topology.algebra.order.fieldMathlib.Topology.Algebra.Order.Field

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -80,7 +80,7 @@ theorem nhds_eq_map_hMul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ = |x₀| * |x - 1| := (abs_mul x₀ (x - 1))
       _ < |x₀| * (i / |x₀|) := (mul_lt_mul' le_rfl hx (by positivity) (abs_pos.2 hx₀))
       _ = |x₀| * i / |x₀| := by ring
-      _ = i := mul_div_cancel_left i fun h => hx₀ (abs_eq_zero.1 h)
+      _ = i := mul_div_cancel_left₀ i fun h => hx₀ (abs_eq_zero.1 h)
   · obtain ⟨i, hi, hit⟩ := h
     refine' ⟨i * |x₀|, mul_pos hi (abs_pos.2 hx₀), fun x hx => _⟩
     have : |x / x₀ - 1| < i
@@ -91,7 +91,7 @@ theorem nhds_eq_map_hMul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ < i * |x₀| / |x₀| := (div_lt_div_of_pos_right (abs_pos.2 hx₀) hx)
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
     specialize hit (x / x₀) this
-    rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit
+    rwa [mul_div_assoc', mul_div_cancel_left₀ x hx₀] at hit
 #align nhds_eq_map_mul_left_nhds_one nhds_eq_map_hMul_left_nhds_one
 
 theorem nhds_eq_map_hMul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
@@ -300,7 +300,7 @@ theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
     Tendsto (fun x : α => x ^ (-(n : ℤ))) atTop (𝓝 0) := by
-  simpa only [zpow_neg, zpow_coe_nat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
+  simpa only [zpow_neg, zpow_natCast] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 -/
 
@@ -349,8 +349,8 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
   refine' ⟨fun h => _, fun h => _⟩
   · by_cases hn : 0 ≤ n
     · lift n to ℕ using hn
-      simp only [zpow_coe_nat] at h
-      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h
+      simp only [zpow_natCast] at h
+      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.natCast_eq_zero] at h
       exact Or.inl h
     · rw [not_le] at hn
       refine' Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩
@@ -394,8 +394,8 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
       refine' (mul_lt_mul'' h this (by positivity) (by positivity)).trans_le _
       rw [mul_comm, mul_min_of_nonneg _ _ aux.le]
       apply min_le_of_left_le
-      rw [← mul_div, ← mul_assoc, div_mul_cancel _ (sq_pos_of_pos ht).ne',
-        mul_div_cancel' ε two_ne_zero]
+      rw [← mul_div, ← mul_assoc, div_mul_cancel₀ _ (sq_pos_of_pos ht).ne',
+        mul_div_cancel₀ ε two_ne_zero]
     refine' inv_lt_of_inv_lt aux _
     rw [inv_div, abs_of_pos <| mul_pos ht hx', sq, ← mul_div_assoc']
     exact mul_lt_mul_of_pos_left hx ht
Diff
@@ -88,10 +88,10 @@ theorem nhds_eq_map_hMul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       |x / x₀ - 1| = |x / x₀ - x₀ / x₀| := by rw [div_self hx₀]
       _ = |(x - x₀) / x₀| := (congr_arg abs (sub_div x x₀ x₀).symm)
       _ = |x - x₀| / |x₀| := (abs_div (x - x₀) x₀)
-      _ < i * |x₀| / |x₀| := (div_lt_div_of_lt (abs_pos.2 hx₀) hx)
+      _ < i * |x₀| / |x₀| := (div_lt_div_of_pos_right (abs_pos.2 hx₀) hx)
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
     specialize hit (x / x₀) this
-    rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit 
+    rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit
 #align nhds_eq_map_mul_left_nhds_one nhds_eq_map_hMul_left_nhds_one
 
 theorem nhds_eq_map_hMul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
@@ -308,7 +308,7 @@ theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
   lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
-  rw [← neg_pos, ← h, Nat.cast_pos] at hn 
+  rw [← neg_pos, ← h, Nat.cast_pos] at hn
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
 -/
@@ -349,10 +349,10 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
   refine' ⟨fun h => _, fun h => _⟩
   · by_cases hn : 0 ≤ n
     · lift n to ℕ using hn
-      simp only [zpow_coe_nat] at h 
-      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h 
+      simp only [zpow_coe_nat] at h
+      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h
       exact Or.inl h
-    · rw [not_le] at hn 
+    · rw [not_le] at hn
       refine' Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩
   · cases h
     · simp only [h.left, h.right, zpow_zero, mul_one]
@@ -383,7 +383,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
     rintro ε ⟨hε : ε > 0, hεt : ε ≤ t⁻¹⟩
     refine' ⟨min (t ^ 2 * ε / 2) (t / 2), by positivity, fun x h => _⟩
     have hx : t / 2 < x := by
-      rw [Set.mem_Ioo, sub_lt_comm, lt_min_iff] at h 
+      rw [Set.mem_Ioo, sub_lt_comm, lt_min_iff] at h
       nlinarith
     have hx' : 0 < x := (half_pos ht).trans hx
     have aux : 0 < 2 / t ^ 2 := by positivity
Diff
@@ -300,7 +300,7 @@ theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
     Tendsto (fun x : α => x ^ (-(n : ℤ))) atTop (𝓝 0) := by
-  simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
+  simpa only [zpow_neg, zpow_coe_nat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 -/
 
@@ -349,7 +349,7 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
   refine' ⟨fun h => _, fun h => _⟩
   · by_cases hn : 0 ≤ n
     · lift n to ℕ using hn
-      simp only [zpow_ofNat] at h 
+      simp only [zpow_coe_nat] at h 
       rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h 
       exact Or.inl h
     · rw [not_le] at hn 
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2022 Benjamin Davidson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 -/
-import Mathbin.Tactic.Positivity
+import Tactic.Positivity
 import Mathbin.Tactic.Linarith.Default
-import Mathbin.Topology.Algebra.Order.Group
-import Mathbin.Topology.Algebra.Field
+import Topology.Algebra.Order.Group
+import Topology.Algebra.Field
 
 #align_import topology.algebra.order.field from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
 
Diff
@@ -35,7 +35,7 @@ variable {l : Filter β} {f g : β → α}
 
 section continuous_mul
 
-theorem mul_tendsto_nhds_zero_right (x : α) :
+theorem hMul_tendsto_nhds_zero_right (x : α) :
     Tendsto (uncurry ((· * ·) : α → α → α)) (𝓝 0 ×ᶠ 𝓝 x) <| 𝓝 0 :=
   by
   have hx : 0 < 2 * (1 + |x|) := by positivity
@@ -50,22 +50,22 @@ theorem mul_tendsto_nhds_zero_right (x : α) :
     |b| = |b - x + x| := by rw [sub_add_cancel b x]
     _ ≤ |b - x| + |x| := (abs_add (b - x) x)
     _ ≤ 2 * (1 + |x|) := by linarith
-#align mul_tendsto_nhds_zero_right mul_tendsto_nhds_zero_right
+#align mul_tendsto_nhds_zero_right hMul_tendsto_nhds_zero_right
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem mul_tendsto_nhds_zero_left (x : α) :
+theorem hMul_tendsto_nhds_zero_left (x : α) :
     Tendsto (uncurry ((· * ·) : α → α → α)) (𝓝 x ×ᶠ 𝓝 0) <| 𝓝 0 :=
   by
   intro s hs
-  have := mul_tendsto_nhds_zero_right x hs
+  have := hMul_tendsto_nhds_zero_right x hs
   rw [Filter.mem_map, mem_prod_iff] at this ⊢
   obtain ⟨U, hU, V, hV, h⟩ := this
   exact
     ⟨V, hV, U, hU, fun y hy =>
       (mul_comm y.2 y.1 ▸ h (⟨hy.2, hy.1⟩ : Prod.mk y.2 y.1 ∈ U ×ˢ V) : y.1 * y.2 ∈ s)⟩
-#align mul_tendsto_nhds_zero_left mul_tendsto_nhds_zero_left
+#align mul_tendsto_nhds_zero_left hMul_tendsto_nhds_zero_left
 
-theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
+theorem nhds_eq_map_hMul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
     𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) :=
   by
   have hx₀' : 0 < |x₀| := abs_pos.2 hx₀
@@ -92,14 +92,14 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
     specialize hit (x / x₀) this
     rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit 
-#align nhds_eq_map_mul_left_nhds_one nhds_eq_map_mul_left_nhds_one
+#align nhds_eq_map_mul_left_nhds_one nhds_eq_map_hMul_left_nhds_one
 
-theorem nhds_eq_map_mul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
+theorem nhds_eq_map_hMul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
     𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) := by
-  simp_rw [mul_comm _ x₀, nhds_eq_map_mul_left_nhds_one hx₀]
-#align nhds_eq_map_mul_right_nhds_one nhds_eq_map_mul_right_nhds_one
+  simp_rw [mul_comm _ x₀, nhds_eq_map_hMul_left_nhds_one hx₀]
+#align nhds_eq_map_mul_right_nhds_one nhds_eq_map_hMul_right_nhds_one
 
-theorem mul_tendsto_nhds_one_nhds_one :
+theorem hMul_tendsto_nhds_one_nhds_one :
     Tendsto (uncurry ((· * ·) : α → α → α)) (𝓝 1 ×ᶠ 𝓝 1) <| 𝓝 1 :=
   by
   rw [((nhds_basis_Ioo_pos (1 : α)).Prod <| nhds_basis_Ioo_pos (1 : α)).tendsto_iffₓ
@@ -131,7 +131,7 @@ theorem mul_tendsto_nhds_one_nhds_one :
             (by linarith))
           (1 + ε / 2))
       _ ≤ 1 + ε := by ring_nf
-#align mul_tendsto_nhds_one_nhds_one mul_tendsto_nhds_one_nhds_one
+#align mul_tendsto_nhds_one_nhds_one hMul_tendsto_nhds_one_nhds_one
 
 -- see Note [lower instance priority]
 instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :=
@@ -140,10 +140,10 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
     rintro ⟨x₀, y₀⟩
     by_cases hx₀ : x₀ = 0
     · rw [hx₀, ContinuousAt, MulZeroClass.zero_mul, nhds_prod_eq]
-      exact mul_tendsto_nhds_zero_right y₀
+      exact hMul_tendsto_nhds_zero_right y₀
     by_cases hy₀ : y₀ = 0
     · rw [hy₀, ContinuousAt, MulZeroClass.mul_zero, nhds_prod_eq]
-      exact mul_tendsto_nhds_zero_left x₀
+      exact hMul_tendsto_nhds_zero_left x₀
     have hxy : x₀ * y₀ ≠ 0 := mul_ne_zero hx₀ hy₀
     have key :
       (fun p : α × α => x₀ * p.1 * (p.2 * y₀)) =
@@ -154,16 +154,16 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
       map (uncurry (· * ·)) (𝓝 (x₀, y₀)) = map (uncurry (· * ·)) (𝓝 x₀ ×ᶠ 𝓝 y₀) := by
         rw [nhds_prod_eq]
       _ = map (fun p : α × α => x₀ * p.1 * (p.2 * y₀)) (𝓝 1 ×ᶠ 𝓝 1) := by
-        rw [uncurry, nhds_eq_map_mul_left_nhds_one hx₀, nhds_eq_map_mul_right_nhds_one hy₀,
+        rw [uncurry, nhds_eq_map_hMul_left_nhds_one hx₀, nhds_eq_map_hMul_right_nhds_one hy₀,
           prod_map_map_eq, Filter.map_map]
       _ = map ((fun x => x₀ * x) ∘ fun x => x * y₀) (map (uncurry (· * ·)) (𝓝 1 ×ᶠ 𝓝 1)) := by
         rw [key, ← Filter.map_map]
       _ ≤ map ((fun x : α => x₀ * x) ∘ fun x => x * y₀) (𝓝 1) :=
-        (map_mono mul_tendsto_nhds_one_nhds_one)
+        (map_mono hMul_tendsto_nhds_one_nhds_one)
       _ = 𝓝 (x₀ * y₀) := by
-        rw [← Filter.map_map, ← nhds_eq_map_mul_right_nhds_one hy₀,
-          nhds_eq_map_mul_left_nhds_one hy₀, Filter.map_map, key₂, ←
-          nhds_eq_map_mul_left_nhds_one hxy]⟩
+        rw [← Filter.map_map, ← nhds_eq_map_hMul_right_nhds_one hy₀,
+          nhds_eq_map_hMul_left_nhds_one hy₀, Filter.map_map, key₂, ←
+          nhds_eq_map_hMul_left_nhds_one hxy]⟩
 #align linear_ordered_field.has_continuous_mul LinearOrderedField.continuousMul
 
 end continuous_mul
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2022 Benjamin Davidson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
-
-! This file was ported from Lean 3 source module topology.algebra.order.field
-! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Tactic.Positivity
 import Mathbin.Tactic.Linarith.Default
 import Mathbin.Topology.Algebra.Order.Group
 import Mathbin.Topology.Algebra.Field
 
+#align_import topology.algebra.order.field from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
+
 /-!
 # Topologies on linear ordered fields
 
Diff
@@ -392,7 +392,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
     have aux : 0 < 2 / t ^ 2 := by positivity
     rw [Set.mem_Ioo, ← sub_lt_iff_lt_add', sub_lt_comm, ← abs_sub_lt_iff] at h ⊢
     rw [inv_sub_inv ht.ne' hx'.ne', abs_div, div_eq_mul_inv]
-    suffices (|t * x|)⁻¹ < 2 / t ^ 2 by
+    suffices |t * x|⁻¹ < 2 / t ^ 2 by
       rw [← abs_neg, neg_sub]
       refine' (mul_lt_mul'' h this (by positivity) (by positivity)).trans_le _
       rw [mul_comm, mul_min_of_nonneg _ _ aux.le]
Diff
@@ -171,6 +171,7 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
 
 end continuous_mul
 
+#print Filter.Tendsto.atTop_mul /-
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
@@ -180,14 +181,18 @@ theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
   filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)),
     hf.eventually (eventually_ge_at_top 0)] with x hg hf using mul_le_mul_of_nonneg_left hg.le hf
 #align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mul
+-/
 
+#print Filter.Tendsto.mul_atTop /-
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
     (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop := by
   simpa only [mul_comm] using hg.at_top_mul hC hf
 #align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTop
+-/
 
+#print Filter.Tendsto.atTop_mul_neg /-
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atTop)
@@ -195,14 +200,18 @@ theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atT
   simpa only [(· ∘ ·), neg_mul_eq_mul_neg, neg_neg] using
     tendsto_neg_at_top_at_bot.comp (hf.at_top_mul (neg_pos.2 hC) hg.neg)
 #align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_neg
+-/
 
+#print Filter.Tendsto.neg_mul_atTop /-
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
     (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atBot := by
   simpa only [mul_comm] using hg.at_top_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTop
+-/
 
+#print Filter.Tendsto.atBot_mul /-
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
@@ -210,7 +219,9 @@ theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
   simpa [(· ∘ ·)] using
     tendsto_neg_at_top_at_bot.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul hC hg)
 #align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mul
+-/
 
+#print Filter.Tendsto.atBot_mul_neg /-
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atBot)
@@ -218,21 +229,27 @@ theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atB
   simpa [(· ∘ ·)] using
     tendsto_neg_at_bot_at_top.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul_neg hC hg)
 #align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_neg
+-/
 
+#print Filter.Tendsto.mul_atBot /-
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
     (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot := by
   simpa only [mul_comm] using hg.at_bot_mul hC hf
 #align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBot
+-/
 
+#print Filter.Tendsto.neg_mul_atBot /-
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.neg_mul_atBot {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
     (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atTop := by
   simpa only [mul_comm] using hg.at_bot_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBot
+-/
 
+#print tendsto_inv_zero_atTop /-
 /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/
 theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α)) atTop :=
   by
@@ -241,7 +258,9 @@ theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α
   filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using
     (le_inv hx.1 hb').1 hx.2
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
+-/
 
+#print tendsto_inv_atTop_zero' /-
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
 theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>] (0 : α)) :=
   by
@@ -251,44 +270,60 @@ theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>]
   have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx
   exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩
 #align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'
+-/
 
+#print tendsto_inv_atTop_zero /-
 theorem tendsto_inv_atTop_zero : Tendsto (fun r : α => r⁻¹) atTop (𝓝 0) :=
   tendsto_inv_atTop_zero'.mono_right inf_le_left
 #align tendsto_inv_at_top_zero tendsto_inv_atTop_zero
+-/
 
+#print Filter.Tendsto.div_atTop /-
 theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filter β} {a : α}
     (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) := by
   simp only [div_eq_mul_inv];
   exact MulZeroClass.mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
 #align filter.tendsto.div_at_top Filter.Tendsto.div_atTop
+-/
 
+#print Filter.Tendsto.inv_tendsto_atTop /-
 theorem Filter.Tendsto.inv_tendsto_atTop (h : Tendsto f l atTop) : Tendsto f⁻¹ l (𝓝 0) :=
   tendsto_inv_atTop_zero.comp h
 #align filter.tendsto.inv_tendsto_at_top Filter.Tendsto.inv_tendsto_atTop
+-/
 
+#print Filter.Tendsto.inv_tendsto_zero /-
 theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto f⁻¹ l atTop :=
   tendsto_inv_zero_atTop.comp h
 #align filter.tendsto.inv_tendsto_zero Filter.Tendsto.inv_tendsto_zero
+-/
 
+#print tendsto_pow_neg_atTop /-
 /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`.
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
     Tendsto (fun x : α => x ^ (-(n : ℤ))) atTop (𝓝 0) := by
   simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
+-/
 
+#print tendsto_zpow_atTop_zero /-
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
   lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
   rw [← neg_pos, ← h, Nat.cast_pos] at hn 
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
+-/
 
+#print tendsto_const_mul_zpow_atTop_zero /-
 theorem tendsto_const_mul_zpow_atTop_zero {n : ℤ} {c : α} (hn : n < 0) :
     Tendsto (fun x => c * x ^ n) atTop (𝓝 0) :=
   MulZeroClass.mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
 #align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zero
+-/
 
+#print tendsto_const_mul_pow_nhds_iff' /-
 theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d :=
   by
@@ -301,12 +336,16 @@ theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
   · have := tendsto_const_mul_pow_at_top_iff.2 ⟨hn, hc⟩
     simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn]
 #align tendsto_const_mul_pow_nhds_iff' tendsto_const_mul_pow_nhds_iff'
+-/
 
+#print tendsto_const_mul_pow_nhds_iff /-
 theorem tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d := by
   simp [tendsto_const_mul_pow_nhds_iff', hc]
 #align tendsto_const_mul_pow_nhds_iff tendsto_const_mul_pow_nhds_iff
+-/
 
+#print tendsto_const_mul_zpow_atTop_nhds_iff /-
 theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 :=
   by
@@ -323,6 +362,7 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
       exact tendsto_const_nhds
     · exact h.2.symm ▸ tendsto_const_mul_zpow_atTop_zero h.1
 #align tendsto_const_mul_zpow_at_top_nhds_iff tendsto_const_mul_zpow_atTop_nhds_iff
+-/
 
 #print LinearOrderedField.toTopologicalDivisionRing /-
 -- TODO: With a different proof, this could be possibly generalised to only require a
@@ -365,6 +405,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
 #align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
 -/
 
+#print nhdsWithin_pos_comap_mul_left /-
 theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
     comap (fun ε => x * ε) (𝓝[>] 0) = 𝓝[>] 0 :=
   by
@@ -382,11 +423,14 @@ theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
   · exact (MulZeroClass.mul_zero _).symm
   · rw [image_const_mul_Ioi_zero hx]
 #align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_left
+-/
 
+#print eventually_nhdsWithin_pos_mul_left /-
 theorem eventually_nhdsWithin_pos_mul_left {x : α} (hx : 0 < x) {p : α → Prop}
     (h : ∀ᶠ ε in 𝓝[>] 0, p ε) : ∀ᶠ ε in 𝓝[>] 0, p (x * ε) :=
   by
   convert h.comap fun ε => x * ε
   exact (nhdsWithin_pos_comap_mul_left hx).symm
 #align eventually_nhds_within_pos_mul_left eventually_nhdsWithin_pos_mul_left
+-/
 
Diff
@@ -53,7 +53,6 @@ theorem mul_tendsto_nhds_zero_right (x : α) :
     |b| = |b - x + x| := by rw [sub_add_cancel b x]
     _ ≤ |b - x| + |x| := (abs_add (b - x) x)
     _ ≤ 2 * (1 + |x|) := by linarith
-    
 #align mul_tendsto_nhds_zero_right mul_tendsto_nhds_zero_right
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
@@ -85,7 +84,6 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ < |x₀| * (i / |x₀|) := (mul_lt_mul' le_rfl hx (by positivity) (abs_pos.2 hx₀))
       _ = |x₀| * i / |x₀| := by ring
       _ = i := mul_div_cancel_left i fun h => hx₀ (abs_eq_zero.1 h)
-      
   · obtain ⟨i, hi, hit⟩ := h
     refine' ⟨i * |x₀|, mul_pos hi (abs_pos.2 hx₀), fun x hx => _⟩
     have : |x / x₀ - 1| < i
@@ -95,7 +93,6 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ = |x - x₀| / |x₀| := (abs_div (x - x₀) x₀)
       _ < i * |x₀| / |x₀| := (div_lt_div_of_lt (abs_pos.2 hx₀) hx)
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
-      
     specialize hit (x / x₀) this
     rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit 
 #align nhds_eq_map_mul_left_nhds_one nhds_eq_map_mul_left_nhds_one
@@ -126,7 +123,6 @@ theorem mul_tendsto_nhds_one_nhds_one :
       _ ≤ 1 - ε / 2 - ε / 2 + ε / 2 * (ε / 2) := (le_add_of_nonneg_right (by positivity))
       _ = (1 - ε / 2) * (1 - ε / 2) := by ring_nf
       _ ≤ (1 - ε / 4) * (1 - ε / 4) := mul_le_mul (by linarith) (by linarith) (by linarith) hε'
-      
   ·
     calc
       (1 + ε / 4) * (1 + ε / 4) = 1 + ε / 2 + ε / 4 * (ε / 4) := by ring_nf
@@ -138,7 +134,6 @@ theorem mul_tendsto_nhds_one_nhds_one :
             (by linarith))
           (1 + ε / 2))
       _ ≤ 1 + ε := by ring_nf
-      
 #align mul_tendsto_nhds_one_nhds_one mul_tendsto_nhds_one_nhds_one
 
 -- see Note [lower instance priority]
@@ -171,8 +166,7 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
       _ = 𝓝 (x₀ * y₀) := by
         rw [← Filter.map_map, ← nhds_eq_map_mul_right_nhds_one hy₀,
           nhds_eq_map_mul_left_nhds_one hy₀, Filter.map_map, key₂, ←
-          nhds_eq_map_mul_left_nhds_one hxy]
-      ⟩
+          nhds_eq_map_mul_left_nhds_one hxy]⟩
 #align linear_ordered_field.has_continuous_mul LinearOrderedField.continuousMul
 
 end continuous_mul
Diff
@@ -184,7 +184,7 @@ theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
   by
   refine' tendsto_at_top_mono' _ _ (hf.at_top_mul_const (half_pos hC))
   filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)),
-    hf.eventually (eventually_ge_at_top 0)]with x hg hf using mul_le_mul_of_nonneg_left hg.le hf
+    hf.eventually (eventually_ge_at_top 0)] with x hg hf using mul_le_mul_of_nonneg_left hg.le hf
 #align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mul
 
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
@@ -244,8 +244,8 @@ theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α
   by
   refine' (at_top_basis' 1).tendsto_right_iff.2 fun b hb => _
   have hb' : 0 < b := by positivity
-  filter_upwards [Ioc_mem_nhdsWithin_Ioi
-      ⟨le_rfl, inv_pos.2 hb'⟩]with x hx using(le_inv hx.1 hb').1 hx.2
+  filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using
+    (le_inv hx.1 hb').1 hx.2
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
 
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
@@ -343,7 +343,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
       intro x hx
       cases hx.symm.lt_or_lt
       · exact this h
-      convert(this <| neg_pos.mpr h).neg.comp continuous_neg.continuous_at
+      convert (this <| neg_pos.mpr h).neg.comp continuous_neg.continuous_at
       ext
       simp [neg_inv]
     intro t ht
Diff
@@ -62,7 +62,7 @@ theorem mul_tendsto_nhds_zero_left (x : α) :
   by
   intro s hs
   have := mul_tendsto_nhds_zero_right x hs
-  rw [Filter.mem_map, mem_prod_iff] at this⊢
+  rw [Filter.mem_map, mem_prod_iff] at this ⊢
   obtain ⟨U, hU, V, hV, h⟩ := this
   exact
     ⟨V, hV, U, hU, fun y hy =>
@@ -97,7 +97,7 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
       
     specialize hit (x / x₀) this
-    rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit
+    rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit 
 #align nhds_eq_map_mul_left_nhds_one nhds_eq_map_mul_left_nhds_one
 
 theorem nhds_eq_map_mul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
@@ -286,7 +286,7 @@ theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
   lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
-  rw [← neg_pos, ← h, Nat.cast_pos] at hn
+  rw [← neg_pos, ← h, Nat.cast_pos] at hn 
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
 
@@ -319,10 +319,10 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
   refine' ⟨fun h => _, fun h => _⟩
   · by_cases hn : 0 ≤ n
     · lift n to ℕ using hn
-      simp only [zpow_ofNat] at h
-      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h
+      simp only [zpow_ofNat] at h 
+      rw [tendsto_const_mul_pow_nhds_iff hc, ← Int.coe_nat_eq_zero] at h 
       exact Or.inl h
-    · rw [not_le] at hn
+    · rw [not_le] at hn 
       refine' Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩
   · cases h
     · simp only [h.left, h.right, zpow_zero, mul_one]
@@ -352,11 +352,11 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
     rintro ε ⟨hε : ε > 0, hεt : ε ≤ t⁻¹⟩
     refine' ⟨min (t ^ 2 * ε / 2) (t / 2), by positivity, fun x h => _⟩
     have hx : t / 2 < x := by
-      rw [Set.mem_Ioo, sub_lt_comm, lt_min_iff] at h
+      rw [Set.mem_Ioo, sub_lt_comm, lt_min_iff] at h 
       nlinarith
     have hx' : 0 < x := (half_pos ht).trans hx
     have aux : 0 < 2 / t ^ 2 := by positivity
-    rw [Set.mem_Ioo, ← sub_lt_iff_lt_add', sub_lt_comm, ← abs_sub_lt_iff] at h⊢
+    rw [Set.mem_Ioo, ← sub_lt_iff_lt_add', sub_lt_comm, ← abs_sub_lt_iff] at h ⊢
     rw [inv_sub_inv ht.ne' hx'.ne', abs_div, div_eq_mul_inv]
     suffices (|t * x|)⁻¹ < 2 / t ^ 2 by
       rw [← abs_neg, neg_sub]
Diff
@@ -28,7 +28,7 @@ open Function
 
 open OrderDual (toDual ofDual)
 
-open Topology Classical Filter
+open scoped Topology Classical Filter
 
 variable {α β : Type _}
 
Diff
@@ -177,12 +177,6 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
 
 end continuous_mul
 
-/- warning: filter.tendsto.at_top_mul -> Filter.Tendsto.atTop_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mulₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
@@ -193,12 +187,6 @@ theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
     hf.eventually (eventually_ge_at_top 0)]with x hg hf using mul_le_mul_of_nonneg_left hg.le hf
 #align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mul
 
-/- warning: filter.tendsto.mul_at_top -> Filter.Tendsto.mul_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTopₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
@@ -206,12 +194,6 @@ theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
   simpa only [mul_comm] using hg.at_top_mul hC hf
 #align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTop
 
-/- warning: filter.tendsto.at_top_mul_neg -> Filter.Tendsto.atTop_mul_neg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_negₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atTop)
@@ -220,12 +202,6 @@ theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atT
     tendsto_neg_at_top_at_bot.comp (hf.at_top_mul (neg_pos.2 hC) hg.neg)
 #align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_neg
 
-/- warning: filter.tendsto.neg_mul_at_top -> Filter.Tendsto.neg_mul_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTopₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
@@ -233,12 +209,6 @@ theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (
   simpa only [mul_comm] using hg.at_top_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTop
 
-/- warning: filter.tendsto.at_bot_mul -> Filter.Tendsto.atBot_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mulₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
@@ -247,12 +217,6 @@ theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
     tendsto_neg_at_top_at_bot.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul hC hg)
 #align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mul
 
-/- warning: filter.tendsto.at_bot_mul_neg -> Filter.Tendsto.atBot_mul_neg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_negₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atBot)
@@ -261,12 +225,6 @@ theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atB
     tendsto_neg_at_bot_at_top.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul_neg hC hg)
 #align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_neg
 
-/- warning: filter.tendsto.mul_at_bot -> Filter.Tendsto.mul_atBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBotₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
@@ -274,12 +232,6 @@ theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
   simpa only [mul_comm] using hg.at_bot_mul hC hf
 #align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBot
 
-/- warning: filter.tendsto.neg_mul_at_bot -> Filter.Tendsto.neg_mul_atBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBotₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.neg_mul_atBot {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
@@ -287,12 +239,6 @@ theorem Filter.Tendsto.neg_mul_atBot {C : α} (hC : C < 0) (hf : Tendsto f l (
   simpa only [mul_comm] using hg.at_bot_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBot
 
-/- warning: tendsto_inv_zero_at_top -> tendsto_inv_zero_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (x : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) x) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (x : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) x) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_inv_zero_at_top tendsto_inv_zero_atTopₓ'. -/
 /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/
 theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α)) atTop :=
   by
@@ -302,12 +248,6 @@ theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α
       ⟨le_rfl, inv_pos.2 hb'⟩]with x hx using(le_inv hx.1 hb').1 hx.2
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
 
-/- warning: tendsto_inv_at_top_zero' -> tendsto_inv_atTop_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'ₓ'. -/
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
 theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>] (0 : α)) :=
   by
@@ -318,54 +258,24 @@ theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>]
   exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩
 #align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'
 
-/- warning: tendsto_inv_at_top_zero -> tendsto_inv_atTop_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_inv_at_top_zero tendsto_inv_atTop_zeroₓ'. -/
 theorem tendsto_inv_atTop_zero : Tendsto (fun r : α => r⁻¹) atTop (𝓝 0) :=
   tendsto_inv_atTop_zero'.mono_right inf_le_left
 #align tendsto_inv_at_top_zero tendsto_inv_atTop_zero
 
-/- warning: filter.tendsto.div_at_top -> Filter.Tendsto.div_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] [_inst_4 : ContinuousMul.{u1} α _inst_2 (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {f : β -> α} {g : β -> α} {l : Filter.{u2} β} {a : α}, (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 a)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (f x) (g x)) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {_inst_4 : Filter.{u2} β} {f : β -> α} {g : β -> α} {l : α}, (Filter.Tendsto.{u2, u1} β α f _inst_4 (nhds.{u1} α _inst_2 l)) -> (Filter.Tendsto.{u2, u1} β α g _inst_4 (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (f x) (g x)) _inst_4 (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.div_at_top Filter.Tendsto.div_atTopₓ'. -/
 theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filter β} {a : α}
     (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) := by
   simp only [div_eq_mul_inv];
   exact MulZeroClass.mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
 #align filter.tendsto.div_at_top Filter.Tendsto.div_atTop
 
-/- warning: filter.tendsto.inv_tendsto_at_top -> Filter.Tendsto.inv_tendsto_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u2 u1} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) f) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u1 u2} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => LinearOrderedField.toInv.{u1} α _inst_1)) f) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.inv_tendsto_at_top Filter.Tendsto.inv_tendsto_atTopₓ'. -/
 theorem Filter.Tendsto.inv_tendsto_atTop (h : Tendsto f l atTop) : Tendsto f⁻¹ l (𝓝 0) :=
   tendsto_inv_atTop_zero.comp h
 #align filter.tendsto.inv_tendsto_at_top Filter.Tendsto.inv_tendsto_atTop
 
-/- warning: filter.tendsto.inv_tendsto_zero -> Filter.Tendsto.inv_tendsto_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u2 u1} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) f) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u1 u2} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => LinearOrderedField.toInv.{u1} α _inst_1)) f) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.inv_tendsto_zero Filter.Tendsto.inv_tendsto_zeroₓ'. -/
 theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto f⁻¹ l atTop :=
   tendsto_inv_zero_atTop.comp h
 #align filter.tendsto.inv_tendsto_zero Filter.Tendsto.inv_tendsto_zero
 
-/- warning: tendsto_pow_neg_at_top -> tendsto_pow_neg_atTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.hasNeg ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.instNegInt (Nat.cast.{0} Int instNatCastInt n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_pow_neg_at_top tendsto_pow_neg_atTopₓ'. -/
 /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`.
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
@@ -373,12 +283,6 @@ theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
   simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 
-/- warning: tendsto_zpow_at_top_zero -> tendsto_zpow_atTop_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int}, (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int}, (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zeroₓ'. -/
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
   lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
@@ -386,23 +290,11 @@ theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α =>
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
 
-/- warning: tendsto_const_mul_zpow_at_top_zero -> tendsto_const_mul_zpow_atTop_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int} {c : α}, (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int} {c : α}, (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zeroₓ'. -/
 theorem tendsto_const_mul_zpow_atTop_zero {n : ℤ} {c : α} (hn : n < 0) :
     Tendsto (fun x => c * x ^ n) atTop (𝓝 0) :=
   MulZeroClass.mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
 #align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zero
 
-/- warning: tendsto_const_mul_pow_nhds_iff' -> tendsto_const_mul_pow_nhds_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat} {c : α} {d : α}, Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (And (Or (Eq.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (Eq.{succ u1} α c d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat} {c : α} {d : α}, Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (And (Or (Eq.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (Eq.{succ u1} α c d))
-Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_pow_nhds_iff' tendsto_const_mul_pow_nhds_iff'ₓ'. -/
 theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d :=
   by
@@ -416,23 +308,11 @@ theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
     simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn]
 #align tendsto_const_mul_pow_nhds_iff' tendsto_const_mul_pow_nhds_iff'
 
-/- warning: tendsto_const_mul_pow_nhds_iff -> tendsto_const_mul_pow_nhds_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (And (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{succ u1} α c d)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (And (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{succ u1} α c d)))
-Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_pow_nhds_iff tendsto_const_mul_pow_nhds_iffₓ'. -/
 theorem tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d := by
   simp [tendsto_const_mul_pow_nhds_iff', hc]
 #align tendsto_const_mul_pow_nhds_iff tendsto_const_mul_pow_nhds_iff
 
-/- warning: tendsto_const_mul_zpow_at_top_nhds_iff -> tendsto_const_mul_zpow_atTop_nhds_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (Or (And (Eq.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{succ u1} α c d)) (And (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{succ u1} α d (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (Or (And (Eq.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{succ u1} α c d)) (And (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{succ u1} α d (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))))
-Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_zpow_at_top_nhds_iff tendsto_const_mul_zpow_atTop_nhds_iffₓ'. -/
 theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 :=
   by
@@ -491,12 +371,6 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
 #align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
 -/
 
-/- warning: nhds_within_pos_comap_mul_left -> nhdsWithin_pos_comap_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
-Case conversion may be inaccurate. Consider using '#align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_leftₓ'. -/
 theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
     comap (fun ε => x * ε) (𝓝[>] 0) = 𝓝[>] 0 :=
   by
@@ -515,12 +389,6 @@ theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
   · rw [image_const_mul_Ioi_zero hx]
 #align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_left
 
-/- warning: eventually_nhds_within_pos_mul_left -> eventually_nhdsWithin_pos_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))))
-Case conversion may be inaccurate. Consider using '#align eventually_nhds_within_pos_mul_left eventually_nhdsWithin_pos_mul_leftₓ'. -/
 theorem eventually_nhdsWithin_pos_mul_left {x : α} (hx : 0 < x) {p : α → Prop}
     (h : ∀ᶠ ε in 𝓝[>] 0, p ε) : ∀ᶠ ε in 𝓝[>] 0, p (x * ε) :=
   by
Diff
@@ -156,13 +156,8 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
     have key :
       (fun p : α × α => x₀ * p.1 * (p.2 * y₀)) =
         ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry (· * ·) :=
-      by
-      ext p
-      simp [uncurry, mul_assoc]
-    have key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x :=
-      by
-      ext x
-      simp
+      by ext p; simp [uncurry, mul_assoc]
+    have key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x := by ext x; simp
     calc
       map (uncurry (· * ·)) (𝓝 (x₀, y₀)) = map (uncurry (· * ·)) (𝓝 x₀ ×ᶠ 𝓝 y₀) := by
         rw [nhds_prod_eq]
@@ -340,9 +335,8 @@ but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {_inst_4 : Filter.{u2} β} {f : β -> α} {g : β -> α} {l : α}, (Filter.Tendsto.{u2, u1} β α f _inst_4 (nhds.{u1} α _inst_2 l)) -> (Filter.Tendsto.{u2, u1} β α g _inst_4 (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (f x) (g x)) _inst_4 (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.div_at_top Filter.Tendsto.div_atTopₓ'. -/
 theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filter β} {a : α}
-    (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) :=
-  by
-  simp only [div_eq_mul_inv]
+    (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) := by
+  simp only [div_eq_mul_inv];
   exact MulZeroClass.mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
 #align filter.tendsto.div_at_top Filter.Tendsto.div_atTop
 
Diff
@@ -387,7 +387,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zeroₓ'. -/
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
-  lift -n to ℕ using le_of_lt (neg_pos.mpr hn)
+  lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
   rw [← neg_pos, ← h, Nat.cast_pos] at hn
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
Diff
@@ -387,7 +387,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zeroₓ'. -/
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
-  lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
+  lift -n to ℕ using le_of_lt (neg_pos.mpr hn)
   rw [← neg_pos, ← h, Nat.cast_pos] at hn
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
Diff
@@ -184,7 +184,7 @@ end continuous_mul
 
 /- warning: filter.tendsto.at_top_mul -> Filter.Tendsto.atTop_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mulₓ'. -/
@@ -200,7 +200,7 @@ theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
 
 /- warning: filter.tendsto.mul_at_top -> Filter.Tendsto.mul_atTop is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTopₓ'. -/
@@ -213,7 +213,7 @@ theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
 
 /- warning: filter.tendsto.at_top_mul_neg -> Filter.Tendsto.atTop_mul_neg is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_negₓ'. -/
@@ -227,7 +227,7 @@ theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atT
 
 /- warning: filter.tendsto.neg_mul_at_top -> Filter.Tendsto.neg_mul_atTop is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTopₓ'. -/
@@ -240,7 +240,7 @@ theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (
 
 /- warning: filter.tendsto.at_bot_mul -> Filter.Tendsto.atBot_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mulₓ'. -/
@@ -254,7 +254,7 @@ theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
 
 /- warning: filter.tendsto.at_bot_mul_neg -> Filter.Tendsto.atBot_mul_neg is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_negₓ'. -/
@@ -268,7 +268,7 @@ theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atB
 
 /- warning: filter.tendsto.mul_at_bot -> Filter.Tendsto.mul_atBot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBotₓ'. -/
@@ -281,7 +281,7 @@ theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
 
 /- warning: filter.tendsto.neg_mul_at_bot -> Filter.Tendsto.neg_mul_atBot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBotₓ'. -/
@@ -499,7 +499,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
 
 /- warning: nhds_within_pos_comap_mul_left -> nhdsWithin_pos_comap_mul_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
 Case conversion may be inaccurate. Consider using '#align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_leftₓ'. -/
@@ -523,7 +523,7 @@ theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
 
 /- warning: eventually_nhds_within_pos_mul_left -> eventually_nhdsWithin_pos_mul_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))))
 Case conversion may be inaccurate. Consider using '#align eventually_nhds_within_pos_mul_left eventually_nhdsWithin_pos_mul_leftₓ'. -/
Diff
@@ -370,7 +370,7 @@ theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.hasNeg ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.instNegInt (Nat.cast.{0} Int Int.instNatCastInt n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.instNegInt (Nat.cast.{0} Int instNatCastInt n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
 Case conversion may be inaccurate. Consider using '#align tendsto_pow_neg_at_top tendsto_pow_neg_atTopₓ'. -/
 /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`.
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
Diff
@@ -469,7 +469,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : Topolo
       intro x hx
       cases hx.symm.lt_or_lt
       · exact this h
-      convert (this <| neg_pos.mpr h).neg.comp continuous_neg.continuous_at
+      convert(this <| neg_pos.mpr h).neg.comp continuous_neg.continuous_at
       ext
       simp [neg_inv]
     intro t ht
Diff
@@ -147,10 +147,10 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
     rw [continuous_iff_continuousAt]
     rintro ⟨x₀, y₀⟩
     by_cases hx₀ : x₀ = 0
-    · rw [hx₀, ContinuousAt, zero_mul, nhds_prod_eq]
+    · rw [hx₀, ContinuousAt, MulZeroClass.zero_mul, nhds_prod_eq]
       exact mul_tendsto_nhds_zero_right y₀
     by_cases hy₀ : y₀ = 0
-    · rw [hy₀, ContinuousAt, mul_zero, nhds_prod_eq]
+    · rw [hy₀, ContinuousAt, MulZeroClass.mul_zero, nhds_prod_eq]
       exact mul_tendsto_nhds_zero_left x₀
     have hxy : x₀ * y₀ ≠ 0 := mul_ne_zero hx₀ hy₀
     have key :
@@ -343,7 +343,7 @@ theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filte
     (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) :=
   by
   simp only [div_eq_mul_inv]
-  exact mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
+  exact MulZeroClass.mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
 #align filter.tendsto.div_at_top Filter.Tendsto.div_atTop
 
 /- warning: filter.tendsto.inv_tendsto_at_top -> Filter.Tendsto.inv_tendsto_atTop is a dubious translation:
@@ -400,7 +400,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zeroₓ'. -/
 theorem tendsto_const_mul_zpow_atTop_zero {n : ℤ} {c : α} (hn : n < 0) :
     Tendsto (fun x => c * x ^ n) atTop (𝓝 0) :=
-  mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
+  MulZeroClass.mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
 #align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zero
 
 /- warning: tendsto_const_mul_pow_nhds_iff' -> tendsto_const_mul_pow_nhds_iff' is a dubious translation:
@@ -517,7 +517,7 @@ theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
     exact this (inv_pos.mpr hx)
   intro x hx
   convert nhdsWithin_le_comap (continuous_mul_left x).ContinuousWithinAt
-  · exact (mul_zero _).symm
+  · exact (MulZeroClass.mul_zero _).symm
   · rw [image_const_mul_Ioi_zero hx]
 #align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_left
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 
 ! This file was ported from Lean 3 source module topology.algebra.order.field
-! leanprover-community/mathlib commit 9a59dcb7a2d06bf55da57b9030169219980660cd
+! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -16,6 +16,9 @@ import Mathbin.Topology.Algebra.Field
 /-!
 # Topologies on linear ordered fields
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 -/
 
 
Diff
@@ -179,6 +179,12 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
 
 end continuous_mul
 
+/- warning: filter.tendsto.at_top_mul -> Filter.Tendsto.atTop_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mulₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
@@ -189,6 +195,12 @@ theorem Filter.Tendsto.atTop_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atTop)
     hf.eventually (eventually_ge_at_top 0)]with x hg hf using mul_le_mul_of_nonneg_left hg.le hf
 #align filter.tendsto.at_top_mul Filter.Tendsto.atTop_mul
 
+/- warning: filter.tendsto.mul_at_top -> Filter.Tendsto.mul_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTopₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
@@ -196,6 +208,12 @@ theorem Filter.Tendsto.mul_atTop {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
   simpa only [mul_comm] using hg.at_top_mul hC hf
 #align filter.tendsto.mul_at_top Filter.Tendsto.mul_atTop
 
+/- warning: filter.tendsto.at_top_mul_neg -> Filter.Tendsto.atTop_mul_neg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_negₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atTop)
@@ -204,6 +222,12 @@ theorem Filter.Tendsto.atTop_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atT
     tendsto_neg_at_top_at_bot.comp (hf.at_top_mul (neg_pos.2 hC) hg.neg)
 #align filter.tendsto.at_top_mul_neg Filter.Tendsto.atTop_mul_neg
 
+/- warning: filter.tendsto.neg_mul_at_top -> Filter.Tendsto.neg_mul_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTopₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_top` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
@@ -211,6 +235,12 @@ theorem Filter.Tendsto.neg_mul_atTop {C : α} (hC : C < 0) (hf : Tendsto f l (
   simpa only [mul_comm] using hg.at_top_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_top Filter.Tendsto.neg_mul_atTop
 
+/- warning: filter.tendsto.at_bot_mul -> Filter.Tendsto.atBot_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mulₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a positive constant `C` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
@@ -219,6 +249,12 @@ theorem Filter.Tendsto.atBot_mul {C : α} (hC : 0 < C) (hf : Tendsto f l atBot)
     tendsto_neg_at_top_at_bot.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul hC hg)
 #align filter.tendsto.at_bot_mul Filter.Tendsto.atBot_mul
 
+/- warning: filter.tendsto.at_bot_mul_neg -> Filter.Tendsto.atBot_mul_neg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α g l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α g l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_negₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to
 a negative constant `C` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atBot)
@@ -227,6 +263,12 @@ theorem Filter.Tendsto.atBot_mul_neg {C : α} (hC : C < 0) (hf : Tendsto f l atB
     tendsto_neg_at_bot_at_top.comp ((tendsto_neg_at_bot_at_top.comp hf).atTop_mul_neg hC hg)
 #align filter.tendsto.at_bot_mul_neg Filter.Tendsto.atBot_mul_neg
 
+/- warning: filter.tendsto.mul_at_bot -> Filter.Tendsto.mul_atBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) C) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) C) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBotₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_bot`. -/
 theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C))
@@ -234,6 +276,12 @@ theorem Filter.Tendsto.mul_atBot {C : α} (hC : 0 < C) (hf : Tendsto f l (𝓝 C
   simpa only [mul_comm] using hg.at_bot_mul hC hf
 #align filter.tendsto.mul_at_bot Filter.Tendsto.mul_atBot
 
+/- warning: filter.tendsto.neg_mul_at_bot -> Filter.Tendsto.neg_mul_atBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) C (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 C)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atBot.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))] {l : Filter.{u1} β} {f : β -> α} {g : β -> α} {C : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) C (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Filter.Tendsto.{u1, u2} β α f l (nhds.{u2} α _inst_2 C)) -> (Filter.Tendsto.{u1, u2} β α g l (Filter.atBot.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))))) -> (Filter.Tendsto.{u1, u2} β α (fun (x : β) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (NonUnitalNonAssocRing.toMul.{u2} α (NonAssocRing.toNonUnitalNonAssocRing.{u2} α (Ring.toNonAssocRing.{u2} α (DivisionRing.toRing.{u2} α (Field.toDivisionRing.{u2} α (LinearOrderedField.toField.{u2} α _inst_1))))))) (f x) (g x)) l (Filter.atTop.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBotₓ'. -/
 /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
 `g` tends to `at_bot` then `f * g` tends to `at_top`. -/
 theorem Filter.Tendsto.neg_mul_atBot {C : α} (hC : C < 0) (hf : Tendsto f l (𝓝 C))
@@ -241,6 +289,12 @@ theorem Filter.Tendsto.neg_mul_atBot {C : α} (hC : C < 0) (hf : Tendsto f l (
   simpa only [mul_comm] using hg.at_bot_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBot
 
+/- warning: tendsto_inv_zero_at_top -> tendsto_inv_zero_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (x : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) x) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (x : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) x) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_inv_zero_at_top tendsto_inv_zero_atTopₓ'. -/
 /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/
 theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α)) atTop :=
   by
@@ -250,6 +304,12 @@ theorem tendsto_inv_zero_atTop : Tendsto (fun x : α => x⁻¹) (𝓝[>] (0 : α
       ⟨le_rfl, inv_pos.2 hb'⟩]with x hx using(le_inv hx.1 hb').1 hx.2
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
 
+/- warning: tendsto_inv_at_top_zero' -> tendsto_inv_atTop_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'ₓ'. -/
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
 theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>] (0 : α)) :=
   by
@@ -260,10 +320,22 @@ theorem tendsto_inv_atTop_zero' : Tendsto (fun r : α => r⁻¹) atTop (𝓝[>]
   exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩
 #align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'
 
+/- warning: tendsto_inv_at_top_zero -> tendsto_inv_atTop_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))], Filter.Tendsto.{u1, u1} α α (fun (r : α) => Inv.inv.{u1} α (LinearOrderedField.toInv.{u1} α _inst_1) r) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_inv_at_top_zero tendsto_inv_atTop_zeroₓ'. -/
 theorem tendsto_inv_atTop_zero : Tendsto (fun r : α => r⁻¹) atTop (𝓝 0) :=
   tendsto_inv_atTop_zero'.mono_right inf_le_left
 #align tendsto_inv_at_top_zero tendsto_inv_atTop_zero
 
+/- warning: filter.tendsto.div_at_top -> Filter.Tendsto.div_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] [_inst_4 : ContinuousMul.{u1} α _inst_2 (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {f : β -> α} {g : β -> α} {l : Filter.{u2} β} {a : α}, (Filter.Tendsto.{u2, u1} β α f l (nhds.{u1} α _inst_2 a)) -> (Filter.Tendsto.{u2, u1} β α g l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (f x) (g x)) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {_inst_4 : Filter.{u2} β} {f : β -> α} {g : β -> α} {l : α}, (Filter.Tendsto.{u2, u1} β α f _inst_4 (nhds.{u1} α _inst_2 l)) -> (Filter.Tendsto.{u2, u1} β α g _inst_4 (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) -> (Filter.Tendsto.{u2, u1} β α (fun (x : β) => HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (f x) (g x)) _inst_4 (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.div_at_top Filter.Tendsto.div_atTopₓ'. -/
 theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filter β} {a : α}
     (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) :=
   by
@@ -271,14 +343,32 @@ theorem Filter.Tendsto.div_atTop [ContinuousMul α] {f g : β → α} {l : Filte
   exact mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg)
 #align filter.tendsto.div_at_top Filter.Tendsto.div_atTop
 
+/- warning: filter.tendsto.inv_tendsto_at_top -> Filter.Tendsto.inv_tendsto_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u2 u1} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) f) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u1 u2} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => LinearOrderedField.toInv.{u1} α _inst_1)) f) l (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.inv_tendsto_at_top Filter.Tendsto.inv_tendsto_atTopₓ'. -/
 theorem Filter.Tendsto.inv_tendsto_atTop (h : Tendsto f l atTop) : Tendsto f⁻¹ l (𝓝 0) :=
   tendsto_inv_atTop_zero.comp h
 #align filter.tendsto.inv_tendsto_at_top Filter.Tendsto.inv_tendsto_atTop
 
+/- warning: filter.tendsto.inv_tendsto_zero -> Filter.Tendsto.inv_tendsto_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u2 u1} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => DivInvMonoid.toHasInv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) f) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {l : Filter.{u2} β} {f : β -> α}, (Filter.Tendsto.{u2, u1} β α f l (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) -> (Filter.Tendsto.{u2, u1} β α (Inv.inv.{max u1 u2} (β -> α) (Pi.instInv.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => LinearOrderedField.toInv.{u1} α _inst_1)) f) l (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align filter.tendsto.inv_tendsto_zero Filter.Tendsto.inv_tendsto_zeroₓ'. -/
 theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto f⁻¹ l atTop :=
   tendsto_inv_zero_atTop.comp h
 #align filter.tendsto.inv_tendsto_zero Filter.Tendsto.inv_tendsto_zero
 
+/- warning: tendsto_pow_neg_at_top -> tendsto_pow_neg_atTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.hasNeg ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Neg.neg.{0} Int Int.instNegInt (Nat.cast.{0} Int Int.instNatCastInt n))) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_pow_neg_at_top tendsto_pow_neg_atTopₓ'. -/
 /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`.
 A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
@@ -286,6 +376,12 @@ theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
   simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_at_top α _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 
+/- warning: tendsto_zpow_at_top_zero -> tendsto_zpow_atTop_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int}, (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int}, (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zeroₓ'. -/
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α => x ^ n) atTop (𝓝 0) :=
   by
   lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N
@@ -293,11 +389,23 @@ theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : α =>
   simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
 #align tendsto_zpow_at_top_zero tendsto_zpow_atTop_zero
 
+/- warning: tendsto_const_mul_zpow_at_top_zero -> tendsto_const_mul_zpow_atTop_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int} {c : α}, (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int} {c : α}, (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zeroₓ'. -/
 theorem tendsto_const_mul_zpow_atTop_zero {n : ℤ} {c : α} (hn : n < 0) :
     Tendsto (fun x => c * x ^ n) atTop (𝓝 0) :=
   mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
 #align tendsto_const_mul_zpow_at_top_zero tendsto_const_mul_zpow_atTop_zero
 
+/- warning: tendsto_const_mul_pow_nhds_iff' -> tendsto_const_mul_pow_nhds_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat} {c : α} {d : α}, Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (And (Or (Eq.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (Eq.{succ u1} α c d))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat} {c : α} {d : α}, Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (And (Or (Eq.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (Eq.{succ u1} α c d))
+Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_pow_nhds_iff' tendsto_const_mul_pow_nhds_iff'ₓ'. -/
 theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d :=
   by
@@ -311,11 +419,23 @@ theorem tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : α} :
     simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn]
 #align tendsto_const_mul_pow_nhds_iff' tendsto_const_mul_pow_nhds_iff'
 
+/- warning: tendsto_const_mul_pow_nhds_iff -> tendsto_const_mul_pow_nhds_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Nat} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (And (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Eq.{succ u1} α c d)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Nat} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (And (Eq.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Eq.{succ u1} α c d)))
+Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_pow_nhds_iff tendsto_const_mul_pow_nhds_iffₓ'. -/
 theorem tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d := by
   simp [tendsto_const_mul_pow_nhds_iff', hc]
 #align tendsto_const_mul_pow_nhds_iff tendsto_const_mul_pow_nhds_iff
 
+/- warning: tendsto_const_mul_zpow_at_top_nhds_iff -> tendsto_const_mul_zpow_atTop_nhds_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {n : Int} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (nhds.{u1} α _inst_2 d)) (Or (And (Eq.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{succ u1} α c d)) (And (LT.lt.{0} Int Int.hasLt n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{succ u1} α d (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {n : Int} {c : α} {d : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Iff (Filter.Tendsto.{u1, u1} α α (fun (x : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) c (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x n)) (Filter.atTop.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (nhds.{u1} α _inst_2 d)) (Or (And (Eq.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{succ u1} α c d)) (And (LT.lt.{0} Int Int.instLTInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{succ u1} α d (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))))
+Case conversion may be inaccurate. Consider using '#align tendsto_const_mul_zpow_at_top_nhds_iff tendsto_const_mul_zpow_atTop_nhds_iffₓ'. -/
 theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0) :
     Tendsto (fun x : α => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 :=
   by
@@ -333,11 +453,12 @@ theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : α} (hc : c ≠ 0
     · exact h.2.symm ▸ tendsto_const_mul_zpow_atTop_zero h.1
 #align tendsto_const_mul_zpow_at_top_nhds_iff tendsto_const_mul_zpow_atTop_nhds_iff
 
+#print LinearOrderedField.toTopologicalDivisionRing /-
 -- TODO: With a different proof, this could be possibly generalised to only require a
 -- `linear_ordered_semifield` instance, which would also remove the need for the
 -- `nnreal` instance of `has_continuous_inv₀`.
 -- see Note [lower instance priority]
-instance (priority := 100) LinearOrderedField.to_topologicalDivisionRing : TopologicalDivisionRing α
+instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing : TopologicalDivisionRing α
     where continuousAt_inv₀ :=
     by
     suffices ∀ {x : α}, 0 < x → ContinuousAt Inv.inv x
@@ -370,8 +491,15 @@ instance (priority := 100) LinearOrderedField.to_topologicalDivisionRing : Topol
     refine' inv_lt_of_inv_lt aux _
     rw [inv_div, abs_of_pos <| mul_pos ht hx', sq, ← mul_div_assoc']
     exact mul_lt_mul_of_pos_left hx ht
-#align linear_ordered_field.to_topological_division_ring LinearOrderedField.to_topologicalDivisionRing
+#align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
+-/
 
+/- warning: nhds_within_pos_comap_mul_left -> nhdsWithin_pos_comap_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Eq.{succ u1} (Filter.{u1} α) (Filter.comap.{u1, u1} α α (fun (ε : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
+Case conversion may be inaccurate. Consider using '#align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_leftₓ'. -/
 theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
     comap (fun ε => x * ε) (𝓝[>] 0) = 𝓝[>] 0 :=
   by
@@ -390,6 +518,12 @@ theorem nhdsWithin_pos_comap_mul_left {x : α} (hx : 0 < x) :
   · rw [image_const_mul_Ioi_zero hx]
 #align nhds_within_pos_comap_mul_left nhdsWithin_pos_comap_mul_left
 
+/- warning: eventually_nhds_within_pos_mul_left -> eventually_nhdsWithin_pos_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (Distrib.toHasMul.{u1} α (Ring.toDistrib.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))))))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (ε : α) => p ε) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))) -> (Filter.Eventually.{u1} α (fun (ε : α) => p (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (NonUnitalNonAssocRing.toMul.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) x ε)) (nhdsWithin.{u1} α _inst_2 (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))))
+Case conversion may be inaccurate. Consider using '#align eventually_nhds_within_pos_mul_left eventually_nhdsWithin_pos_mul_leftₓ'. -/
 theorem eventually_nhdsWithin_pos_mul_left {x : α} (hx : 0 < x) {p : α → Prop}
     (h : ∀ᶠ ε in 𝓝[>] 0, p ε) : ∀ᶠ ε in 𝓝[>] 0, p (x * ε) :=
   by
Diff
@@ -4,11 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 
 ! This file was ported from Lean 3 source module topology.algebra.order.field
-! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
+! leanprover-community/mathlib commit 9a59dcb7a2d06bf55da57b9030169219980660cd
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
 import Mathbin.Tactic.Positivity
+import Mathbin.Tactic.Linarith.Default
 import Mathbin.Topology.Algebra.Order.Group
 import Mathbin.Topology.Algebra.Field
 
Diff
@@ -47,7 +47,7 @@ theorem mul_tendsto_nhds_zero_right (x : α) :
   refine' lt_of_le_of_lt (mul_le_mul_of_nonneg_left _ (abs_nonneg a)) ((lt_div_iff hx).1 h)
   calc
     |b| = |b - x + x| := by rw [sub_add_cancel b x]
-    _ ≤ |b - x| + |x| := abs_add (b - x) x
+    _ ≤ |b - x| + |x| := (abs_add (b - x) x)
     _ ≤ 2 * (1 + |x|) := by linarith
     
 #align mul_tendsto_nhds_zero_right mul_tendsto_nhds_zero_right
@@ -77,8 +77,8 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
     refine' ⟨i / |x₀|, div_pos hi (abs_pos.2 hx₀), fun x hx => hit _⟩
     calc
       |x₀ * x - x₀| = |x₀ * (x - 1)| := congr_arg abs (by ring_nf)
-      _ = |x₀| * |x - 1| := abs_mul x₀ (x - 1)
-      _ < |x₀| * (i / |x₀|) := mul_lt_mul' le_rfl hx (by positivity) (abs_pos.2 hx₀)
+      _ = |x₀| * |x - 1| := (abs_mul x₀ (x - 1))
+      _ < |x₀| * (i / |x₀|) := (mul_lt_mul' le_rfl hx (by positivity) (abs_pos.2 hx₀))
       _ = |x₀| * i / |x₀| := by ring
       _ = i := mul_div_cancel_left i fun h => hx₀ (abs_eq_zero.1 h)
       
@@ -87,9 +87,9 @@ theorem nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) :
     have : |x / x₀ - 1| < i
     calc
       |x / x₀ - 1| = |x / x₀ - x₀ / x₀| := by rw [div_self hx₀]
-      _ = |(x - x₀) / x₀| := congr_arg abs (sub_div x x₀ x₀).symm
-      _ = |x - x₀| / |x₀| := abs_div (x - x₀) x₀
-      _ < i * |x₀| / |x₀| := div_lt_div_of_lt (abs_pos.2 hx₀) hx
+      _ = |(x - x₀) / x₀| := (congr_arg abs (sub_div x x₀ x₀).symm)
+      _ = |x - x₀| / |x₀| := (abs_div (x - x₀) x₀)
+      _ < i * |x₀| / |x₀| := (div_lt_div_of_lt (abs_pos.2 hx₀) hx)
       _ = i := by rw [← mul_div_assoc', div_self (ne_of_lt <| abs_pos.2 hx₀).symm, mul_one]
       
     specialize hit (x / x₀) this
@@ -119,7 +119,7 @@ theorem mul_tendsto_nhds_one_nhds_one :
   ·
     calc
       1 - ε = 1 - ε / 2 - ε / 2 := by ring_nf
-      _ ≤ 1 - ε / 2 - ε / 2 + ε / 2 * (ε / 2) := le_add_of_nonneg_right (by positivity)
+      _ ≤ 1 - ε / 2 - ε / 2 + ε / 2 * (ε / 2) := (le_add_of_nonneg_right (by positivity))
       _ = (1 - ε / 2) * (1 - ε / 2) := by ring_nf
       _ ≤ (1 - ε / 4) * (1 - ε / 4) := mul_le_mul (by linarith) (by linarith) (by linarith) hε'
       
@@ -128,11 +128,11 @@ theorem mul_tendsto_nhds_one_nhds_one :
       (1 + ε / 4) * (1 + ε / 4) = 1 + ε / 2 + ε / 4 * (ε / 4) := by ring_nf
       _ = 1 + ε / 2 + ε * ε / 16 := by ring_nf
       _ ≤ 1 + ε / 2 + ε / 2 :=
-        add_le_add_left
+        (add_le_add_left
           (div_le_div (le_of_lt hε.1)
             (le_trans ((mul_le_mul_left hε.1).2 hε.2) (le_of_eq <| mul_one ε)) zero_lt_two
             (by linarith))
-          (1 + ε / 2)
+          (1 + ε / 2))
       _ ≤ 1 + ε := by ring_nf
       
 #align mul_tendsto_nhds_one_nhds_one mul_tendsto_nhds_one_nhds_one
@@ -168,7 +168,7 @@ instance (priority := 100) LinearOrderedField.continuousMul : ContinuousMul α :
       _ = map ((fun x => x₀ * x) ∘ fun x => x * y₀) (map (uncurry (· * ·)) (𝓝 1 ×ᶠ 𝓝 1)) := by
         rw [key, ← Filter.map_map]
       _ ≤ map ((fun x : α => x₀ * x) ∘ fun x => x * y₀) (𝓝 1) :=
-        map_mono mul_tendsto_nhds_one_nhds_one
+        (map_mono mul_tendsto_nhds_one_nhds_one)
       _ = 𝓝 (x₀ * y₀) := by
         rw [← Filter.map_map, ← nhds_eq_map_mul_right_nhds_one hy₀,
           nhds_eq_map_mul_left_nhds_one hy₀, Filter.map_map, key₂, ←

Changes in mathlib4

mathlib3
mathlib4
refactor(Topology/Order/Basic): split up large file (#11992)

This splits up the file Mathlib/Topology/Order/Basic.lean (currently > 2000 lines) into several smaller files.

Diff
@@ -6,6 +6,7 @@ Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.Algebra.Field
 import Mathlib.Data.Set.Pointwise.Interval
+import Mathlib.Topology.Order.LeftRightNhds
 
 #align_import topology.algebra.order.field from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
 
chore: Rename zpow_coe_nat to zpow_natCast (#11528)

... and add a deprecated alias for the old name. This is mostly just me discovering the power of F2

Diff
@@ -159,7 +159,7 @@ theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto
 A version for positive real powers exists as `tendsto_rpow_neg_atTop`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
     Tendsto (fun x : 𝕜 => x ^ (-(n : ℤ))) atTop (𝓝 0) := by
-  simpa only [zpow_neg, zpow_coe_nat] using (@tendsto_pow_atTop 𝕜 _ _ hn).inv_tendsto_atTop
+  simpa only [zpow_neg, zpow_natCast] using (@tendsto_pow_atTop 𝕜 _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) :
chore: classify todo porting notes (#11216)

Classifies by adding issue number #11215 to porting notes claiming "TODO".

Diff
@@ -224,7 +224,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing :
     TopologicalDivisionRing 𝕜 := ⟨⟩
 #align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
 
--- Porting note: todo: generalize to a `GroupWithZero`
+-- Porting note (#11215): TODO: generalize to a `GroupWithZero`
 theorem nhdsWithin_pos_comap_mul_left {x : 𝕜} (hx : 0 < x) :
     comap (x * ·) (𝓝[>] 0) = 𝓝[>] 0 := by
   rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div]
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -194,7 +194,7 @@ theorem tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : 𝕜} (hc : c ≠ 0) :
 theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : 𝕜} (hc : c ≠ 0) :
     Tendsto (fun x : 𝕜 => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 := by
   refine' ⟨fun h => _, fun h => _⟩
-  · cases n with -- porting note: Lean 3 proof used `by_cases`, then `lift` but `lift` failed
+  · cases n with -- Porting note: Lean 3 proof used `by_cases`, then `lift` but `lift` failed
     | ofNat n =>
       left
       simpa [tendsto_const_mul_pow_nhds_iff hc] using h
@@ -224,7 +224,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing :
     TopologicalDivisionRing 𝕜 := ⟨⟩
 #align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
 
--- porting note: todo: generalize to a `GroupWithZero`
+-- Porting note: todo: generalize to a `GroupWithZero`
 theorem nhdsWithin_pos_comap_mul_left {x : 𝕜} (hx : 0 < x) :
     comap (x * ·) (𝓝[>] 0) = 𝓝[>] 0 := by
   rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div]
fix: correct statement of zpow_ofNat and ofNat_zsmul (#10969)

Previously these were syntactically identical to the corresponding zpow_coe_nat and coe_nat_zsmul lemmas, now they are about OfNat.ofNat.

Unfortunately, almost every call site uses the ofNat name to refer to Nat.cast, so the downstream proofs had to be adjusted too.

Diff
@@ -159,7 +159,7 @@ theorem Filter.Tendsto.inv_tendsto_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto
 A version for positive real powers exists as `tendsto_rpow_neg_atTop`. -/
 theorem tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) :
     Tendsto (fun x : 𝕜 => x ^ (-(n : ℤ))) atTop (𝓝 0) := by
-  simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_atTop 𝕜 _ _ hn).inv_tendsto_atTop
+  simpa only [zpow_neg, zpow_coe_nat] using (@tendsto_pow_atTop 𝕜 _ _ hn).inv_tendsto_atTop
 #align tendsto_pow_neg_at_top tendsto_pow_neg_atTop
 
 theorem tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) :
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -32,8 +32,9 @@ theorem TopologicalRing.of_norm {R 𝕜 : Type*} [NonUnitalNonAssocRing R] [Line
     (norm_nonneg : ∀ x, 0 ≤ norm x) (norm_mul_le : ∀ x y, norm (x * y) ≤ norm x * norm y)
     (nhds_basis : (𝓝 (0 : R)).HasBasis ((0 : 𝕜) < ·) (fun ε ↦ { x | norm x < ε })) :
     TopologicalRing R := by
-  have h0 : ∀ f : R → R, ∀ c ≥ (0 : 𝕜), (∀ x, norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0)
-  · refine fun f c c0 hf ↦ (nhds_basis.tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_
+  have h0 : ∀ f : R → R, ∀ c ≥ (0 : 𝕜), (∀ x, norm (f x) ≤ c * norm x) →
+      Tendsto f (𝓝 0) (𝓝 0) := by
+    refine fun f c c0 hf ↦ (nhds_basis.tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_
     rcases exists_pos_mul_lt ε0 c with ⟨δ, δ0, hδ⟩
     refine ⟨δ, δ0, fun x hx ↦ (hf _).trans_lt ?_⟩
     exact (mul_le_mul_of_nonneg_left (le_of_lt hx) c0).trans_lt hδ
chore: remove spurious imports of positivity (#9924)

Some of these are already transitively imported, others aren't used at all (but not handled by noshake in #9772).

Mostly I wanted to avoid needing all of algebra imported (but unused!) in FilteredColimitCommutesFiniteLimit; there are now some assert_not_exists to preserve this.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -3,7 +3,6 @@ Copyright (c) 2022 Benjamin Davidson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 -/
-import Mathlib.Tactic.Positivity
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.Algebra.Field
 import Mathlib.Data.Set.Pointwise.Interval
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -6,6 +6,7 @@ Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
 import Mathlib.Tactic.Positivity
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.Algebra.Field
+import Mathlib.Data.Set.Pointwise.Interval
 
 #align_import topology.algebra.order.field from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
 
feat: inv interchanges cobounded and 𝓝[≠] 0 in normed division rings (#8234)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -19,7 +19,8 @@ then `f * g` tends to positive infinity.
 -/
 
 
-open Set Filter TopologicalSpace Function Topology Classical
+open Set Filter TopologicalSpace Function
+open scoped Pointwise Topology
 open OrderDual (toDual ofDual)
 
 /-- If a (possibly non-unital and/or non-associative) ring `R` admits a submultiplicative
@@ -117,20 +118,22 @@ theorem Filter.Tendsto.neg_mul_atBot {C : 𝕜} (hC : C < 0) (hf : Tendsto f l (
   simpa only [mul_comm] using hg.atBot_mul_neg hC hf
 #align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBot
 
+@[simp]
+lemma inv_atTop₀ : (atTop : Filter 𝕜)⁻¹ = 𝓝[>] 0 :=
+  (((atTop_basis_Ioi' (0 : 𝕜)).map _).comp_surjective inv_surjective).eq_of_same_basis <|
+    (nhdsWithin_Ioi_basis _).congr (by simp) fun a ha ↦ by simp [inv_Ioi (inv_pos.2 ha)]
+
+@[simp] lemma inv_nhdsWithin_Ioi_zero : (𝓝[>] (0 : 𝕜))⁻¹ = atTop := by
+  rw [← inv_atTop₀, inv_inv]
+
 /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/
-theorem tendsto_inv_zero_atTop : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 : 𝕜)) atTop := by
-  refine' (atTop_basis' 1).tendsto_right_iff.2 fun b hb => _
-  have hb' : 0 < b := by positivity
-  filter_upwards [Ioc_mem_nhdsWithin_Ioi
-      ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using(le_inv hx.1 hb').1 hx.2
+theorem tendsto_inv_zero_atTop : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 : 𝕜)) atTop :=
+  inv_nhdsWithin_Ioi_zero.le
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
 
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
-theorem tendsto_inv_atTop_zero' : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝[>] (0 : 𝕜)) := by
-  refine (atTop_basis.tendsto_iff ⟨fun s => mem_nhdsWithin_Ioi_iff_exists_Ioc_subset⟩).2 ?_
-  refine fun b hb => ⟨b⁻¹, trivial, fun x hx => ?_⟩
-  have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx
-  exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩
+theorem tendsto_inv_atTop_zero' : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝[>] (0 : 𝕜)) :=
+  inv_atTop₀.le
 #align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'
 
 theorem tendsto_inv_atTop_zero : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝 0) :=
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -122,7 +122,7 @@ theorem tendsto_inv_zero_atTop : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 :
   refine' (atTop_basis' 1).tendsto_right_iff.2 fun b hb => _
   have hb' : 0 < b := by positivity
   filter_upwards [Ioc_mem_nhdsWithin_Ioi
-      ⟨le_rfl, inv_pos.2 hb'⟩]with x hx using(le_inv hx.1 hb').1 hx.2
+      ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using(le_inv hx.1 hb').1 hx.2
 #align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
 
 /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -26,7 +26,7 @@ open OrderDual (toDual ofDual)
 nonnegative norm `norm : R → 𝕜`, where `𝕜` is a linear ordered field, and the open balls
 `{ x | norm x < ε }`, `ε > 0`, form a basis of neighborhoods of zero, then `R` is a topological
 ring. -/
-theorem TopologicalRing.of_norm {R 𝕜 : Type _} [NonUnitalNonAssocRing R] [LinearOrderedField 𝕜]
+theorem TopologicalRing.of_norm {R 𝕜 : Type*} [NonUnitalNonAssocRing R] [LinearOrderedField 𝕜]
     [TopologicalSpace R] [TopologicalAddGroup R] (norm : R → 𝕜)
     (norm_nonneg : ∀ x, 0 ≤ norm x) (norm_mul_le : ∀ x y, norm (x * y) ≤ norm x * norm y)
     (nhds_basis : (𝓝 (0 : R)).HasBasis ((0 : 𝕜) < ·) (fun ε ↦ { x | norm x < ε })) :
@@ -48,7 +48,7 @@ theorem TopologicalRing.of_norm {R 𝕜 : Type _} [NonUnitalNonAssocRing R] [Lin
     exact fun y => h0 (· * y) (norm y) (norm_nonneg y) fun x =>
       (norm_mul_le x y).trans_eq (mul_comm _ _)
 
-variable {𝕜 α : Type _} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [OrderTopology 𝕜]
+variable {𝕜 α : Type*} [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [OrderTopology 𝕜]
   {l : Filter α} {f g : α → 𝕜}
 
 -- see Note [lower instance priority]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Benjamin Davidson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Benjamin Davidson, Devon Tuma, Eric Rodriguez, Oliver Nash
-
-! This file was ported from Lean 3 source module topology.algebra.order.field
-! leanprover-community/mathlib commit 9a59dcb7a2d06bf55da57b9030169219980660cd
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Tactic.Positivity
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.Algebra.Field
 
+#align_import topology.algebra.order.field from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
+
 /-!
 # Topologies on linear ordered fields
 
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -223,7 +223,7 @@ instance (priority := 100) LinearOrderedField.toTopologicalDivisionRing :
     TopologicalDivisionRing 𝕜 := ⟨⟩
 #align linear_ordered_field.to_topological_division_ring LinearOrderedField.toTopologicalDivisionRing
 
--- porting note: todo: generalize to a `GroupWithzero`
+-- porting note: todo: generalize to a `GroupWithZero`
 theorem nhdsWithin_pos_comap_mul_left {x : 𝕜} (hx : 0 < x) :
     comap (x * ·) (𝓝[>] 0) = 𝓝[>] 0 := by
   rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div]
chore: tidy various files (#2742)
Diff
@@ -39,7 +39,7 @@ theorem TopologicalRing.of_norm {R 𝕜 : Type _} [NonUnitalNonAssocRing R] [Lin
     rcases exists_pos_mul_lt ε0 c with ⟨δ, δ0, hδ⟩
     refine ⟨δ, δ0, fun x hx ↦ (hf _).trans_lt ?_⟩
     exact (mul_le_mul_of_nonneg_left (le_of_lt hx) c0).trans_lt hδ
-  apply TopologicalRing.of_add_group_of_nhds_zero
+  apply TopologicalRing.of_addGroup_of_nhds_zero
   case hmul =>
     refine ((nhds_basis.prod nhds_basis).tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_
     refine ⟨(1, ε), ⟨one_pos, ε0⟩, fun (x, y) ⟨hx, hy⟩ => ?_⟩
feat: port Topology.Algebra.Order.Field (#2626)

I made substantial changes to the proofs. To avoid backporting most of them, in leanprover-community/mathlib#18552 I add private to lemmas that are deleted in this PR. Also, I backport Homeomorph.symm_symm in leanprover-community/mathlib#18551

Dependencies 9 + 449

450 files ported (98.0%)
196001 lines ported (97.5%)
Show graph

The unported dependencies are