rcases hc.2.eq_or_lt with (rfl | hlt); · exact hcs.2
   contrapose! hf
   intro U hU
-  rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
+  rcases (mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
       (mem_nhdsWithin_of_mem_nhds hU) with
     ⟨y, hxy, hyU⟩
   refine' mem_of_superset _ hyU; clear! U
chore(Topology/../Order): weaken TC assumptions (#7553)

Generalize some lemmas from ConditionallyCompleteLinearOrder to LinearOrder. Also drop an unused variable.

Diff
@@ -381,10 +381,10 @@ end ConditionallyCompleteLinearOrder
 ### Min and max elements of a compact set
 -/
 
-section OrderClosedTopology
+section InfSup
 
-variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
-  [TopologicalSpace β] [TopologicalSpace γ]
+variable {α β : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [TopologicalSpace β]
 
 theorem IsCompact.sInf_mem [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
     (ne_s : s.Nonempty) : sInf s ∈ s :=
@@ -442,6 +442,12 @@ theorem IsCompact.exists_sSup_image_eq [ClosedIciTopology α] {s : Set β} (hs :
   IsCompact.exists_sInf_image_eq (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
 
+end InfSup
+
+section ExistsExtr
+
+variable {α β : Type*} [LinearOrder α] [TopologicalSpace α] [TopologicalSpace β]
+
 theorem IsCompact.exists_isMinOn_mem_subset [ClosedIicTopology α] {f : β → α} {s t : Set β}
     {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
     (hfz : ∀ z' ∈ t \ s, f z < f z') : ∃ x ∈ s, IsMinOn f t x :=
@@ -477,7 +483,7 @@ theorem IsCompact.exists_isLocalMax_mem_open [ClosedIciTopology α] {f : β →
   let ⟨x, hxs, h⟩ := ht.exists_isMaxOn_mem_subset hf hz hfz
   ⟨x, hxs, h.isLocalMax <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩
 
-end OrderClosedTopology
+end ExistsExtr
 
 variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
feat: weaken assumptions for IsCompact.existsIsLeast and all of its variations (#6345)

As discussed a while ago on Zulip, we introduce classes expressing that a certain topology has closed Icis/Iics, which is sufficient to get boundedness of compacts on the desired side. The main application is that these now apply to types satisfying UpperTopology/LowerTopology, which will allow us to apply these compactness results to semicontinuous functions.

The naming was discussed here

Diff
@@ -162,11 +162,11 @@ end
 
 section LinearOrder
 
-variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace α] [OrderClosedTopology α]
+variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace α]
   [TopologicalSpace β] [TopologicalSpace γ]
 
-theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x, IsLeast s x := by
+theorem IsCompact.exists_isLeast [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : ∃ x, IsLeast s x := by
   haveI : Nonempty s := ne_s.to_subtype
   suffices : (s ∩ ⋂ x ∈ s, Iic x).Nonempty
   · exact ⟨this.choose, this.choose_spec.1, mem_iInter₂.mp this.choose_spec.2⟩
@@ -178,53 +178,53 @@ theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonem
   exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 
-theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x, IsGreatest s x :=
+theorem IsCompact.exists_isGreatest [ClosedIciTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : ∃ x, IsGreatest s x :=
   IsCompact.exists_isLeast (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 
-theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x ∈ s, IsGLB s x :=
+theorem IsCompact.exists_isGLB [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : ∃ x ∈ s, IsGLB s x :=
   (hs.exists_isLeast ne_s).imp (fun x (hx : IsLeast s x) => ⟨hx.1, hx.isGLB⟩)
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 
-theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x ∈ s, IsLUB s x :=
+theorem IsCompact.exists_isLUB [ClosedIciTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : ∃ x ∈ s, IsLUB s x :=
   IsCompact.exists_isGLB (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
 -- porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
-theorem IsCompact.exists_isMinOn {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
-    (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
+theorem IsCompact.exists_isMinOn [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
   rcases (hs.image_of_continuousOn hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩
   exact ⟨x, hxs, ball_image_iff.1 hx⟩
 
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 @[deprecated IsCompact.exists_isMinOn]
-theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
-    (hf : ContinuousOn f s) : ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
+theorem IsCompact.exists_forall_le [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
   hs.exists_isMinOn ne_s hf
 #align is_compact.exists_forall_le IsCompact.exists_forall_le
 
 -- porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
-theorem IsCompact.exists_isMaxOn : ∀ {s : Set β}, IsCompact s → s.Nonempty → ∀ {f : β → α},
-    ContinuousOn f s → ∃ x ∈ s, IsMaxOn f s x :=
-  IsCompact.exists_isMinOn (α := αᵒᵈ)
+theorem IsCompact.exists_isMaxOn [ClosedIciTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, IsMaxOn f s x :=
+  IsCompact.exists_isMinOn (α := αᵒᵈ) hs ne_s hf
 
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 @[deprecated IsCompact.exists_isMaxOn]
-theorem IsCompact.exists_forall_ge : ∀ {s : Set β}, IsCompact s → s.Nonempty → ∀ {f : β → α},
-    ContinuousOn f s → ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
-  IsCompact.exists_isMaxOn
+theorem IsCompact.exists_forall_ge [ClosedIciTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
+  IsCompact.exists_isMaxOn hs ne_s hf
 #align is_compact.exists_forall_ge IsCompact.exists_forall_ge
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
-theorem ContinuousOn.exists_isMinOn' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
-    (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x) :
-    ∃ x ∈ s, IsMinOn f s x := by
+theorem ContinuousOn.exists_isMinOn' [ClosedIicTopology α] {s : Set β} {f : β → α}
+    (hf : ContinuousOn f s) (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s)
+    (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x) : ∃ x ∈ s, IsMinOn f s x := by
   rcases (hasBasis_cocompact.inf_principal _).eventually_iff.1 hc with ⟨K, hK, hKf⟩
   have hsub : insert x₀ (K ∩ s) ⊆ s := insert_subset_iff.2 ⟨h₀, inter_subset_right _ _⟩
   obtain ⟨x, hx, hxf⟩ : ∃ x ∈ insert x₀ (K ∩ s), ∀ y ∈ insert x₀ (K ∩ s), f x ≤ f y :=
@@ -236,32 +236,32 @@ theorem ContinuousOn.exists_isMinOn' {s : Set β} {f : β → α} (hf : Continuo
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
 @[deprecated ContinuousOn.exists_isMinOn']
-theorem ContinuousOn.exists_forall_le' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
-    (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x) :
-    ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
+theorem ContinuousOn.exists_forall_le' [ClosedIicTopology α] {s : Set β} {f : β → α}
+    (hf : ContinuousOn f s) (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s)
+    (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x) : ∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
   hf.exists_isMinOn' hsc h₀ hc
 #align continuous_on.exists_forall_le' ContinuousOn.exists_forall_le'
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/
-theorem ContinuousOn.exists_isMaxOn' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
-    (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x ≤ f x₀) :
-    ∃ x ∈ s, IsMaxOn f s x :=
+theorem ContinuousOn.exists_isMaxOn' [ClosedIciTopology α] {s : Set β} {f : β → α}
+    (hf : ContinuousOn f s) (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s)
+    (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x ≤ f x₀) : ∃ x ∈ s, IsMaxOn f s x :=
   ContinuousOn.exists_isMinOn' (α := αᵒᵈ) hf hsc h₀ hc
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/
 @[deprecated ContinuousOn.exists_isMaxOn']
-theorem ContinuousOn.exists_forall_ge' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
-    (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x ≤ f x₀) :
-    ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
+theorem ContinuousOn.exists_forall_ge' [ClosedIciTopology α] {s : Set β} {f : β → α}
+    (hf : ContinuousOn f s) (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s)
+    (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x ≤ f x₀) : ∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
   hf.exists_isMaxOn' hsc h₀ hc
 #align continuous_on.exists_forall_ge' ContinuousOn.exists_forall_ge'
 
 /-- The **extreme value theorem**: if a continuous function `f` is larger than a value in its range
 away from compact sets, then it has a global minimum. -/
-theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ : β)
-    (h : ∀ᶠ x in cocompact β, f x₀ ≤ f x) : ∃ x : β, ∀ y : β, f x ≤ f y :=
+theorem Continuous.exists_forall_le' [ClosedIicTopology α] {f : β → α} (hf : Continuous f)
+    (x₀ : β) (h : ∀ᶠ x in cocompact β, f x₀ ≤ f x) : ∃ x : β, ∀ y : β, f x ≤ f y :=
   let ⟨x, _, hx⟩ := hf.continuousOn.exists_forall_le' isClosed_univ (mem_univ x₀)
     (by rwa [principal_univ, inf_top_eq])
   ⟨x, fun y => hx y (mem_univ y)⟩
@@ -269,30 +269,31 @@ theorem Continuous.exists_forall_le' {f : β → α} (hf : Continuous f) (x₀ :
 
 /-- The **extreme value theorem**: if a continuous function `f` is smaller than a value in its range
 away from compact sets, then it has a global maximum. -/
-theorem Continuous.exists_forall_ge' {f : β → α} (hf : Continuous f) (x₀ : β)
-    (h : ∀ᶠ x in cocompact β, f x ≤ f x₀) : ∃ x : β, ∀ y : β, f y ≤ f x :=
-  @Continuous.exists_forall_le' αᵒᵈ _ _ _ _ _ _ hf x₀ h
+theorem Continuous.exists_forall_ge' [ClosedIciTopology α] {f : β → α} (hf : Continuous f)
+    (x₀ : β) (h : ∀ᶠ x in cocompact β, f x ≤ f x₀) : ∃ x : β, ∀ y : β, f y ≤ f x :=
+  Continuous.exists_forall_le' (α := αᵒᵈ) hf x₀ h
 #align continuous.exists_forall_ge' Continuous.exists_forall_ge'
 
 /-- The **extreme value theorem**: if a continuous function `f` tends to infinity away from compact
 sets, then it has a global minimum. -/
-theorem Continuous.exists_forall_le [Nonempty β] {f : β → α} (hf : Continuous f)
-    (hlim : Tendsto f (cocompact β) atTop) : ∃ x, ∀ y, f x ≤ f y := by
+theorem Continuous.exists_forall_le [ClosedIicTopology α] [Nonempty β] {f : β → α}
+    (hf : Continuous f) (hlim : Tendsto f (cocompact β) atTop) : ∃ x, ∀ y, f x ≤ f y := by
   inhabit β
   exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_atTop _)
 #align continuous.exists_forall_le Continuous.exists_forall_le
 
 /-- The **extreme value theorem**: if a continuous function `f` tends to negative infinity away from
 compact sets, then it has a global maximum. -/
-theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuous f)
-    (hlim : Tendsto f (cocompact β) atBot) : ∃ x, ∀ y, f y ≤ f x :=
-  @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
+theorem Continuous.exists_forall_ge [ClosedIciTopology α] [Nonempty β] {f : β → α}
+    (hf : Continuous f) (hlim : Tendsto f (cocompact β) atBot) : ∃ x, ∀ y, f y ≤ f x :=
+  Continuous.exists_forall_le (α := αᵒᵈ) hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
-theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
-    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f x ≤ f y := by
+theorem Continuous.exists_forall_le_of_hasCompactMulSupport [ClosedIicTopology α] [Nonempty β]
+    [One α] {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) :
+    ∃ x : β, ∀ y : β, f x ≤ f y := by
   obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.isCompact_range hf).exists_isLeast (range_nonempty _)
   rw [mem_lowerBounds, forall_range_iff] at hx
   exact ⟨x, hx⟩
@@ -301,14 +302,16 @@ theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One 
 
 /-- A continuous function with compact support has a global maximum. -/
 @[to_additive "A continuous function with compact support has a global maximum."]
-theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
-    (hf : Continuous f) (h : HasCompactMulSupport f) : ∃ x : β, ∀ y : β, f y ≤ f x :=
-  @Continuous.exists_forall_le_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ _ hf h
+theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [ClosedIciTopology α] [Nonempty β]
+    [One α] {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) :
+    ∃ x : β, ∀ y : β, f y ≤ f x :=
+  Continuous.exists_forall_le_of_hasCompactMulSupport (α := αᵒᵈ) hf h
 #align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
 
 /-- A compact set is bounded below -/
-theorem IsCompact.bddBelow [Nonempty α] {s : Set α} (hs : IsCompact s) : BddBelow s := by
+theorem IsCompact.bddBelow [ClosedIicTopology α] [Nonempty α] {s : Set α} (hs : IsCompact s) :
+    BddBelow s := by
   rcases s.eq_empty_or_nonempty with rfl | hne
   · exact bddBelow_empty
   · obtain ⟨a, -, has⟩ := hs.exists_isLeast hne
@@ -316,35 +319,36 @@ theorem IsCompact.bddBelow [Nonempty α] {s : Set α} (hs : IsCompact s) : BddBe
 #align is_compact.bdd_below IsCompact.bddBelow
 
 /-- A compact set is bounded above -/
-theorem IsCompact.bddAbove [Nonempty α] {s : Set α} (hs : IsCompact s) : BddAbove s :=
-  @IsCompact.bddBelow αᵒᵈ _ _ _ _ _ hs
+theorem IsCompact.bddAbove [ClosedIciTopology α] [Nonempty α] {s : Set α} (hs : IsCompact s) :
+    BddAbove s :=
+  IsCompact.bddBelow (α := αᵒᵈ) hs
 #align is_compact.bdd_above IsCompact.bddAbove
 
 /-- A continuous function is bounded below on a compact set. -/
-theorem IsCompact.bddBelow_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
-    (hf : ContinuousOn f K) : BddBelow (f '' K) :=
+theorem IsCompact.bddBelow_image [ClosedIicTopology α] [Nonempty α] {f : β → α} {K : Set β}
+    (hK : IsCompact K) (hf : ContinuousOn f K) : BddBelow (f '' K) :=
   (hK.image_of_continuousOn hf).bddBelow
 #align is_compact.bdd_below_image IsCompact.bddBelow_image
 
 /-- A continuous function is bounded above on a compact set. -/
-theorem IsCompact.bddAbove_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
-    (hf : ContinuousOn f K) : BddAbove (f '' K) :=
-  @IsCompact.bddBelow_image αᵒᵈ _ _ _ _ _ _ _ _ hK hf
+theorem IsCompact.bddAbove_image [ClosedIciTopology α] [Nonempty α] {f : β → α} {K : Set β}
+    (hK : IsCompact K) (hf : ContinuousOn f K) : BddAbove (f '' K) :=
+  IsCompact.bddBelow_image (α := αᵒᵈ) hK hf
 #align is_compact.bdd_above_image IsCompact.bddAbove_image
 
 /-- A continuous function with compact support is bounded below. -/
 @[to_additive " A continuous function with compact support is bounded below. "]
-theorem Continuous.bddBelow_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
-    (h : HasCompactMulSupport f) : BddBelow (range f) :=
+theorem Continuous.bddBelow_range_of_hasCompactMulSupport [ClosedIicTopology α] [One α]
+    {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) : BddBelow (range f) :=
   (h.isCompact_range hf).bddBelow
 #align continuous.bdd_below_range_of_has_compact_mul_support Continuous.bddBelow_range_of_hasCompactMulSupport
 #align continuous.bdd_below_range_of_has_compact_support Continuous.bddBelow_range_of_hasCompactSupport
 
 /-- A continuous function with compact support is bounded above. -/
 @[to_additive " A continuous function with compact support is bounded above. "]
-theorem Continuous.bddAbove_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
-    (h : HasCompactMulSupport f) : BddAbove (range f) :=
-  @Continuous.bddBelow_range_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ hf h
+theorem Continuous.bddAbove_range_of_hasCompactMulSupport [ClosedIciTopology α] [One α]
+    {f : β → α} (hf : Continuous f) (h : HasCompactMulSupport f) : BddAbove (range f) :=
+  Continuous.bddBelow_range_of_hasCompactMulSupport (α := αᵒᵈ) hf h
 #align continuous.bdd_above_range_of_has_compact_mul_support Continuous.bddAbove_range_of_hasCompactMulSupport
 #align continuous.bdd_above_range_of_has_compact_support Continuous.bddAbove_range_of_hasCompactSupport
 
@@ -353,10 +357,11 @@ end LinearOrder
 section ConditionallyCompleteLinearOrder
 
 variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
-  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+  [TopologicalSpace β] [TopologicalSpace γ]
 
-theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
-    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y := by
+theorem IsCompact.sSup_lt_iff_of_continuous [ClosedIciTopology α] {f : β → α} {K : Set β}
+    (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
+    sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y := by
   refine' ⟨fun h x hx => (le_csSup (hK.bddAbove_image hf) <| mem_image_of_mem f hx).trans_lt h,
     fun h => _⟩
   obtain ⟨x, hx, h2x⟩ := hK.exists_forall_ge h0K hf
@@ -364,11 +369,10 @@ theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : I
   rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
 #align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
 
-theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type*} [ConditionallyCompleteLinearOrder α]
-    [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
+theorem IsCompact.lt_sInf_iff_of_continuous [ClosedIicTopology α] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
     y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
-  @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
+  IsCompact.sSup_lt_iff_of_continuous (α := αᵒᵈ) hK h0K hf y
 #align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
 end ConditionallyCompleteLinearOrder
@@ -380,61 +384,99 @@ end ConditionallyCompleteLinearOrder
 section OrderClosedTopology
 
 variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
-  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+  [TopologicalSpace β] [TopologicalSpace γ]
 
-theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
+theorem IsCompact.sInf_mem [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : sInf s ∈ s :=
   let ⟨_a, ha⟩ := hs.exists_isLeast ne_s
   ha.csInf_mem
 #align is_compact.Inf_mem IsCompact.sInf_mem
 
-theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
-  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
+theorem IsCompact.sSup_mem [ClosedIciTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : sSup s ∈ s :=
+  IsCompact.sInf_mem (α := αᵒᵈ) hs ne_s
 #align is_compact.Sup_mem IsCompact.sSup_mem
 
-theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGLB s (sInf s) :=
+theorem IsCompact.isGLB_sInf [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : IsGLB s (sInf s) :=
   isGLB_csInf ne_s hs.bddBelow
 #align is_compact.is_glb_Inf IsCompact.isGLB_sInf
 
-theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLUB s (sSup s) :=
-  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
+theorem IsCompact.isLUB_sSup [ClosedIciTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : IsLUB s (sSup s) :=
+  IsCompact.isGLB_sInf (α := αᵒᵈ) hs ne_s
 #align is_compact.is_lub_Sup IsCompact.isLUB_sSup
 
-theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLeast s (sInf s) :=
+theorem IsCompact.isLeast_sInf [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : IsLeast s (sInf s) :=
   ⟨hs.sInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
 #align is_compact.is_least_Inf IsCompact.isLeast_sInf
 
-theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGreatest s (sSup s) :=
-  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
+theorem IsCompact.isGreatest_sSup [ClosedIciTopology α] {s : Set α} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : IsGreatest s (sSup s) :=
+  IsCompact.isLeast_sInf (α := αᵒᵈ) hs ne_s
 #align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
 
-theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+theorem IsCompact.exists_sInf_image_eq_and_le [ClosedIicTopology α] {s : Set β}
+    (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) :
+    ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
   let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).sInf_mem (ne_s.image f)
   ⟨x, hxs, hx.symm, fun _y hy =>
     hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).bddBelow <| mem_image_of_mem f hy⟩
 #align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
 
-theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+theorem IsCompact.exists_sSup_image_eq_and_ge [ClosedIciTopology α] {s : Set β}
+    (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) :
+    ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+  IsCompact.exists_sInf_image_eq_and_le (α := αᵒᵈ) hs ne_s hf
 #align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
 
-theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
+theorem IsCompact.exists_sInf_image_eq [ClosedIicTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
   let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
   ⟨x, hxs, hx⟩
 #align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
 
-theorem IsCompact.exists_sSup_image_eq :
-    ∀ {s : Set β},
-      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
-  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
+theorem IsCompact.exists_sSup_image_eq [ClosedIciTopology α] {s : Set β} (hs : IsCompact s)
+    (ne_s : s.Nonempty) : ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
+  IsCompact.exists_sInf_image_eq (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
 
+theorem IsCompact.exists_isMinOn_mem_subset [ClosedIicTopology α] {f : β → α} {s t : Set β}
+    {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
+    (hfz : ∀ z' ∈ t \ s, f z < f z') : ∃ x ∈ s, IsMinOn f t x :=
+  let ⟨x, hxt, hfx⟩ := ht.exists_isMinOn ⟨z, hz⟩ hf
+  ⟨x, by_contra <| fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
+
+theorem IsCompact.exists_isMaxOn_mem_subset [ClosedIciTopology α] {f : β → α} {s t : Set β}
+    {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
+    (hfz : ∀ z' ∈ t \ s, f z' < f z) : ∃ x ∈ s, IsMaxOn f t x :=
+  let ⟨x, hxt, hfx⟩ := ht.exists_isMaxOn ⟨z, hz⟩ hf
+  ⟨x, by_contra <| fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
+
+@[deprecated IsCompact.exists_isMinOn_mem_subset]
+theorem IsCompact.exists_isLocalMinOn_mem_subset [ClosedIicTopology α] {f : β → α} {s t : Set β}
+    {z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
+    (hfz : ∀ z' ∈ t \ s, f z < f z') : ∃ x ∈ s, IsLocalMinOn f t x :=
+  let ⟨x, hxs, h⟩ := ht.exists_isMinOn_mem_subset hf hz hfz
+  ⟨x, hxs, h.localize⟩
+#align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
+
+-- porting note: rfc: assume `t ∈ 𝓝ˢ s` (a.k.a. `s ⊆ interior t`) instead of `s ⊆ t` and
+-- `IsOpen s`?
+theorem IsCompact.exists_isLocalMin_mem_open [ClosedIicTopology α] {f : β → α} {s t : Set β}
+    {z : β} (ht : IsCompact t) (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t)
+    (hfz : ∀ z' ∈ t \ s, f z < f z') (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
+  let ⟨x, hxs, h⟩ := ht.exists_isMinOn_mem_subset hf hz hfz
+  ⟨x, hxs, h.isLocalMin <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩
+#align is_compact.exists_local_min_mem_open IsCompact.exists_isLocalMin_mem_open
+
+theorem IsCompact.exists_isLocalMax_mem_open [ClosedIciTopology α] {f : β → α} {s t : Set β}
+    {z : β} (ht : IsCompact t) (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t)
+    (hfz : ∀ z' ∈ t \ s, f z' < f z) (hs : IsOpen s) : ∃ x ∈ s, IsLocalMax f x :=
+  let ⟨x, hxs, h⟩ := ht.exists_isMaxOn_mem_subset hf hz hfz
+  ⟨x, hxs, h.isLocalMax <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩
+
 end OrderClosedTopology
 
 variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
@@ -488,7 +530,7 @@ theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCo
 
 theorem IsCompact.continuous_sInf {f : γ → β → α} {K : Set β} (hK : IsCompact K)
     (hf : Continuous ↿f) : Continuous fun x => sInf (f x '' K) :=
-  @IsCompact.continuous_sSup αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
+  IsCompact.continuous_sSup (α := αᵒᵈ) hK hf
 #align is_compact.continuous_Inf IsCompact.continuous_sInf
 
 namespace ContinuousOn
@@ -535,28 +577,3 @@ theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
 #align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Icc
 
 end ContinuousOn
-
--- porting note: todo: add dual versions
-
-theorem IsCompact.exists_isMinOn_mem_subset {f : β → α} {s t : Set β} {z : β}
-    (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z') :
-    ∃ x ∈ s, IsMinOn f t x :=
-  let ⟨x, hxt, hfx⟩ := ht.exists_isMinOn ⟨z, hz⟩ hf
-  ⟨x, by_contra <| fun hxs => (hfz x ⟨hxt, hxs⟩).not_le (hfx hz), hfx⟩
-
-@[deprecated IsCompact.exists_isMinOn_mem_subset]
-theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β} {z : β}
-    (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z') :
-    ∃ x ∈ s, IsLocalMinOn f t x :=
-  let ⟨x, hxs, h⟩ := ht.exists_isMinOn_mem_subset hf hz hfz
-  ⟨x, hxs, h.localize⟩
-#align is_compact.exists_local_min_on_mem_subset IsCompact.exists_isLocalMinOn_mem_subset
-
--- porting note: rfc: assume `t ∈ 𝓝ˢ s` (a.k.a. `s ⊆ interior t`) instead of `s ⊆ t` and
--- `IsOpen s`?
-theorem IsCompact.exists_isLocalMin_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
-    (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z')
-    (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
-  let ⟨x, hxs, h⟩ := ht.exists_isMinOn_mem_subset hf hz hfz
-  ⟨x, hxs, h.isLocalMin <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩
-#align is_compact.exists_local_min_mem_open IsCompact.exists_isLocalMin_mem_open
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -26,6 +26,8 @@ We also prove that the image of a closed interval under a continuous map is a cl
 compact, extreme value theorem
 -/
 
+set_option autoImplicit true
+
 
 open Filter OrderDual TopologicalSpace Function Set
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -46,7 +46,7 @@ We also prove some simple lemmas about spaces with this property.
 /-- This typeclass says that all closed intervals in `α` are compact. This is true for all
 conditionally complete linear orders with order topology and products (finite or infinite)
 of such spaces. -/
-class CompactIccSpace (α : Type _) [TopologicalSpace α] [Preorder α] : Prop where
+class CompactIccSpace (α : Type*) [TopologicalSpace α] [Preorder α] : Prop where
   /-- A closed interval `Set.Icc a b` is a compact set for all `a` and `b`. -/
   isCompact_Icc : ∀ {a b : α}, IsCompact (Icc a b)
 #align compact_Icc_space CompactIccSpace
@@ -64,7 +64,7 @@ lemma CompactIccSpace.mk'' [TopologicalSpace α] [PartialOrder α]
   .mk' fun hab => hab.eq_or_lt.elim (by rintro rfl; simp) h
 
 /-- A closed interval in a conditionally complete linear order is compact. -/
-instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (α : Type _)
+instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (α : Type*)
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
     CompactIccSpace α := by
   refine' .mk'' fun {a b} hlt => ?_
@@ -114,21 +114,21 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   · exact ((hsc.1 ⟨hy, hay⟩).not_lt hxy.1).elim
 #align conditionally_complete_linear_order.to_compact_Icc_space ConditionallyCompleteLinearOrder.toCompactIccSpace
 
-instance {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] [∀ i, TopologicalSpace (α i)]
+instance {ι : Type*} {α : ι → Type*} [∀ i, Preorder (α i)] [∀ i, TopologicalSpace (α i)]
     [∀ i, CompactIccSpace (α i)] : CompactIccSpace (∀ i, α i) :=
   ⟨fun {a b} => (pi_univ_Icc a b ▸ isCompact_univ_pi) fun _ => isCompact_Icc⟩
 
-instance Pi.compact_Icc_space' {α β : Type _} [Preorder β] [TopologicalSpace β]
+instance Pi.compact_Icc_space' {α β : Type*} [Preorder β] [TopologicalSpace β]
     [CompactIccSpace β] : CompactIccSpace (α → β) :=
   inferInstance
 #align pi.compact_Icc_space' Pi.compact_Icc_space'
 
-instance {α β : Type _} [Preorder α] [TopologicalSpace α] [CompactIccSpace α] [Preorder β]
+instance {α β : Type*} [Preorder α] [TopologicalSpace α] [CompactIccSpace α] [Preorder β]
     [TopologicalSpace β] [CompactIccSpace β] : CompactIccSpace (α × β) :=
   ⟨fun {a b} => (Icc_prod_eq a b).symm ▸ isCompact_Icc.prod isCompact_Icc⟩
 
 /-- An unordered closed interval is compact. -/
-theorem isCompact_uIcc {α : Type _} [LinearOrder α] [TopologicalSpace α] [CompactIccSpace α]
+theorem isCompact_uIcc {α : Type*} [LinearOrder α] [TopologicalSpace α] [CompactIccSpace α]
     {a b : α} : IsCompact (uIcc a b) :=
   isCompact_Icc
 #align is_compact_uIcc isCompact_uIcc
@@ -139,14 +139,14 @@ theorem isCompact_uIcc {α : Type _} [LinearOrder α] [TopologicalSpace α] [Com
 We do not register an instance for a `[CompactIccSpace α]` because this would only add instances
 for products (indexed or not) of complete linear orders, and we have instances with higher priority
 that cover these cases. -/
-instance (priority := 100) compactSpace_of_completeLinearOrder {α : Type _} [CompleteLinearOrder α]
+instance (priority := 100) compactSpace_of_completeLinearOrder {α : Type*} [CompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] : CompactSpace α :=
   ⟨by simp only [← Icc_bot_top, isCompact_Icc]⟩
 #align compact_space_of_complete_linear_order compactSpace_of_completeLinearOrder
 
 section
 
-variable {α : Type _} [Preorder α] [TopologicalSpace α] [CompactIccSpace α]
+variable {α : Type*} [Preorder α] [TopologicalSpace α] [CompactIccSpace α]
 
 instance compactSpace_Icc (a b : α) : CompactSpace (Icc a b) :=
   isCompact_iff_compactSpace.mp isCompact_Icc
@@ -160,7 +160,7 @@ end
 
 section LinearOrder
 
-variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace α] [OrderClosedTopology α]
+variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace α] [OrderClosedTopology α]
   [TopologicalSpace β] [TopologicalSpace γ]
 
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
@@ -350,7 +350,7 @@ end LinearOrder
 
 section ConditionallyCompleteLinearOrder
 
-variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
 theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
@@ -362,7 +362,7 @@ theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : I
   rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
 #align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
 
-theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
+theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type*} [ConditionallyCompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
     y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
@@ -377,7 +377,7 @@ end ConditionallyCompleteLinearOrder
 
 section OrderClosedTopology
 
-variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
 theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
@@ -435,7 +435,7 @@ theorem IsCompact.exists_sSup_image_eq :
 
 end OrderClosedTopology
 
-variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
 theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Patrick Massot. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
-
-! This file was ported from Lean 3 source module topology.algebra.order.compact
-! leanprover-community/mathlib commit 3efd324a3a31eaa40c9d5bfc669c4fafee5f9423
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Algebra.Order.IntermediateValue
 import Mathlib.Topology.LocalExtr
 
+#align_import topology.algebra.order.compact from "leanprover-community/mathlib"@"3efd324a3a31eaa40c9d5bfc669c4fafee5f9423"
+
 /-!
 # Compactness of a closed interval
 
feat(Data.Set.Basic/Data.Finset.Basic): rename insert_subset (#5450)

Currently, (for both Set and Finset) insert_subset is an iff lemma stating that insert a s ⊆ t if and only if a ∈ t and s ⊆ t. For both types, this PR renames this lemma to insert_subset_iff, and adds an insert_subset lemma that gives the implication just in the reverse direction : namely theorem insert_subset (ha : a ∈ t) (hs : s ⊆ t) : insert a s ⊆ t .

This both aligns the naming with union_subset and union_subset_iff, and removes the need for the awkward insert_subset.mpr ⟨_,_⟩ idiom. It touches a lot of files (too many to list), but in a trivial way.

Diff
@@ -227,7 +227,7 @@ theorem ContinuousOn.exists_isMinOn' {s : Set β} {f : β → α} (hf : Continuo
     (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x) :
     ∃ x ∈ s, IsMinOn f s x := by
   rcases (hasBasis_cocompact.inf_principal _).eventually_iff.1 hc with ⟨K, hK, hKf⟩
-  have hsub : insert x₀ (K ∩ s) ⊆ s := insert_subset.2 ⟨h₀, inter_subset_right _ _⟩
+  have hsub : insert x₀ (K ∩ s) ⊆ s := insert_subset_iff.2 ⟨h₀, inter_subset_right _ _⟩
   obtain ⟨x, hx, hxf⟩ : ∃ x ∈ insert x₀ (K ∩ s), ∀ y ∈ insert x₀ (K ∩ s), f x ≤ f y :=
     ((hK.inter_right hsc).insert x₀).exists_forall_le (insert_nonempty _ _) (hf.mono hsub)
   refine' ⟨x, hsub hx, fun y hy => _⟩
remove conditional completeness assumption in IsCompact.exists_isMinOn (#5388)

Also rename 2 lemmas

  • IsCompact.exists_local_min_mem_open -> IsCompact.exists_isLocalMin_mem_open;
  • Metric.exists_local_min_mem_ball -> Metric.exists_isLocal_min_mem_ball.
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Patrick Massot, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module topology.algebra.order.compact
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
+! leanprover-community/mathlib commit 3efd324a3a31eaa40c9d5bfc669c4fafee5f9423
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -32,7 +32,7 @@ compact, extreme value theorem
 
 open Filter OrderDual TopologicalSpace Function Set
 
-open Filter Topology
+open scoped Filter Topology
 
 /-!
 ### Compactness of a closed interval
@@ -92,29 +92,23 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩
   specialize hf c hc
   have hcs : c ∈ s := by
-    cases' hc.1.eq_or_lt with heq hlt
-    · rwa [← heq]
+    rcases hc.1.eq_or_lt with (rfl | hlt); · assumption
     refine' ⟨hc, fun hcf => hf fun U hU => _⟩
-    rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with
-      ⟨x, hxc, hxU⟩
-    rcases((hsc.frequently_mem ⟨a, ha⟩).and_eventually
-          (Ioc_mem_nhdsWithin_Iic ⟨hxc, le_rfl⟩)).exists with
-      ⟨y, ⟨_hyab, hyf⟩, hy⟩
+    rcases (mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU)
+      with ⟨x, hxc, hxU⟩
+    rcases ((hsc.frequently_mem ⟨a, ha⟩).and_eventually
+      (Ioc_mem_nhdsWithin_Iic ⟨hxc, le_rfl⟩)).exists with ⟨y, ⟨_hyab, hyf⟩, hy⟩
     refine' mem_of_superset (f.diff_mem_iff.2 ⟨hcf, hyf⟩) (Subset.trans _ hxU)
     rw [diff_subset_iff]
-    exact
-      Subset.trans Icc_subset_Icc_union_Ioc
-        (union_subset_union Subset.rfl <| Ioc_subset_Ioc_left hy.1.le)
-  cases' hc.2.eq_or_lt with heq hlt
-  · rw [← heq]
-    exact hcs.2
+    exact Subset.trans Icc_subset_Icc_union_Ioc <| union_subset_union Subset.rfl <|
+      Ioc_subset_Ioc_left hy.1.le
+  rcases hc.2.eq_or_lt with (rfl | hlt); · exact hcs.2
   contrapose! hf
   intro U hU
   rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
       (mem_nhdsWithin_of_mem_nhds hU) with
     ⟨y, hxy, hyU⟩
-  refine' mem_of_superset _ hyU
-  clear! U
+  refine' mem_of_superset _ hyU; clear! U
   have hy : y ∈ Icc a b := ⟨hc.1.trans hxy.1.le, hxy.2⟩
   by_cases hay : Icc a y ∈ f
   · refine' mem_of_superset (f.diff_mem_iff.2 ⟨f.diff_mem_iff.2 ⟨hay, hcs.2⟩, hpt y hy⟩) _
@@ -164,100 +158,48 @@ instance compactSpace_Icc (a b : α) : CompactSpace (Icc a b) :=
 end
 
 /-!
-### Min and max elements of a compact set
+### Extreme value theorem
 -/
 
+section LinearOrder
 
-variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
-  [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
-
-theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
-  hs.isClosed.csInf_mem ne_s hs.bddBelow
-#align is_compact.Inf_mem IsCompact.sInf_mem
-
-theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
-  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.Sup_mem IsCompact.sSup_mem
-
-theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGLB s (sInf s) :=
-  isGLB_csInf ne_s hs.bddBelow
-#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
-
-theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLUB s (sSup s) :=
-  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
-
-theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLeast s (sInf s) :=
-  ⟨hs.sInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
-#align is_compact.is_least_Inf IsCompact.isLeast_sInf
-
-theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGreatest s (sSup s) :=
-  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
+variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace α] [OrderClosedTopology α]
+  [TopologicalSpace β] [TopologicalSpace γ]
 
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    ∃ x, IsLeast s x :=
-  ⟨_, hs.isLeast_sInf ne_s⟩
+    ∃ x, IsLeast s x := by
+  haveI : Nonempty s := ne_s.to_subtype
+  suffices : (s ∩ ⋂ x ∈ s, Iic x).Nonempty
+  · exact ⟨this.choose, this.choose_spec.1, mem_iInter₂.mp this.choose_spec.2⟩
+  rw [biInter_eq_iInter]
+  by_contra H
+  rw [not_nonempty_iff_eq_empty] at H
+  rcases hs.elim_directed_family_closed (fun x : s => Iic ↑x) (fun x => isClosed_Iic) H
+      (directed_of_inf fun _ _ h => Iic_subset_Iic.mpr h) with ⟨x, hx⟩
+  exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 
 theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsGreatest s x :=
-  ⟨_, hs.isGreatest_sSup ne_s⟩
+  IsCompact.exists_isLeast (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
-  ⟨_, hs.sInf_mem ne_s, hs.isGLB_sInf ne_s⟩
+  (hs.exists_isLeast ne_s).imp (fun x (hx : IsLeast s x) => ⟨hx.1, hx.isGLB⟩)
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
-  ⟨_, hs.sSup_mem ne_s, hs.isLUB_sSup ne_s⟩
+  IsCompact.exists_isGLB (α := αᵒᵈ) hs ne_s
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
-theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
-  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).sInf_mem (ne_s.image f)
-  ⟨x, hxs, hx.symm, fun _y hy =>
-    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).bddBelow <| mem_image_of_mem f hy⟩
-#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
-
-theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
-#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
-
-theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
-  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
-  ⟨x, hxs, hx⟩
-#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
-
-theorem IsCompact.exists_sSup_image_eq :
-    ∀ {s : Set β},
-      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
-  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
-#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
-
-theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
-    s = Icc (sInf s) (sSup s) :=
-  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.bddBelow h₂.bddAbove h₂.isClosed
-#align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
-
-/-!
-### Extreme value theorem
--/
-
 -- porting note: new lemma; defeq to the old one but allows us to use dot notation
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_isMinOn {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
     (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
-  rcases hs.exists_sInf_image_eq_and_le ne_s hf with ⟨x, hxs, -, hx⟩
-  exact ⟨x, hxs, hx⟩
+  rcases (hs.image_of_continuousOn hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩
+  exact ⟨x, hxs, ball_image_iff.1 hx⟩
 
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 @[deprecated IsCompact.exists_isMinOn]
@@ -270,7 +212,7 @@ theorem IsCompact.exists_forall_le {s : Set β} (hs : IsCompact s) (ne_s : s.Non
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 theorem IsCompact.exists_isMaxOn : ∀ {s : Set β}, IsCompact s → s.Nonempty → ∀ {f : β → α},
     ContinuousOn f s → ∃ x ∈ s, IsMaxOn f s x :=
-  @IsCompact.exists_isMinOn αᵒᵈ _ _ _ _ _
+  IsCompact.exists_isMinOn (α := αᵒᵈ)
 
 /-- The **extreme value theorem**: a continuous function realizes its maximum on a compact set. -/
 @[deprecated IsCompact.exists_isMaxOn]
@@ -306,7 +248,7 @@ smaller than a value in its image away from compact sets, then it has a maximum
 theorem ContinuousOn.exists_isMaxOn' {s : Set β} {f : β → α} (hf : ContinuousOn f s)
     (hsc : IsClosed s) {x₀ : β} (h₀ : x₀ ∈ s) (hc : ∀ᶠ x in cocompact β ⊓ 𝓟 s, f x ≤ f x₀) :
     ∃ x ∈ s, IsMaxOn f s x :=
-  @ContinuousOn.exists_isMinOn' αᵒᵈ _ _ _ _ _ _ _ hf hsc _ h₀ hc
+  ContinuousOn.exists_isMinOn' (α := αᵒᵈ) hf hsc h₀ hc
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 smaller than a value in its image away from compact sets, then it has a maximum on this set. -/
@@ -348,18 +290,6 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
   @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 
-theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
-    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
-  ((hK.image_of_continuousOn hf).isGreatest_sSup (h0K.image _)).lt_iff.trans ball_image_iff
-#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
-
-theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
-    [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
-    (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
-    y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
-  @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
-#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
-
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
 theorem Continuous.exists_forall_le_of_hasCompactMulSupport [Nonempty β] [One α] {f : β → α}
@@ -378,6 +308,144 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
 #align continuous.exists_forall_ge_of_has_compact_mul_support Continuous.exists_forall_ge_of_hasCompactMulSupport
 #align continuous.exists_forall_ge_of_has_compact_support Continuous.exists_forall_ge_of_hasCompactSupport
 
+/-- A compact set is bounded below -/
+theorem IsCompact.bddBelow [Nonempty α] {s : Set α} (hs : IsCompact s) : BddBelow s := by
+  rcases s.eq_empty_or_nonempty with rfl | hne
+  · exact bddBelow_empty
+  · obtain ⟨a, -, has⟩ := hs.exists_isLeast hne
+    exact ⟨a, has⟩
+#align is_compact.bdd_below IsCompact.bddBelow
+
+/-- A compact set is bounded above -/
+theorem IsCompact.bddAbove [Nonempty α] {s : Set α} (hs : IsCompact s) : BddAbove s :=
+  @IsCompact.bddBelow αᵒᵈ _ _ _ _ _ hs
+#align is_compact.bdd_above IsCompact.bddAbove
+
+/-- A continuous function is bounded below on a compact set. -/
+theorem IsCompact.bddBelow_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
+    (hf : ContinuousOn f K) : BddBelow (f '' K) :=
+  (hK.image_of_continuousOn hf).bddBelow
+#align is_compact.bdd_below_image IsCompact.bddBelow_image
+
+/-- A continuous function is bounded above on a compact set. -/
+theorem IsCompact.bddAbove_image [Nonempty α] {f : β → α} {K : Set β} (hK : IsCompact K)
+    (hf : ContinuousOn f K) : BddAbove (f '' K) :=
+  @IsCompact.bddBelow_image αᵒᵈ _ _ _ _ _ _ _ _ hK hf
+#align is_compact.bdd_above_image IsCompact.bddAbove_image
+
+/-- A continuous function with compact support is bounded below. -/
+@[to_additive " A continuous function with compact support is bounded below. "]
+theorem Continuous.bddBelow_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
+    (h : HasCompactMulSupport f) : BddBelow (range f) :=
+  (h.isCompact_range hf).bddBelow
+#align continuous.bdd_below_range_of_has_compact_mul_support Continuous.bddBelow_range_of_hasCompactMulSupport
+#align continuous.bdd_below_range_of_has_compact_support Continuous.bddBelow_range_of_hasCompactSupport
+
+/-- A continuous function with compact support is bounded above. -/
+@[to_additive " A continuous function with compact support is bounded above. "]
+theorem Continuous.bddAbove_range_of_hasCompactMulSupport [One α] {f : β → α} (hf : Continuous f)
+    (h : HasCompactMulSupport f) : BddAbove (range f) :=
+  @Continuous.bddBelow_range_of_hasCompactMulSupport αᵒᵈ _ _ _ _ _ _ _ hf h
+#align continuous.bdd_above_range_of_has_compact_mul_support Continuous.bddAbove_range_of_hasCompactMulSupport
+#align continuous.bdd_above_range_of_has_compact_support Continuous.bddAbove_range_of_hasCompactSupport
+
+end LinearOrder
+
+section ConditionallyCompleteLinearOrder
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
+theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
+    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y := by
+  refine' ⟨fun h x hx => (le_csSup (hK.bddAbove_image hf) <| mem_image_of_mem f hx).trans_lt h,
+    fun h => _⟩
+  obtain ⟨x, hx, h2x⟩ := hK.exists_forall_ge h0K hf
+  refine' (csSup_le (h0K.image f) _).trans_lt (h x hx)
+  rintro _ ⟨x', hx', rfl⟩; exact h2x x' hx'
+#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
+
+theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
+    [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
+    (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
+    y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
+  @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
+#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
+
+end ConditionallyCompleteLinearOrder
+
+/-!
+### Min and max elements of a compact set
+-/
+
+section OrderClosedTopology
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderClosedTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
+theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
+  let ⟨_a, ha⟩ := hs.exists_isLeast ne_s
+  ha.csInf_mem
+#align is_compact.Inf_mem IsCompact.sInf_mem
+
+theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
+  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.Sup_mem IsCompact.sSup_mem
+
+theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGLB s (sInf s) :=
+  isGLB_csInf ne_s hs.bddBelow
+#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
+
+theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLUB s (sSup s) :=
+  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
+
+theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLeast s (sInf s) :=
+  ⟨hs.sInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
+#align is_compact.is_least_Inf IsCompact.isLeast_sInf
+
+theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGreatest s (sSup s) :=
+  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
+
+theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).sInf_mem (ne_s.image f)
+  ⟨x, hxs, hx.symm, fun _y hy =>
+    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).bddBelow <| mem_image_of_mem f hy⟩
+#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
+
+theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
+
+theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
+  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
+  ⟨x, hxs, hx⟩
+#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
+
+theorem IsCompact.exists_sSup_image_eq :
+    ∀ {s : Set β},
+      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
+  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
+#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
+
+end OrderClosedTopology
+
+variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
+  [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
+
+theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
+    s = Icc (sInf s) (sSup s) :=
+  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.bddBelow h₂.bddAbove h₂.isClosed
+#align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
+
 /- If `f : γ → β → α` is a function that is continuous as a function on `γ × β`, `α` is a
 conditionally complete linear order, and `K : Set β` is a compact set, then
 `fun x ↦ sSup (f x '' K)` is a continuous function.
@@ -433,7 +501,7 @@ namespace ContinuousOn
 variable [DenselyOrdered α] [ConditionallyCompleteLinearOrder β] [OrderTopology β] {f : α → β}
   {a b c : α}
 
-open Interval
+open scoped Interval
 
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
     f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
@@ -487,9 +555,9 @@ theorem IsCompact.exists_isLocalMinOn_mem_subset {f : β → α} {s t : Set β}
 
 -- porting note: rfc: assume `t ∈ 𝓝ˢ s` (a.k.a. `s ⊆ interior t`) instead of `s ⊆ t` and
 -- `IsOpen s`?
-theorem IsCompact.exists_local_min_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
+theorem IsCompact.exists_isLocalMin_mem_open {f : β → α} {s t : Set β} {z : β} (ht : IsCompact t)
     (hst : s ⊆ t) (hf : ContinuousOn f t) (hz : z ∈ t) (hfz : ∀ z' ∈ t \ s, f z < f z')
     (hs : IsOpen s) : ∃ x ∈ s, IsLocalMin f x :=
   let ⟨x, hxs, h⟩ := ht.exists_isMinOn_mem_subset hf hz hfz
   ⟨x, hxs, h.isLocalMin <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩
-#align is_compact.exists_local_min_mem_open IsCompact.exists_local_min_mem_open
+#align is_compact.exists_local_min_mem_open IsCompact.exists_isLocalMin_mem_open
chore(Topology/{Paracompact + PartitionOfUnity + Algebra/Order/Compact}): restore a more faithful mathported proof, using the "newer" push_neg (#5132)

These are just three cases where a mathported proof had to be changed, due to unwanted behaviour with push_neg/contradiction. Since #5082 is supposed to fix some issues with these tactics, some of these workarounds can be removed.

Note: this was not in any way systematic, I simply grepped the line after a contra, then grepped for a not and then selected 3 likely candidates. There are potentially more situations like these.

Diff
@@ -71,41 +71,56 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
     [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] :
     CompactIccSpace α := by
   refine' .mk'' fun {a b} hlt => ?_
+  cases' le_or_lt a b with hab hab
+  swap
+  · simp [hab]
   refine' isCompact_iff_ultrafilter_le_nhds.2 fun f hf => _
-  by_contra H
-  simp only [not_exists, not_and] at H -- porting note: `contrapose!` fails
-  rw [le_principal_iff] at hf
+  contrapose! hf
+  rw [le_principal_iff]
   have hpt : ∀ x ∈ Icc a b, {x} ∉ f := fun x hx hxf =>
-    H x hx ((le_pure_iff.2 hxf).trans (pure_le_nhds x))
+    hf x hx ((le_pure_iff.2 hxf).trans (pure_le_nhds x))
   set s := { x ∈ Icc a b | Icc a x ∉ f }
   have hsb : b ∈ upperBounds s := fun x hx => hx.1.2
-  have ha : a ∈ s := by simp [hpt, hlt.le]
+  have sbd : BddAbove s := ⟨b, hsb⟩
+  have ha : a ∈ s := by simp [hpt, hab]
+  rcases hab.eq_or_lt with (rfl | _hlt)
+  · exact ha.2
+  -- porting note: the `obtain` below was instead
+  -- `set c := Sup s`
+  -- `have hsc : IsLUB s c := isLUB_csSup ⟨a, ha⟩ sbd`
   obtain ⟨c, hsc⟩ : ∃ c, IsLUB s c := ⟨sSup s, isLUB_csSup ⟨a, ha⟩ ⟨b, hsb⟩⟩
   have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩
-  specialize H c hc
+  specialize hf c hc
   have hcs : c ∈ s := by
-    rcases hc.1.eq_or_lt with (rfl | hlt)
-    · assumption
-    refine' ⟨hc, fun hcf => H fun U hU => _⟩
-    rcases exists_Ioc_subset_of_mem_nhds' hU hlt with ⟨x, hxc, hxU⟩
-    rcases ((hsc.frequently_mem ⟨a, ha⟩).and_eventually (Ioc_mem_nhdsWithin_Iic' hxc.2)).exists with
-      ⟨y, ⟨-, hyf⟩, hy⟩
+    cases' hc.1.eq_or_lt with heq hlt
+    · rwa [← heq]
+    refine' ⟨hc, fun hcf => hf fun U hU => _⟩
+    rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with
+      ⟨x, hxc, hxU⟩
+    rcases((hsc.frequently_mem ⟨a, ha⟩).and_eventually
+          (Ioc_mem_nhdsWithin_Iic ⟨hxc, le_rfl⟩)).exists with
+      ⟨y, ⟨_hyab, hyf⟩, hy⟩
     refine' mem_of_superset (f.diff_mem_iff.2 ⟨hcf, hyf⟩) (Subset.trans _ hxU)
     rw [diff_subset_iff]
-    exact Icc_subset_Icc_union_Ioc.trans (union_subset_union_right _ (Ioc_subset_Ioc_left hy.1.le))
+    exact
+      Subset.trans Icc_subset_Icc_union_Ioc
+        (union_subset_union Subset.rfl <| Ioc_subset_Ioc_left hy.1.le)
   cases' hc.2.eq_or_lt with heq hlt
-  · exact hcs.2 (heq.symm ▸ hf)
-  obtain ⟨y, ⟨hcy, hyb⟩, hyf⟩ : ∃ y ∈ Ioc c b, Ico c y ∉ f
-  · contrapose! H
-    intro U hU
-    rcases exists_Ico_subset_of_mem_nhds' hU hlt with ⟨y, hy, hyU⟩
-    exact mem_of_superset (H _ hy) hyU
-  suffices : y ∈ s
-  · exact hcy.not_le (hsc.1 this)
-  have hy : y ∈ Icc a b := ⟨hc.1.trans hcy.le, hyb⟩
-  refine ⟨hy, fun hay => ?_⟩
-  simp only [← Icc_union_Icc_eq_Icc hc.1 hcy.le, ← Ico_union_right hcy.le,
-    Ultrafilter.union_mem_iff, hyf, hcs.2, hpt _ hy, false_or] at hay
+  · rw [← heq]
+    exact hcs.2
+  contrapose! hf
+  intro U hU
+  rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1
+      (mem_nhdsWithin_of_mem_nhds hU) with
+    ⟨y, hxy, hyU⟩
+  refine' mem_of_superset _ hyU
+  clear! U
+  have hy : y ∈ Icc a b := ⟨hc.1.trans hxy.1.le, hxy.2⟩
+  by_cases hay : Icc a y ∈ f
+  · refine' mem_of_superset (f.diff_mem_iff.2 ⟨f.diff_mem_iff.2 ⟨hay, hcs.2⟩, hpt y hy⟩) _
+    rw [diff_subset_iff, union_comm, Ico_union_right hxy.1.le, diff_subset_iff]
+    exact Icc_subset_Icc_union_Icc
+  · exact ((hsc.1 ⟨hy, hay⟩).not_lt hxy.1).elim
 #align conditionally_complete_linear_order.to_compact_Icc_space ConditionallyCompleteLinearOrder.toCompactIccSpace
 
 instance {ι : Type _} {α : ι → Type _} [∀ i, Preorder (α i)] [∀ i, TopologicalSpace (α i)]
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -275,7 +275,7 @@ theorem ContinuousOn.exists_isMinOn' {s : Set β} {f : β → α} (hf : Continuo
     ((hK.inter_right hsc).insert x₀).exists_forall_le (insert_nonempty _ _) (hf.mono hsub)
   refine' ⟨x, hsub hx, fun y hy => _⟩
   by_cases hyK : y ∈ K
-  exacts[hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
+  exacts [hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)]
 
 /-- The **extreme value theorem**: if a function `f` is continuous on a closed set `s` and it is
 larger than a value in its image away from compact sets, then it has a minimum on this set. -/
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -370,7 +370,7 @@ conditionally complete linear order, and `K : Set β` is a compact set, then
 Porting note: todo: generalize. The following version seems to be true:
 ```
 theorem IsCompact.tendsto_sSup {f : γ → β → α} {g : β → α} {K : Set β} {l : Filter γ}
-    (hK : IsCompact K) (hf : ∀ y ∈ K, Tendsto ↿f (l ×ᶠ 𝓝[K] y) (𝓝 (g y)))
+    (hK : IsCompact K) (hf : ∀ y ∈ K, Tendsto ↿f (l ×ˢ 𝓝[K] y) (𝓝 (g y)))
     (hgc : ContinuousOn g K) :
     Tendsto (fun x => sSup (f x '' K)) l (𝓝 (sSup (g '' K))) := _
 ```
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -80,7 +80,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrder.toCompactIccSpace (
   set s := { x ∈ Icc a b | Icc a x ∉ f }
   have hsb : b ∈ upperBounds s := fun x hx => hx.1.2
   have ha : a ∈ s := by simp [hpt, hlt.le]
-  obtain ⟨c, hsc⟩ : ∃ c, IsLUB s c := ⟨supₛ s, isLUB_csupₛ ⟨a, ha⟩ ⟨b, hsb⟩⟩
+  obtain ⟨c, hsc⟩ : ∃ c, IsLUB s c := ⟨sSup s, isLUB_csSup ⟨a, ha⟩ ⟨b, hsb⟩⟩
   have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩
   specialize H c hc
   have hcs : c ∈ s := by
@@ -156,81 +156,81 @@ end
 variable {α β γ : Type _} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
   [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
 
-theorem IsCompact.infₛ_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : infₛ s ∈ s :=
-  hs.isClosed.cinfₛ_mem ne_s hs.bddBelow
-#align is_compact.Inf_mem IsCompact.infₛ_mem
+theorem IsCompact.sInf_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sInf s ∈ s :=
+  hs.isClosed.csInf_mem ne_s hs.bddBelow
+#align is_compact.Inf_mem IsCompact.sInf_mem
 
-theorem IsCompact.supₛ_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : supₛ s ∈ s :=
-  @IsCompact.infₛ_mem αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.Sup_mem IsCompact.supₛ_mem
+theorem IsCompact.sSup_mem {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) : sSup s ∈ s :=
+  @IsCompact.sInf_mem αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.Sup_mem IsCompact.sSup_mem
 
-theorem IsCompact.isGLB_infₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGLB s (infₛ s) :=
-  isGLB_cinfₛ ne_s hs.bddBelow
-#align is_compact.is_glb_Inf IsCompact.isGLB_infₛ
+theorem IsCompact.isGLB_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGLB s (sInf s) :=
+  isGLB_csInf ne_s hs.bddBelow
+#align is_compact.is_glb_Inf IsCompact.isGLB_sInf
 
-theorem IsCompact.isLUB_supₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLUB s (supₛ s) :=
-  @IsCompact.isGLB_infₛ αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_lub_Sup IsCompact.isLUB_supₛ
+theorem IsCompact.isLUB_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLUB s (sSup s) :=
+  @IsCompact.isGLB_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_lub_Sup IsCompact.isLUB_sSup
 
-theorem IsCompact.isLeast_infₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsLeast s (infₛ s) :=
-  ⟨hs.infₛ_mem ne_s, (hs.isGLB_infₛ ne_s).1⟩
-#align is_compact.is_least_Inf IsCompact.isLeast_infₛ
+theorem IsCompact.isLeast_sInf {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsLeast s (sInf s) :=
+  ⟨hs.sInf_mem ne_s, (hs.isGLB_sInf ne_s).1⟩
+#align is_compact.is_least_Inf IsCompact.isLeast_sInf
 
-theorem IsCompact.isGreatest_supₛ {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
-    IsGreatest s (supₛ s) :=
-  @IsCompact.isLeast_infₛ αᵒᵈ _ _ _ _ hs ne_s
-#align is_compact.is_greatest_Sup IsCompact.isGreatest_supₛ
+theorem IsCompact.isGreatest_sSup {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
+    IsGreatest s (sSup s) :=
+  @IsCompact.isLeast_sInf αᵒᵈ _ _ _ _ hs ne_s
+#align is_compact.is_greatest_Sup IsCompact.isGreatest_sSup
 
 theorem IsCompact.exists_isLeast {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsLeast s x :=
-  ⟨_, hs.isLeast_infₛ ne_s⟩
+  ⟨_, hs.isLeast_sInf ne_s⟩
 #align is_compact.exists_is_least IsCompact.exists_isLeast
 
 theorem IsCompact.exists_isGreatest {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x, IsGreatest s x :=
-  ⟨_, hs.isGreatest_supₛ ne_s⟩
+  ⟨_, hs.isGreatest_sSup ne_s⟩
 #align is_compact.exists_is_greatest IsCompact.exists_isGreatest
 
 theorem IsCompact.exists_isGLB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsGLB s x :=
-  ⟨_, hs.infₛ_mem ne_s, hs.isGLB_infₛ ne_s⟩
+  ⟨_, hs.sInf_mem ne_s, hs.isGLB_sInf ne_s⟩
 #align is_compact.exists_is_glb IsCompact.exists_isGLB
 
 theorem IsCompact.exists_isLUB {s : Set α} (hs : IsCompact s) (ne_s : s.Nonempty) :
     ∃ x ∈ s, IsLUB s x :=
-  ⟨_, hs.supₛ_mem ne_s, hs.isLUB_supₛ ne_s⟩
+  ⟨_, hs.sSup_mem ne_s, hs.isLUB_sSup ne_s⟩
 #align is_compact.exists_is_lub IsCompact.exists_isLUB
 
-theorem IsCompact.exists_infₛ_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, infₛ (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
-  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).infₛ_mem (ne_s.image f)
+theorem IsCompact.exists_sInf_image_eq_and_le {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x ∧ ∀ y ∈ s, f x ≤ f y :=
+  let ⟨x, hxs, hx⟩ := (hs.image_of_continuousOn hf).sInf_mem (ne_s.image f)
   ⟨x, hxs, hx.symm, fun _y hy =>
-    hx.trans_le <| cinfₛ_le (hs.image_of_continuousOn hf).bddBelow <| mem_image_of_mem f hy⟩
-#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_infₛ_image_eq_and_le
+    hx.trans_le <| csInf_le (hs.image_of_continuousOn hf).bddBelow <| mem_image_of_mem f hy⟩
+#align is_compact.exists_Inf_image_eq_and_le IsCompact.exists_sInf_image_eq_and_le
 
-theorem IsCompact.exists_supₛ_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, supₛ (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
-  @IsCompact.exists_infₛ_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
-#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_supₛ_image_eq_and_ge
+theorem IsCompact.exists_sSup_image_eq_and_ge {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sSup (f '' s) = f x ∧ ∀ y ∈ s, f y ≤ f x :=
+  @IsCompact.exists_sInf_image_eq_and_le αᵒᵈ _ _ _ _ _ _ hs ne_s _ hf
+#align is_compact.exists_Sup_image_eq_and_ge IsCompact.exists_sSup_image_eq_and_ge
 
-theorem IsCompact.exists_infₛ_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
-    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, infₛ (f '' s) = f x :=
-  let ⟨x, hxs, hx, _⟩ := hs.exists_infₛ_image_eq_and_le ne_s hf
+theorem IsCompact.exists_sInf_image_eq {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty)
+    {f : β → α} (hf : ContinuousOn f s) : ∃ x ∈ s, sInf (f '' s) = f x :=
+  let ⟨x, hxs, hx, _⟩ := hs.exists_sInf_image_eq_and_le ne_s hf
   ⟨x, hxs, hx⟩
-#align is_compact.exists_Inf_image_eq IsCompact.exists_infₛ_image_eq
+#align is_compact.exists_Inf_image_eq IsCompact.exists_sInf_image_eq
 
-theorem IsCompact.exists_supₛ_image_eq :
+theorem IsCompact.exists_sSup_image_eq :
     ∀ {s : Set β},
-      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, supₛ (f '' s) = f x :=
-  @IsCompact.exists_infₛ_image_eq αᵒᵈ _ _ _ _ _
-#align is_compact.exists_Sup_image_eq IsCompact.exists_supₛ_image_eq
+      IsCompact s → s.Nonempty → ∀ {f : β → α}, ContinuousOn f s → ∃ x ∈ s, sSup (f '' s) = f x :=
+  @IsCompact.exists_sInf_image_eq αᵒᵈ _ _ _ _ _
+#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq
 
 theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ : IsCompact s) :
-    s = Icc (infₛ s) (supₛ s) :=
-  eq_Icc_cinfₛ_csupₛ_of_connected_bdd_closed h₁ h₂.bddBelow h₂.bddAbove h₂.isClosed
+    s = Icc (sInf s) (sSup s) :=
+  eq_Icc_csInf_csSup_of_connected_bdd_closed h₁ h₂.bddBelow h₂.bddAbove h₂.isClosed
 #align eq_Icc_of_connected_compact eq_Icc_of_connected_compact
 
 /-!
@@ -241,7 +241,7 @@ theorem eq_Icc_of_connected_compact {s : Set α} (h₁ : IsConnected s) (h₂ :
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
 theorem IsCompact.exists_isMinOn {s : Set β} (hs : IsCompact s) (ne_s : s.Nonempty) {f : β → α}
     (hf : ContinuousOn f s) : ∃ x ∈ s, IsMinOn f s x := by
-  rcases hs.exists_infₛ_image_eq_and_le ne_s hf with ⟨x, hxs, -, hx⟩
+  rcases hs.exists_sInf_image_eq_and_le ne_s hf with ⟨x, hxs, -, hx⟩
   exact ⟨x, hxs, hx⟩
 
 /-- The **extreme value theorem**: a continuous function realizes its minimum on a compact set. -/
@@ -333,17 +333,17 @@ theorem Continuous.exists_forall_ge [Nonempty β] {f : β → α} (hf : Continuo
   @Continuous.exists_forall_le αᵒᵈ _ _ _ _ _ _ _ hf hlim
 #align continuous.exists_forall_ge Continuous.exists_forall_ge
 
-theorem IsCompact.supₛ_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
-    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : supₛ (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
-  ((hK.image_of_continuousOn hf).isGreatest_supₛ (h0K.image _)).lt_iff.trans ball_image_iff
-#align is_compact.Sup_lt_iff_of_continuous IsCompact.supₛ_lt_iff_of_continuous
+theorem IsCompact.sSup_lt_iff_of_continuous {f : β → α} {K : Set β} (hK : IsCompact K)
+    (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) : sSup (f '' K) < y ↔ ∀ x ∈ K, f x < y :=
+  ((hK.image_of_continuousOn hf).isGreatest_sSup (h0K.image _)).lt_iff.trans ball_image_iff
+#align is_compact.Sup_lt_iff_of_continuous IsCompact.sSup_lt_iff_of_continuous
 
-theorem IsCompact.lt_infₛ_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
+theorem IsCompact.lt_sInf_iff_of_continuous {α β : Type _} [ConditionallyCompleteLinearOrder α]
     [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : β → α} {K : Set β}
     (hK : IsCompact K) (h0K : K.Nonempty) (hf : ContinuousOn f K) (y : α) :
-    y < infₛ (f '' K) ↔ ∀ x ∈ K, y < f x :=
-  @IsCompact.supₛ_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
-#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_infₛ_iff_of_continuous
+    y < sInf (f '' K) ↔ ∀ x ∈ K, y < f x :=
+  @IsCompact.sSup_lt_iff_of_continuous αᵒᵈ β _ _ _ _ _ _ hK h0K hf y
+#align is_compact.lt_Inf_iff_of_continuous IsCompact.lt_sInf_iff_of_continuous
 
 /-- A continuous function with compact support has a global minimum. -/
 @[to_additive "A continuous function with compact support has a global minimum."]
@@ -365,33 +365,33 @@ theorem Continuous.exists_forall_ge_of_hasCompactMulSupport [Nonempty β] [One 
 
 /- If `f : γ → β → α` is a function that is continuous as a function on `γ × β`, `α` is a
 conditionally complete linear order, and `K : Set β` is a compact set, then
-`fun x ↦ supₛ (f x '' K)` is a continuous function.
+`fun x ↦ sSup (f x '' K)` is a continuous function.
 
 Porting note: todo: generalize. The following version seems to be true:
 ```
-theorem IsCompact.tendsto_supₛ {f : γ → β → α} {g : β → α} {K : Set β} {l : Filter γ}
+theorem IsCompact.tendsto_sSup {f : γ → β → α} {g : β → α} {K : Set β} {l : Filter γ}
     (hK : IsCompact K) (hf : ∀ y ∈ K, Tendsto ↿f (l ×ᶠ 𝓝[K] y) (𝓝 (g y)))
     (hgc : ContinuousOn g K) :
-    Tendsto (fun x => supₛ (f x '' K)) l (𝓝 (supₛ (g '' K))) := _
+    Tendsto (fun x => sSup (f x '' K)) l (𝓝 (sSup (g '' K))) := _
 ```
 Moreover, it seems that `hgc` follows from `hf` (Yury Kudryashov).
 -/
-theorem IsCompact.continuous_supₛ {f : γ → β → α} {K : Set β} (hK : IsCompact K)
-    (hf : Continuous ↿f) : Continuous fun x => supₛ (f x '' K) := by
+theorem IsCompact.continuous_sSup {f : γ → β → α} {K : Set β} (hK : IsCompact K)
+    (hf : Continuous ↿f) : Continuous fun x => sSup (f x '' K) := by
   rcases eq_empty_or_nonempty K with (rfl | h0K)
   · simp_rw [image_empty]
     exact continuous_const
   rw [continuous_iff_continuousAt]
   intro x
   obtain ⟨y, hyK, h2y, hy⟩ :=
-    hK.exists_supₛ_image_eq_and_ge h0K
+    hK.exists_sSup_image_eq_and_ge h0K
       (show Continuous fun y => f x y from hf.comp <| Continuous.Prod.mk x).continuousOn
   rw [ContinuousAt, h2y, tendsto_order]
   have := tendsto_order.mp ((show Continuous fun x => f x y
     from hf.comp <| continuous_id.prod_mk continuous_const).tendsto x)
   refine' ⟨fun z hz => _, fun z hz => _⟩
   · refine' (this.1 z hz).mono fun x' hx' =>
-      hx'.trans_le <| le_csupₛ _ <| mem_image_of_mem (f x') hyK
+      hx'.trans_le <| le_csSup _ <| mem_image_of_mem (f x') hyK
     exact hK.bddAbove_image (hf.comp <| Continuous.Prod.mk x').continuousOn
   · have h : ({x} : Set γ) ×ˢ K ⊆ ↿f ⁻¹' Iio z := by
       rintro ⟨x', y'⟩ ⟨(rfl : x' = x), hy'⟩
@@ -399,15 +399,15 @@ theorem IsCompact.continuous_supₛ {f : γ → β → α} {K : Set β} (hK : Is
     obtain ⟨u, v, hu, _, hxu, hKv, huv⟩ :=
       generalized_tube_lemma isCompact_singleton hK (isOpen_Iio.preimage hf) h
     refine' eventually_of_mem (hu.mem_nhds (singleton_subset_iff.mp hxu)) fun x' hx' => _
-    rw [hK.supₛ_lt_iff_of_continuous h0K
+    rw [hK.sSup_lt_iff_of_continuous h0K
         (show Continuous (f x') from hf.comp <| Continuous.Prod.mk x').continuousOn]
     exact fun y' hy' => huv (mk_mem_prod hx' (hKv hy'))
-#align is_compact.continuous_Sup IsCompact.continuous_supₛ
+#align is_compact.continuous_Sup IsCompact.continuous_sSup
 
-theorem IsCompact.continuous_infₛ {f : γ → β → α} {K : Set β} (hK : IsCompact K)
-    (hf : Continuous ↿f) : Continuous fun x => infₛ (f x '' K) :=
-  @IsCompact.continuous_supₛ αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
-#align is_compact.continuous_Inf IsCompact.continuous_infₛ
+theorem IsCompact.continuous_sInf {f : γ → β → α} {K : Set β} (hK : IsCompact K)
+    (hf : Continuous ↿f) : Continuous fun x => sInf (f x '' K) :=
+  @IsCompact.continuous_sSup αᵒᵈ β γ _ _ _ _ _ _ _ hK hf
+#align is_compact.continuous_Inf IsCompact.continuous_sInf
 
 namespace ContinuousOn
 
@@ -421,36 +421,36 @@ variable [DenselyOrdered α] [ConditionallyCompleteLinearOrder β] [OrderTopolog
 open Interval
 
 theorem image_Icc (hab : a ≤ b) (h : ContinuousOn f <| Icc a b) :
-    f '' Icc a b = Icc (infₛ <| f '' Icc a b) (supₛ <| f '' Icc a b) :=
+    f '' Icc a b = Icc (sInf <| f '' Icc a b) (sSup <| f '' Icc a b) :=
   eq_Icc_of_connected_compact ⟨(nonempty_Icc.2 hab).image f, isPreconnected_Icc.image f h⟩
     (isCompact_Icc.image_of_continuousOn h)
 #align continuous_on.image_Icc ContinuousOn.image_Icc
 
 theorem image_uIcc_eq_Icc (h : ContinuousOn f [[a, b]]) :
-    f '' [[a, b]] = Icc (infₛ (f '' [[a, b]])) (supₛ (f '' [[a, b]])) :=
+    f '' [[a, b]] = Icc (sInf (f '' [[a, b]])) (sSup (f '' [[a, b]])) :=
   image_Icc min_le_max h
 #align continuous_on.image_uIcc_eq_Icc ContinuousOn.image_uIcc_eq_Icc
 
 theorem image_uIcc (h : ContinuousOn f <| [[a, b]]) :
-    f '' [[a, b]] = [[infₛ (f '' [[a, b]]), supₛ (f '' [[a, b]])]] := by
+    f '' [[a, b]] = [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]] := by
   refine' h.image_uIcc_eq_Icc.trans (uIcc_of_le _).symm
-  refine' cinfₛ_le_csupₛ _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
+  refine' csInf_le_csSup _ _ (nonempty_uIcc.image _) <;> rw [h.image_uIcc_eq_Icc]
   exacts [bddBelow_Icc, bddAbove_Icc]
 #align continuous_on.image_uIcc ContinuousOn.image_uIcc
 
-theorem infₛ_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
-    infₛ (f '' Icc a b) ≤ f c := by
+theorem sInf_image_Icc_le (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
+    sInf (f '' Icc a b) ≤ f c := by
   have := mem_image_of_mem f hc
   rw [h.image_Icc (hc.1.trans hc.2)] at this
   exact this.1
-#align continuous_on.Inf_image_Icc_le ContinuousOn.infₛ_image_Icc_le
+#align continuous_on.Inf_image_Icc_le ContinuousOn.sInf_image_Icc_le
 
-theorem le_supₛ_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
-    f c ≤ supₛ (f '' Icc a b) := by
+theorem le_sSup_image_Icc (h : ContinuousOn f <| Icc a b) (hc : c ∈ Icc a b) :
+    f c ≤ sSup (f '' Icc a b) := by
   have := mem_image_of_mem f hc
   rw [h.image_Icc (hc.1.trans hc.2)] at this
   exact this.2
-#align continuous_on.le_Sup_image_Icc ContinuousOn.le_supₛ_image_Icc
+#align continuous_on.le_Sup_image_Icc ContinuousOn.le_sSup_image_Icc
 
 end ContinuousOn
 
feat: port Topology.Algebra.Order.Compact (#2089)

Dependencies 8 + 321

322 files ported (97.6%)
141887 lines ported (96.6%)
Show graph

The unported dependencies are