topology.algebra.order.monotone_continuity
⟷
Mathlib.Topology.Algebra.Order.MonotoneContinuity
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -55,7 +55,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
filter_upwards [hs, self_mem_nhdsWithin] with _ hxs hxa using
hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa)
· rcases hfs b hb with ⟨c, hcs, hac, hcb⟩
- rw [h_mono.lt_iff_lt has hcs] at hac
+ rw [h_mono.lt_iff_lt has hcs] at hac
filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 hac)]
rintro x hx ⟨hax, hxc⟩
exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov, Heather Macbeth
-/
-import Mathbin.Topology.Order.Basic
-import Mathbin.Topology.Homeomorph
+import Topology.Order.Basic
+import Topology.Homeomorph
#align_import topology.algebra.order.monotone_continuity from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov, Heather Macbeth
-
-! This file was ported from Lean 3 source module topology.algebra.order.monotone_continuity
-! leanprover-community/mathlib commit 50832daea47b195a48b5b33b1c8b2162c48c3afc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Topology.Order.Basic
import Mathbin.Topology.Homeomorph
+#align_import topology.algebra.order.monotone_continuity from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
+
/-!
# Continuity of monotone functions
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -39,6 +39,7 @@ variable {α β : Type _} [LinearOrder α] [TopologicalSpace α] [OrderTopology
variable [LinearOrder β] [TopologicalSpace β] [OrderTopology β]
+#print StrictMonoOn.continuousWithinAt_right_of_exists_between /-
/-- If `f` is a function strictly monotone on a right neighborhood of `a` and the
image of this neighborhood under `f` meets every interval `(f a, b]`, `b > f a`, then `f` is
continuous at `a` from the right.
@@ -62,7 +63,9 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
rintro x hx ⟨hax, hxc⟩
exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb
#align strict_mono_on.continuous_at_right_of_exists_between StrictMonoOn.continuousWithinAt_right_of_exists_between
+-/
+#print continuousWithinAt_right_of_monotoneOn_of_exists_between /-
/-- If `f` is a monotone function on a right neighborhood of `a` and the image of this neighborhood
under `f` meets every interval `(f a, b)`, `b > f a`, then `f` is continuous at `a` from the right.
@@ -83,6 +86,7 @@ theorem continuousWithinAt_right_of_monotoneOn_of_exists_between {f : α → β}
rintro x hx ⟨hax, hxc⟩
exact (h_mono hx hcs hxc.le).trans_lt hcb
#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_between
+-/
#print continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
@@ -137,6 +141,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin [DenselyOr
#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin
-/
+#print StrictMonoOn.continuousWithinAt_right_of_surjOn /-
/-- If a function `f` is strictly monotone on a right neighborhood of `a` and the image of this
neighborhood under `f` includes `Ioi (f a)`, then `f` is continuous at `a` from the right. -/
theorem StrictMonoOn.continuousWithinAt_right_of_surjOn {f : α → β} {s : Set α} {a : α}
@@ -146,7 +151,9 @@ theorem StrictMonoOn.continuousWithinAt_right_of_surjOn {f : α → β} {s : Set
let ⟨c, hcs, hcb⟩ := hfs hb
⟨c, hcs, hcb.symm ▸ hb, hcb.le⟩
#align strict_mono_on.continuous_at_right_of_surj_on StrictMonoOn.continuousWithinAt_right_of_surjOn
+-/
+#print StrictMonoOn.continuousWithinAt_left_of_exists_between /-
/-- If `f` is a strictly monotone function on a left neighborhood of `a` and the image of this
neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, then `f` is continuous at `a`
from the left.
@@ -161,7 +168,9 @@ theorem StrictMonoOn.continuousWithinAt_left_of_exists_between {f : α → β} {
let ⟨c, hcs, hcb, hca⟩ := hfs b hb
⟨c, hcs, hca, hcb⟩
#align strict_mono_on.continuous_at_left_of_exists_between StrictMonoOn.continuousWithinAt_left_of_exists_between
+-/
+#print continuousWithinAt_left_of_monotoneOn_of_exists_between /-
/-- If `f` is a monotone function on a left neighborhood of `a` and the image of this neighborhood
under `f` meets every interval `(b, f a)`, `b < f a`, then `f` is continuous at `a` from the left.
@@ -176,6 +185,7 @@ theorem continuousWithinAt_left_of_monotoneOn_of_exists_between {f : α → β}
let ⟨c, hcs, hcb, hca⟩ := hfs b hb
⟨c, hcs, hca, hcb⟩
#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_between
+-/
#print continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
@@ -223,6 +233,7 @@ theorem StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin [DenselyOrd
#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin
-/
+#print StrictMonoOn.continuousWithinAt_left_of_surjOn /-
/-- If a function `f` is strictly monotone on a left neighborhood of `a` and the image of this
neighborhood under `f` includes `Iio (f a)`, then `f` is continuous at `a` from the left. -/
theorem StrictMonoOn.continuousWithinAt_left_of_surjOn {f : α → β} {s : Set α} {a : α}
@@ -230,7 +241,9 @@ theorem StrictMonoOn.continuousWithinAt_left_of_surjOn {f : α → β} {s : Set
ContinuousWithinAt f (Iic a) a :=
h_mono.dual.continuousWithinAt_right_of_surjOn hs hfs
#align strict_mono_on.continuous_at_left_of_surj_on StrictMonoOn.continuousWithinAt_left_of_surjOn
+-/
+#print StrictMonoOn.continuousAt_of_exists_between /-
/-- If a function `f` is strictly monotone on a neighborhood of `a` and the image of this
neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, and every interval
`(f a, b]`, `b > f a`, then `f` is continuous at `a`. -/
@@ -241,6 +254,7 @@ theorem StrictMonoOn.continuousAt_of_exists_between {f : α → β} {s : Set α}
⟨h_mono.continuousWithinAt_left_of_exists_between (mem_nhdsWithin_of_mem_nhds hs) hfs_l,
h_mono.continuousWithinAt_right_of_exists_between (mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_between
+-/
#print StrictMonoOn.continuousAt_of_closure_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
@@ -267,6 +281,7 @@ theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α
#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhds
-/
+#print continuousAt_of_monotoneOn_of_exists_between /-
/-- If `f` is a monotone function on a neighborhood of `a` and the image of this neighborhood under
`f` meets every interval `(b, f a)`, `b < f a`, and every interval `(f a, b)`, `b > f a`, then `f`
is continuous at `a`. -/
@@ -279,6 +294,7 @@ theorem continuousAt_of_monotoneOn_of_exists_between {f : α → β} {s : Set α
continuousWithinAt_right_of_monotoneOn_of_exists_between h_mono
(mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_between
+-/
#print continuousAt_of_monotoneOn_of_closure_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
@@ -339,6 +355,7 @@ namespace OrderIso
variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace α] [TopologicalSpace β]
[OrderTopology α] [OrderTopology β]
+#print OrderIso.continuous /-
protected theorem continuous (e : α ≃o β) : Continuous e :=
by
rw [‹OrderTopology β›.topology_eq_generate_intervals]
@@ -347,6 +364,7 @@ protected theorem continuous (e : α ≃o β) : Continuous e :=
· rw [e.preimage_Ioi]; apply isOpen_lt'
· rw [e.preimage_Iio]; apply isOpen_gt'
#align order_iso.continuous OrderIso.continuous
+-/
#print OrderIso.toHomeomorph /-
/-- An order isomorphism between two linear order `order_topology` spaces is a homeomorphism. -/
@@ -357,15 +375,19 @@ def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
#align order_iso.to_homeomorph OrderIso.toHomeomorph
-/
+#print OrderIso.coe_toHomeomorph /-
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
rfl
#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorph
+-/
+#print OrderIso.coe_toHomeomorph_symm /-
@[simp]
theorem coe_toHomeomorph_symm (e : α ≃o β) : ⇑e.toHomeomorph.symm = e.symm :=
rfl
#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symm
+-/
end OrderIso
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -54,8 +54,8 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
have has : a ∈ s := mem_of_mem_nhdsWithin ha hs
refine' tendsto_order.2 ⟨fun b hb => _, fun b hb => _⟩
·
- filter_upwards [hs,
- self_mem_nhdsWithin]with _ hxs hxa using hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa)
+ filter_upwards [hs, self_mem_nhdsWithin] with _ hxs hxa using
+ hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa)
· rcases hfs b hb with ⟨c, hcs, hac, hcb⟩
rw [h_mono.lt_iff_lt has hcs] at hac
filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 hac)]
@@ -76,7 +76,7 @@ theorem continuousWithinAt_right_of_monotoneOn_of_exists_between {f : α → β}
have ha : a ∈ Ici a := left_mem_Ici
have has : a ∈ s := mem_of_mem_nhdsWithin ha hs
refine' tendsto_order.2 ⟨fun b hb => _, fun b hb => _⟩
- · filter_upwards [hs, self_mem_nhdsWithin]with _ hxs hxa using hb.trans_le (h_mono has hxs hxa)
+ · filter_upwards [hs, self_mem_nhdsWithin] with _ hxs hxa using hb.trans_le (h_mono has hxs hxa)
· rcases hfs b hb with ⟨c, hcs, hac, hcb⟩
have : a < c := not_le.1 fun h => hac.not_le <| h_mono hcs has h
filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 this)]
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -57,7 +57,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
filter_upwards [hs,
self_mem_nhdsWithin]with _ hxs hxa using hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa)
· rcases hfs b hb with ⟨c, hcs, hac, hcb⟩
- rw [h_mono.lt_iff_lt has hcs] at hac
+ rw [h_mono.lt_iff_lt has hcs] at hac
filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 hac)]
rintro x hx ⟨hax, hxc⟩
exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -31,7 +31,7 @@ continuous, monotone
open Set Filter
-open Topology
+open scoped Topology
section LinearOrder
@@ -84,6 +84,7 @@ theorem continuousWithinAt_right_of_monotoneOn_of_exists_between {f : α → β}
exact (h_mono hx hcs hxc.le).trans_lt hcb
#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_between
+#print continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f`
is continuous at `a` from the right. -/
@@ -98,7 +99,9 @@ theorem continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin [
⟨_, hc, ⟨c, hcs, rfl⟩⟩
exact ⟨c, hcs, hc.1, hc.2.trans_le hbb'⟩
#align continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
+-/
+#print continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at
`a` from the right. -/
@@ -108,7 +111,9 @@ theorem continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin [DenselyO
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono hs <|
mem_of_superset hfs subset_closure
#align continuous_at_right_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin
+-/
+#print StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`,
then `f` is continuous at `a` from the right. -/
@@ -118,7 +123,9 @@ theorem StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin [D
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
(fun x hx y hy => (h_mono.le_iff_le hx hy).2) hs hfs
#align strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
+-/
+#print StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is
continuous at `a` from the right. -/
@@ -128,6 +135,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin [DenselyOr
h_mono.continuousWithinAt_right_of_closure_image_mem_nhdsWithin hs
(mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin
+-/
/-- If a function `f` is strictly monotone on a right neighborhood of `a` and the image of this
neighborhood under `f` includes `Ioi (f a)`, then `f` is continuous at `a` from the right. -/
@@ -169,6 +177,7 @@ theorem continuousWithinAt_left_of_monotoneOn_of_exists_between {f : α → β}
⟨c, hcs, hca, hcb⟩
#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_between
+#print continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left -/
@@ -178,7 +187,9 @@ theorem continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin [D
@continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ f s
a hf.dual hs hfs
#align continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin
+-/
+#print continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at
`a` from the left. -/
@@ -188,7 +199,9 @@ theorem continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin [DenselyOr
continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono hs
(mem_of_superset hfs subset_closure)
#align continuous_at_left_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin
+-/
+#print StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`,
then `f` is continuous at `a` from the left. -/
@@ -197,7 +210,9 @@ theorem StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin [De
(hfs : closure (f '' s) ∈ 𝓝[≤] f a) : ContinuousWithinAt f (Iic a) a :=
h_mono.dual.continuousWithinAt_right_of_closure_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin
+-/
+#print StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left. -/
@@ -206,6 +221,7 @@ theorem StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin [DenselyOrd
ContinuousWithinAt f (Iic a) a :=
h_mono.dual.continuousWithinAt_right_of_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin
+-/
/-- If a function `f` is strictly monotone on a left neighborhood of `a` and the image of this
neighborhood under `f` includes `Iio (f a)`, then `f` is continuous at `a` from the left. -/
@@ -226,6 +242,7 @@ theorem StrictMonoOn.continuousAt_of_exists_between {f : α → β} {s : Set α}
h_mono.continuousWithinAt_right_of_exists_between (mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_between
+#print StrictMonoOn.continuousAt_of_closure_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -238,7 +255,9 @@ theorem StrictMonoOn.continuousAt_of_closure_image_mem_nhds [DenselyOrdered β]
h_mono.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align strict_mono_on.continuous_at_of_closure_image_mem_nhds StrictMonoOn.continuousAt_of_closure_image_mem_nhds
+-/
+#print StrictMonoOn.continuousAt_of_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the image of this set under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -246,6 +265,7 @@ theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α
ContinuousAt f a :=
h_mono.continuousAt_of_closure_image_mem_nhds hs (mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhds
+-/
/-- If `f` is a monotone function on a neighborhood of `a` and the image of this neighborhood under
`f` meets every interval `(b, f a)`, `b < f a`, and every interval `(f a, b)`, `b > f a`, then `f`
@@ -260,6 +280,7 @@ theorem continuousAt_of_monotoneOn_of_exists_between {f : α → β} {s : Set α
(mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_between
+#print continuousAt_of_monotoneOn_of_closure_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -272,7 +293,9 @@ theorem continuousAt_of_monotoneOn_of_closure_image_mem_nhds [DenselyOrdered β]
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align continuous_at_of_monotone_on_of_closure_image_mem_nhds continuousAt_of_monotoneOn_of_closure_image_mem_nhds
+-/
+#print continuousAt_of_monotoneOn_of_image_mem_nhds /-
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -280,7 +303,9 @@ theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α
continuousAt_of_monotoneOn_of_closure_image_mem_nhds h_mono hs
(mem_of_superset hfs subset_closure)
#align continuous_at_of_monotone_on_of_image_mem_nhds continuousAt_of_monotoneOn_of_image_mem_nhds
+-/
+#print Monotone.continuous_of_denseRange /-
/-- A monotone function with densely ordered codomain and a dense range is continuous. -/
theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_dense : DenseRange f) : Continuous f :=
@@ -289,12 +314,15 @@ theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h
univ_mem <|
by simp only [image_univ, h_dense.closure_eq, univ_mem]
#align monotone.continuous_of_dense_range Monotone.continuous_of_denseRange
+-/
+#print Monotone.continuous_of_surjective /-
/-- A monotone surjective function with a densely ordered codomain is continuous. -/
theorem Monotone.continuous_of_surjective [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_surj : Function.Surjective f) : Continuous f :=
h_mono.continuous_of_denseRange h_surj.DenseRange
#align monotone.continuous_of_surjective Monotone.continuous_of_surjective
+-/
end LinearOrder
@@ -320,12 +348,14 @@ protected theorem continuous (e : α ≃o β) : Continuous e :=
· rw [e.preimage_Iio]; apply isOpen_gt'
#align order_iso.continuous OrderIso.continuous
+#print OrderIso.toHomeomorph /-
/-- An order isomorphism between two linear order `order_topology` spaces is a homeomorphism. -/
def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
{ e with
continuous_toFun := e.Continuous
continuous_invFun := e.symm.Continuous }
#align order_iso.to_homeomorph OrderIso.toHomeomorph
+-/
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -39,12 +39,6 @@ variable {α β : Type _} [LinearOrder α] [TopologicalSpace α] [OrderTopology
variable [LinearOrder β] [TopologicalSpace β] [OrderTopology β]
-/- warning: strict_mono_on.continuous_at_right_of_exists_between -> StrictMonoOn.continuousWithinAt_right_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_exists_between StrictMonoOn.continuousWithinAt_right_of_exists_betweenₓ'. -/
/-- If `f` is a function strictly monotone on a right neighborhood of `a` and the
image of this neighborhood under `f` meets every interval `(f a, b]`, `b > f a`, then `f` is
continuous at `a` from the right.
@@ -69,12 +63,6 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb
#align strict_mono_on.continuous_at_right_of_exists_between StrictMonoOn.continuousWithinAt_right_of_exists_between
-/- warning: continuous_at_right_of_monotone_on_of_exists_between -> continuousWithinAt_right_of_monotoneOn_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_betweenₓ'. -/
/-- If `f` is a monotone function on a right neighborhood of `a` and the image of this neighborhood
under `f` meets every interval `(f a, b)`, `b > f a`, then `f` is continuous at `a` from the right.
@@ -96,12 +84,6 @@ theorem continuousWithinAt_right_of_monotoneOn_of_exists_between {f : α → β}
exact (h_mono hx hcs hxc.le).trans_lt hcb
#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_between
-/- warning: continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within -> continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f`
is continuous at `a` from the right. -/
@@ -117,12 +99,6 @@ theorem continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin [
exact ⟨c, hcs, hc.1, hc.2.trans_le hbb'⟩
#align continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
-/- warning: continuous_at_right_of_monotone_on_of_image_mem_nhds_within -> continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at
`a` from the right. -/
@@ -133,12 +109,6 @@ theorem continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin [DenselyO
mem_of_superset hfs subset_closure
#align continuous_at_right_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`,
then `f` is continuous at `a` from the right. -/
@@ -149,12 +119,6 @@ theorem StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin [D
(fun x hx y hy => (h_mono.le_iff_le hx hy).2) hs hfs
#align strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_right_of_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is
continuous at `a` from the right. -/
@@ -165,12 +129,6 @@ theorem StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin [DenselyOr
(mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_right_of_surj_on -> StrictMonoOn.continuousWithinAt_right_of_surjOn is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Set.SurjOn.{u1, u2} α β f s (Set.Ioi.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (Set.SurjOn.{u2, u1} α β f s (Set.Ioi.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_surj_on StrictMonoOn.continuousWithinAt_right_of_surjOnₓ'. -/
/-- If a function `f` is strictly monotone on a right neighborhood of `a` and the image of this
neighborhood under `f` includes `Ioi (f a)`, then `f` is continuous at `a` from the right. -/
theorem StrictMonoOn.continuousWithinAt_right_of_surjOn {f : α → β} {s : Set α} {a : α}
@@ -181,12 +139,6 @@ theorem StrictMonoOn.continuousWithinAt_right_of_surjOn {f : α → β} {s : Set
⟨c, hcs, hcb.symm ▸ hb, hcb.le⟩
#align strict_mono_on.continuous_at_right_of_surj_on StrictMonoOn.continuousWithinAt_right_of_surjOn
-/- warning: strict_mono_on.continuous_at_left_of_exists_between -> StrictMonoOn.continuousWithinAt_left_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ico.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_exists_between StrictMonoOn.continuousWithinAt_left_of_exists_betweenₓ'. -/
/-- If `f` is a strictly monotone function on a left neighborhood of `a` and the image of this
neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, then `f` is continuous at `a`
from the left.
@@ -202,12 +154,6 @@ theorem StrictMonoOn.continuousWithinAt_left_of_exists_between {f : α → β} {
⟨c, hcs, hca, hcb⟩
#align strict_mono_on.continuous_at_left_of_exists_between StrictMonoOn.continuousWithinAt_left_of_exists_between
-/- warning: continuous_at_left_of_monotone_on_of_exists_between -> continuousWithinAt_left_of_monotoneOn_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_betweenₓ'. -/
/-- If `f` is a monotone function on a left neighborhood of `a` and the image of this neighborhood
under `f` meets every interval `(b, f a)`, `b < f a`, then `f` is continuous at `a` from the left.
@@ -223,12 +169,6 @@ theorem continuousWithinAt_left_of_monotoneOn_of_exists_between {f : α → β}
⟨c, hcs, hca, hcb⟩
#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_between
-/- warning: continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within -> continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left -/
@@ -239,12 +179,6 @@ theorem continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin [D
a hf.dual hs hfs
#align continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin
-/- warning: continuous_at_left_of_monotone_on_of_image_mem_nhds_within -> continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at
`a` from the left. -/
@@ -255,12 +189,6 @@ theorem continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin [DenselyOr
(mem_of_superset hfs subset_closure)
#align continuous_at_left_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`,
then `f` is continuous at `a` from the left. -/
@@ -270,12 +198,6 @@ theorem StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin [De
h_mono.dual.continuousWithinAt_right_of_closure_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_left_of_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left. -/
@@ -285,12 +207,6 @@ theorem StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin [DenselyOrd
h_mono.dual.continuousWithinAt_right_of_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin
-/- warning: strict_mono_on.continuous_at_left_of_surj_on -> StrictMonoOn.continuousWithinAt_left_of_surjOn is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Set.SurjOn.{u1, u2} α β f s (Set.Iio.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (Set.SurjOn.{u2, u1} α β f s (Set.Iio.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_surj_on StrictMonoOn.continuousWithinAt_left_of_surjOnₓ'. -/
/-- If a function `f` is strictly monotone on a left neighborhood of `a` and the image of this
neighborhood under `f` includes `Iio (f a)`, then `f` is continuous at `a` from the left. -/
theorem StrictMonoOn.continuousWithinAt_left_of_surjOn {f : α → β} {s : Set α} {a : α}
@@ -299,12 +215,6 @@ theorem StrictMonoOn.continuousWithinAt_left_of_surjOn {f : α → β} {s : Set
h_mono.dual.continuousWithinAt_right_of_surjOn hs hfs
#align strict_mono_on.continuous_at_left_of_surj_on StrictMonoOn.continuousWithinAt_left_of_surjOn
-/- warning: strict_mono_on.continuous_at_of_exists_between -> StrictMonoOn.continuousAt_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhds.{u2} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ico.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousAt.{u2, u1} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_betweenₓ'. -/
/-- If a function `f` is strictly monotone on a neighborhood of `a` and the image of this
neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, and every interval
`(f a, b]`, `b > f a`, then `f` is continuous at `a`. -/
@@ -316,12 +226,6 @@ theorem StrictMonoOn.continuousAt_of_exists_between {f : α → β} {s : Set α}
h_mono.continuousWithinAt_right_of_exists_between (mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_between
-/- warning: strict_mono_on.continuous_at_of_closure_image_mem_nhds -> StrictMonoOn.continuousAt_of_closure_image_mem_nhds is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_closure_image_mem_nhds StrictMonoOn.continuousAt_of_closure_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -335,12 +239,6 @@ theorem StrictMonoOn.continuousAt_of_closure_image_mem_nhds [DenselyOrdered β]
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align strict_mono_on.continuous_at_of_closure_image_mem_nhds StrictMonoOn.continuousAt_of_closure_image_mem_nhds
-/- warning: strict_mono_on.continuous_at_of_image_mem_nhds -> StrictMonoOn.continuousAt_of_image_mem_nhds is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the image of this set under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -349,12 +247,6 @@ theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α
h_mono.continuousAt_of_closure_image_mem_nhds hs (mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhds
-/- warning: continuous_at_of_monotone_on_of_exists_between -> continuousAt_of_monotoneOn_of_exists_between is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhds.{u2} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousAt.{u2, u1} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_betweenₓ'. -/
/-- If `f` is a monotone function on a neighborhood of `a` and the image of this neighborhood under
`f` meets every interval `(b, f a)`, `b < f a`, and every interval `(f a, b)`, `b > f a`, then `f`
is continuous at `a`. -/
@@ -368,12 +260,6 @@ theorem continuousAt_of_monotoneOn_of_exists_between {f : α → β} {s : Set α
(mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_between
-/- warning: continuous_at_of_monotone_on_of_closure_image_mem_nhds -> continuousAt_of_monotoneOn_of_closure_image_mem_nhds is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_closure_image_mem_nhds continuousAt_of_monotoneOn_of_closure_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -387,12 +273,6 @@ theorem continuousAt_of_monotoneOn_of_closure_image_mem_nhds [DenselyOrdered β]
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align continuous_at_of_monotone_on_of_closure_image_mem_nhds continuousAt_of_monotoneOn_of_closure_image_mem_nhds
-/- warning: continuous_at_of_monotone_on_of_image_mem_nhds -> continuousAt_of_monotoneOn_of_image_mem_nhds is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
-Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_image_mem_nhds continuousAt_of_monotoneOn_of_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -401,12 +281,6 @@ theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α
(mem_of_superset hfs subset_closure)
#align continuous_at_of_monotone_on_of_image_mem_nhds continuousAt_of_monotoneOn_of_image_mem_nhds
-/- warning: monotone.continuous_of_dense_range -> Monotone.continuous_of_denseRange is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f) -> (DenseRange.{u2, u1} β _inst_5 α f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f) -> (DenseRange.{u2, u1} β _inst_5 α f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align monotone.continuous_of_dense_range Monotone.continuous_of_denseRangeₓ'. -/
/-- A monotone function with densely ordered codomain and a dense range is continuous. -/
theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_dense : DenseRange f) : Continuous f :=
@@ -416,12 +290,6 @@ theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h
by simp only [image_univ, h_dense.closure_eq, univ_mem]
#align monotone.continuous_of_dense_range Monotone.continuous_of_denseRange
-/- warning: monotone.continuous_of_surjective -> Monotone.continuous_of_surjective is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f) -> (Function.Surjective.{succ u1, succ u2} α β f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f) -> (Function.Surjective.{succ u1, succ u2} α β f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align monotone.continuous_of_surjective Monotone.continuous_of_surjectiveₓ'. -/
/-- A monotone surjective function with a densely ordered codomain is continuous. -/
theorem Monotone.continuous_of_surjective [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_surj : Function.Surjective f) : Continuous f :=
@@ -443,12 +311,6 @@ namespace OrderIso
variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace α] [TopologicalSpace β]
[OrderTopology α] [OrderTopology β]
-/- warning: order_iso.continuous -> OrderIso.continuous is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Continuous.{u1, u2} α β _inst_3 _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.continuous OrderIso.continuousₓ'. -/
protected theorem continuous (e : α ≃o β) : Continuous e :=
by
rw [‹OrderTopology β›.topology_eq_generate_intervals]
@@ -458,12 +320,6 @@ protected theorem continuous (e : α ≃o β) : Continuous e :=
· rw [e.preimage_Iio]; apply isOpen_gt'
#align order_iso.continuous OrderIso.continuous
-/- warning: order_iso.to_homeomorph -> OrderIso.toHomeomorph is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (Homeomorph.{u1, u2} α β _inst_3 _inst_4)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (Homeomorph.{u1, u2} α β _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align order_iso.to_homeomorph OrderIso.toHomeomorphₓ'. -/
/-- An order isomorphism between two linear order `order_topology` spaces is a homeomorphism. -/
def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
{ e with
@@ -471,23 +327,11 @@ def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
continuous_invFun := e.symm.Continuous }
#align order_iso.to_homeomorph OrderIso.toHomeomorph
-/- warning: order_iso.coe_to_homeomorph -> OrderIso.coe_toHomeomorph is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorphₓ'. -/
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
rfl
#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorph
-/- warning: order_iso.coe_to_homeomorph_symm -> OrderIso.coe_toHomeomorph_symm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symmₓ'. -/
@[simp]
theorem coe_toHomeomorph_symm (e : α ≃o β) : ⇑e.toHomeomorph.symm = e.symm :=
rfl
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -454,10 +454,8 @@ protected theorem continuous (e : α ≃o β) : Continuous e :=
rw [‹OrderTopology β›.topology_eq_generate_intervals]
refine' continuous_generateFrom fun s hs => _
rcases hs with ⟨a, rfl | rfl⟩
- · rw [e.preimage_Ioi]
- apply isOpen_lt'
- · rw [e.preimage_Iio]
- apply isOpen_gt'
+ · rw [e.preimage_Ioi]; apply isOpen_lt'
+ · rw [e.preimage_Iio]; apply isOpen_gt'
#align order_iso.continuous OrderIso.continuous
/- warning: order_iso.to_homeomorph -> OrderIso.toHomeomorph is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -447,7 +447,7 @@ variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Continuous.{u1, u2} α β _inst_3 _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.continuous OrderIso.continuousₓ'. -/
protected theorem continuous (e : α ≃o β) : Continuous e :=
by
@@ -477,7 +477,7 @@ def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorphₓ'. -/
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
@@ -488,7 +488,7 @@ theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symmₓ'. -/
@[simp]
theorem coe_toHomeomorph_symm (e : α ≃o β) : ⇑e.toHomeomorph.symm = e.symm :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -41,7 +41,7 @@ variable [LinearOrder β] [TopologicalSpace β] [OrderTopology β]
/- warning: strict_mono_on.continuous_at_right_of_exists_between -> StrictMonoOn.continuousWithinAt_right_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_exists_between StrictMonoOn.continuousWithinAt_right_of_exists_betweenₓ'. -/
@@ -71,7 +71,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_exists_between {f : α → β}
/- warning: continuous_at_right_of_monotone_on_of_exists_between -> continuousWithinAt_right_of_monotoneOn_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Ici.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_betweenₓ'. -/
@@ -96,7 +96,12 @@ theorem continuousWithinAt_right_of_monotoneOn_of_exists_between {f : α → β}
exact (h_mono hx hcs hxc.le).trans_lt hcb
#align continuous_at_right_of_monotone_on_of_exists_between continuousWithinAt_right_of_monotoneOn_of_exists_between
-#print continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
+/- warning: continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within -> continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f`
is continuous at `a` from the right. -/
@@ -111,9 +116,13 @@ theorem continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin [
⟨_, hc, ⟨c, hcs, rfl⟩⟩
exact ⟨c, hcs, hc.1, hc.2.trans_le hbb'⟩
#align continuous_at_right_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
--/
-#print continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin /-
+/- warning: continuous_at_right_of_monotone_on_of_image_mem_nhds_within -> continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_right_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a right neighborhood of `a` and
the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at
`a` from the right. -/
@@ -123,9 +132,13 @@ theorem continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin [DenselyO
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono hs <|
mem_of_superset hfs subset_closure
#align continuous_at_right_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin
--/
-#print StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin /-
+/- warning: strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`,
then `f` is continuous at `a` from the right. -/
@@ -135,9 +148,13 @@ theorem StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin [D
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
(fun x hx y hy => (h_mono.le_iff_le hx hy).2) hs hfs
#align strict_mono_on.continuous_at_right_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
--/
-#print StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin /-
+/- warning: strict_mono_on.continuous_at_right_of_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Ici.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a right neighborhood
of `a` and the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is
continuous at `a` from the right. -/
@@ -147,7 +164,6 @@ theorem StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin [DenselyOr
h_mono.continuousWithinAt_right_of_closure_image_mem_nhdsWithin hs
(mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_right_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_right_of_image_mem_nhdsWithin
--/
/- warning: strict_mono_on.continuous_at_right_of_surj_on -> StrictMonoOn.continuousWithinAt_right_of_surjOn is a dubious translation:
lean 3 declaration is
@@ -167,7 +183,7 @@ theorem StrictMonoOn.continuousWithinAt_right_of_surjOn {f : α → β} {s : Set
/- warning: strict_mono_on.continuous_at_left_of_exists_between -> StrictMonoOn.continuousWithinAt_left_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ico.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_exists_between StrictMonoOn.continuousWithinAt_left_of_exists_betweenₓ'. -/
@@ -188,7 +204,7 @@ theorem StrictMonoOn.continuousWithinAt_left_of_exists_between {f : α → β} {
/- warning: continuous_at_left_of_monotone_on_of_exists_between -> continuousWithinAt_left_of_monotoneOn_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhdsWithin.{u2} α _inst_2 a (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a))) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (ContinuousWithinAt.{u2, u1} α β _inst_2 _inst_5 f (Set.Iic.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a) a)
Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_betweenₓ'. -/
@@ -207,7 +223,12 @@ theorem continuousWithinAt_left_of_monotoneOn_of_exists_between {f : α → β}
⟨c, hcs, hca, hcb⟩
#align continuous_at_left_of_monotone_on_of_exists_between continuousWithinAt_left_of_monotoneOn_of_exists_between
-#print continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin /-
+/- warning: continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within -> continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left -/
@@ -217,9 +238,13 @@ theorem continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin [D
@continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ f s
a hf.dual hs hfs
#align continuous_at_left_of_monotone_on_of_closure_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin
--/
-#print continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin /-
+/- warning: continuous_at_left_of_monotone_on_of_image_mem_nhds_within -> continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_left_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a left neighborhood of `a` and
the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at
`a` from the left. -/
@@ -229,9 +254,13 @@ theorem continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin [DenselyOr
continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono hs
(mem_of_superset hfs subset_closure)
#align continuous_at_left_of_monotone_on_of_image_mem_nhds_within continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin
--/
-#print StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin /-
+/- warning: strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`,
then `f` is continuous at `a` from the left. -/
@@ -240,9 +269,13 @@ theorem StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin [De
(hfs : closure (f '' s) ∈ 𝓝[≤] f a) : ContinuousWithinAt f (Iic a) a :=
h_mono.dual.continuousWithinAt_right_of_closure_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_closure_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin
--/
-#print StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin /-
+/- warning: strict_mono_on.continuous_at_left_of_image_mem_nhds_within -> StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhdsWithin.{u1} α _inst_2 a (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhdsWithin.{u2} β _inst_5 (f a) (Set.Iic.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (f a)))) -> (ContinuousWithinAt.{u1, u2} α β _inst_2 _inst_5 f (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithinₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a left neighborhood of
`a` and the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is
continuous at `a` from the left. -/
@@ -251,7 +284,6 @@ theorem StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin [DenselyOrd
ContinuousWithinAt f (Iic a) a :=
h_mono.dual.continuousWithinAt_right_of_image_mem_nhdsWithin hs hfs
#align strict_mono_on.continuous_at_left_of_image_mem_nhds_within StrictMonoOn.continuousWithinAt_left_of_image_mem_nhdsWithin
--/
/- warning: strict_mono_on.continuous_at_left_of_surj_on -> StrictMonoOn.continuousWithinAt_left_of_surjOn is a dubious translation:
lean 3 declaration is
@@ -269,7 +301,7 @@ theorem StrictMonoOn.continuousWithinAt_left_of_surjOn {f : α → β} {s : Set
/- warning: strict_mono_on.continuous_at_of_exists_between -> StrictMonoOn.continuousAt_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ico.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioc.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (StrictMonoOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhds.{u2} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ico.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioc.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousAt.{u2, u1} α β _inst_2 _inst_5 f a)
Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_betweenₓ'. -/
@@ -284,7 +316,12 @@ theorem StrictMonoOn.continuousAt_of_exists_between {f : α → β} {s : Set α}
h_mono.continuousWithinAt_right_of_exists_between (mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align strict_mono_on.continuous_at_of_exists_between StrictMonoOn.continuousAt_of_exists_between
-#print StrictMonoOn.continuousAt_of_closure_image_mem_nhds /-
+/- warning: strict_mono_on.continuous_at_of_closure_image_mem_nhds -> StrictMonoOn.continuousAt_of_closure_image_mem_nhds is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_closure_image_mem_nhds StrictMonoOn.continuousAt_of_closure_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -297,9 +334,13 @@ theorem StrictMonoOn.continuousAt_of_closure_image_mem_nhds [DenselyOrdered β]
h_mono.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align strict_mono_on.continuous_at_of_closure_image_mem_nhds StrictMonoOn.continuousAt_of_closure_image_mem_nhds
--/
-#print StrictMonoOn.continuousAt_of_image_mem_nhds /-
+/- warning: strict_mono_on.continuous_at_of_image_mem_nhds -> StrictMonoOn.continuousAt_of_image_mem_nhds is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (StrictMonoOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+Case conversion may be inaccurate. Consider using '#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is strictly monotone on a neighborhood of `a`
and the image of this set under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -307,11 +348,10 @@ theorem StrictMonoOn.continuousAt_of_image_mem_nhds [DenselyOrdered β] {f : α
ContinuousAt f a :=
h_mono.continuousAt_of_closure_image_mem_nhds hs (mem_of_superset hfs subset_closure)
#align strict_mono_on.continuous_at_of_image_mem_nhds StrictMonoOn.continuousAt_of_image_mem_nhds
--/
/- warning: continuous_at_of_monotone_on_of_exists_between -> continuousAt_of_monotoneOn_of_exists_between is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) b (f a)))))) -> (forall (b : β), (GT.gt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))) b (f a)) -> (Exists.{succ u1} α (fun (c : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f c) (Set.Ioo.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (f a) b))))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : OrderTopology.{u2} α _inst_2 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_4 : LinearOrder.{u1} β] [_inst_5 : TopologicalSpace.{u1} β] [_inst_6 : OrderTopology.{u1} β _inst_5 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))] {f : α -> β} {s : Set.{u2} α} {a : α}, (MonotoneOn.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) f s) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s (nhds.{u2} α _inst_2 a)) -> (forall (b : β), (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) b (f a)))))) -> (forall (b : β), (GT.gt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4)))))) b (f a)) -> (Exists.{succ u2} α (fun (c : α) => And (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f c) (Set.Ioo.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (DistribLattice.toLattice.{u1} β (instDistribLattice.{u1} β _inst_4))))) (f a) b))))) -> (ContinuousAt.{u2, u1} α β _inst_2 _inst_5 f a)
Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_betweenₓ'. -/
@@ -328,7 +368,12 @@ theorem continuousAt_of_monotoneOn_of_exists_between {f : α → β} {s : Set α
(mem_nhdsWithin_of_mem_nhds hs) hfs_r⟩
#align continuous_at_of_monotone_on_of_exists_between continuousAt_of_monotoneOn_of_exists_between
-#print continuousAt_of_monotoneOn_of_closure_image_mem_nhds /-
+/- warning: continuous_at_of_monotone_on_of_closure_image_mem_nhds -> continuousAt_of_monotoneOn_of_closure_image_mem_nhds is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (closure.{u2} β _inst_5 (Set.image.{u1, u2} α β f s)) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_closure_image_mem_nhds continuousAt_of_monotoneOn_of_closure_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is
continuous at `a`. -/
@@ -341,9 +386,13 @@ theorem continuousAt_of_monotoneOn_of_closure_image_mem_nhds [DenselyOrdered β]
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin h_mono
(mem_nhdsWithin_of_mem_nhds hs) (mem_nhdsWithin_of_mem_nhds hfs)⟩
#align continuous_at_of_monotone_on_of_closure_image_mem_nhds continuousAt_of_monotoneOn_of_closure_image_mem_nhds
--/
-#print continuousAt_of_monotoneOn_of_image_mem_nhds /-
+/- warning: continuous_at_of_monotone_on_of_image_mem_nhds -> continuousAt_of_monotoneOn_of_image_mem_nhds is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f s) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β} {s : Set.{u1} α} {a : α}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f s) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (nhds.{u1} α _inst_2 a)) -> (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) (Set.image.{u1, u2} α β f s) (nhds.{u2} β _inst_5 (f a))) -> (ContinuousAt.{u1, u2} α β _inst_2 _inst_5 f a)
+Case conversion may be inaccurate. Consider using '#align continuous_at_of_monotone_on_of_image_mem_nhds continuousAt_of_monotoneOn_of_image_mem_nhdsₓ'. -/
/-- If a function `f` with a densely ordered codomain is monotone on a neighborhood of `a` and the
image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/
theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α → β} {s : Set α}
@@ -351,9 +400,13 @@ theorem continuousAt_of_monotoneOn_of_image_mem_nhds [DenselyOrdered β] {f : α
continuousAt_of_monotoneOn_of_closure_image_mem_nhds h_mono hs
(mem_of_superset hfs subset_closure)
#align continuous_at_of_monotone_on_of_image_mem_nhds continuousAt_of_monotoneOn_of_image_mem_nhds
--/
-#print Monotone.continuous_of_denseRange /-
+/- warning: monotone.continuous_of_dense_range -> Monotone.continuous_of_denseRange is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f) -> (DenseRange.{u2, u1} β _inst_5 α f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f) -> (DenseRange.{u2, u1} β _inst_5 α f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
+Case conversion may be inaccurate. Consider using '#align monotone.continuous_of_dense_range Monotone.continuous_of_denseRangeₓ'. -/
/-- A monotone function with densely ordered codomain and a dense range is continuous. -/
theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_dense : DenseRange f) : Continuous f :=
@@ -362,15 +415,18 @@ theorem Monotone.continuous_of_denseRange [DenselyOrdered β] {f : α → β} (h
univ_mem <|
by simp only [image_univ, h_dense.closure_eq, univ_mem]
#align monotone.continuous_of_dense_range Monotone.continuous_of_denseRange
--/
-#print Monotone.continuous_of_surjective /-
+/- warning: monotone.continuous_of_surjective -> Monotone.continuous_of_surjective is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) f) -> (Function.Surjective.{succ u1, succ u2} α β f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : OrderTopology.{u1} α _inst_2 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : OrderTopology.{u2} β _inst_5 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] [_inst_7 : DenselyOrdered.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))))] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) f) -> (Function.Surjective.{succ u1, succ u2} α β f) -> (Continuous.{u1, u2} α β _inst_2 _inst_5 f)
+Case conversion may be inaccurate. Consider using '#align monotone.continuous_of_surjective Monotone.continuous_of_surjectiveₓ'. -/
/-- A monotone surjective function with a densely ordered codomain is continuous. -/
theorem Monotone.continuous_of_surjective [DenselyOrdered β] {f : α → β} (h_mono : Monotone f)
(h_surj : Function.Surjective f) : Continuous f :=
h_mono.continuous_of_denseRange h_surj.DenseRange
#align monotone.continuous_of_surjective Monotone.continuous_of_surjective
--/
end LinearOrder
@@ -389,7 +445,7 @@ variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace
/- warning: order_iso.continuous -> OrderIso.continuous is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Continuous.{u1, u2} α β _inst_3 _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Continuous.{u1, u2} α β _inst_3 _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.continuous OrderIso.continuousₓ'. -/
@@ -404,18 +460,22 @@ protected theorem continuous (e : α ≃o β) : Continuous e :=
apply isOpen_gt'
#align order_iso.continuous OrderIso.continuous
-#print OrderIso.toHomeomorph /-
+/- warning: order_iso.to_homeomorph -> OrderIso.toHomeomorph is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (Homeomorph.{u1, u2} α β _inst_3 _inst_4)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (Homeomorph.{u1, u2} α β _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align order_iso.to_homeomorph OrderIso.toHomeomorphₓ'. -/
/-- An order isomorphism between two linear order `order_topology` spaces is a homeomorphism. -/
def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
{ e with
continuous_toFun := e.Continuous
continuous_invFun := e.symm.Continuous }
#align order_iso.to_homeomorph OrderIso.toHomeomorph
--/
/- warning: order_iso.coe_to_homeomorph -> OrderIso.coe_toHomeomorph is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorphₓ'. -/
@@ -426,7 +486,7 @@ theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
/- warning: order_iso.coe_to_homeomorph_symm -> OrderIso.coe_toHomeomorph_symm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symmₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -391,7 +391,7 @@ variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Continuous.{u1, u2} α β _inst_3 _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Continuous.{u2, u1} α β _inst_3 _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.continuous OrderIso.continuousₓ'. -/
protected theorem continuous (e : α ≃o β) : Continuous e :=
by
@@ -417,7 +417,7 @@ def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorphₓ'. -/
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
@@ -428,7 +428,7 @@ theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symmₓ'. -/
@[simp]
theorem coe_toHomeomorph_symm (e : α ≃o β) : ⇑e.toHomeomorph.symm = e.symm :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -417,7 +417,7 @@ def toHomeomorph (e : α ≃o β) : α ≃ₜ β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (Homeomorph.{u1, u2} α β _inst_3 _inst_4) (fun (_x : Homeomorph.{u1, u2} α β _inst_3 _inst_4) => α -> β) (Homeomorph.hasCoeToFun.{u1, u2} α β _inst_3 _inst_4) (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) e)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α (fun (_x : α) => β) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (Homeomorph.{u2, u1} α β _inst_3 _inst_4) α β (Homeomorph.instEquivLikeHomeomorph.{u2, u1} α β _inst_3 _inst_4))) (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph OrderIso.coe_toHomeomorphₓ'. -/
@[simp]
theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
@@ -428,7 +428,7 @@ theorem coe_toHomeomorph (e : α ≃o β) : ⇑e.toHomeomorph = e :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α _inst_1)] [_inst_6 : OrderTopology.{u2} β _inst_4 (PartialOrder.toPreorder.{u2} β _inst_2)] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_4 _inst_3) (fun (_x : Homeomorph.{u2, u1} β α _inst_4 _inst_3) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_4 _inst_3) (Homeomorph.symm.{u1, u2} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α _inst_1)] [_inst_6 : OrderTopology.{u1} β _inst_4 (PartialOrder.toPreorder.{u1} β _inst_2)] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (β -> α) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_4 _inst_3) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_4 _inst_3))) (Homeomorph.symm.{u2, u1} α β _inst_3 _inst_4 (OrderIso.toHomeomorph.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 e))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))))
Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_homeomorph_symm OrderIso.coe_toHomeomorph_symmₓ'. -/
@[simp]
theorem coe_toHomeomorph_symm (e : α ≃o β) : ⇑e.toHomeomorph.symm = e.symm :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
This splits up the file Mathlib/Topology/Order/Basic.lean
(currently > 2000 lines) into several smaller files.
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov, Heather Macbeth
-/
import Mathlib.Topology.Homeomorph
-import Mathlib.Topology.Order.Basic
+import Mathlib.Topology.Order.LeftRightNhds
#align_import topology.algebra.order.monotone_continuity from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
Move files from Topology.Algebra.Order
to Topology.Order
when they do not contain any algebra. Also move Topology.LocalExtr
to Topology.Order.LocalExtr
.
According to git, the moves are:
Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
Mathlib/Topology/{Algebra => }/Order/Filter.lean
Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
Mathlib/Topology/{Algebra => }/Order/T5.lean
Mathlib/Topology/{ => Order}/LocalExtr.lean
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov, Heather Macbeth
-/
-import Mathlib.Topology.Order.Basic
import Mathlib.Topology.Homeomorph
+import Mathlib.Topology.Order.Basic
#align_import topology.algebra.order.monotone_continuity from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -30,7 +30,6 @@ open Topology
section LinearOrder
variable {α β : Type*} [LinearOrder α] [TopologicalSpace α] [OrderTopology α]
-
variable [LinearOrder β] [TopologicalSpace β] [OrderTopology β]
/-- If `f` is a function strictly monotone on a right neighborhood of `a` and the
continuous_generateFrom
to an iff
(#9259)
Similarly, upgrade tendsto_nhds_generateFrom
, IsTopologicalBasis.continuous
, Topology.IsLower.continuous_of_Ici
, and Topology.IsUpper.continuous_iff_Iic
.
The old lemmas are now deprecated, and the new ones have _iff
in their names.
Once we remove the old lemmas, we can drop the _iff
suffixes.
@@ -303,9 +303,8 @@ variable {α β : Type*} [PartialOrder α] [PartialOrder β] [TopologicalSpace
[OrderTopology α] [OrderTopology β]
protected theorem continuous (e : α ≃o β) : Continuous e := by
- rw [‹OrderTopology β›.topology_eq_generate_intervals]
- refine' continuous_generateFrom fun s hs => _
- rcases hs with ⟨a, rfl | rfl⟩
+ rw [‹OrderTopology β›.topology_eq_generate_intervals, continuous_generateFrom_iff]
+ rintro s ⟨a, rfl | rfl⟩
· rw [e.preimage_Ioi]
apply isOpen_lt'
· rw [e.preimage_Iio]
rcases
, convert
and congrm
(#7725)
Replace rcases(
with rcases (
. Same thing for convert(
and congrm(
. No other change.
@@ -83,7 +83,7 @@ theorem continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin [
{f : α → β} {s : Set α} {a : α} (h_mono : MonotoneOn f s) (hs : s ∈ 𝓝[≥] a)
(hfs : closure (f '' s) ∈ 𝓝[≥] f a) : ContinuousWithinAt f (Ici a) a := by
refine' continuousWithinAt_right_of_monotoneOn_of_exists_between h_mono hs fun b hb => _
- rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hb).1 hfs with ⟨b', ⟨hab', hbb'⟩, hb'⟩
+ rcases (mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hb).1 hfs with ⟨b', ⟨hab', hbb'⟩, hb'⟩
rcases exists_between hab' with ⟨c', hc'⟩
rcases mem_closure_iff.1 (hb' ⟨hc'.1.le, hc'.2⟩) (Ioo (f a) b') isOpen_Ioo hc' with
⟨_, hc, ⟨c, hcs, rfl⟩⟩
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -29,7 +29,7 @@ open Topology
section LinearOrder
-variable {α β : Type _} [LinearOrder α] [TopologicalSpace α] [OrderTopology α]
+variable {α β : Type*} [LinearOrder α] [TopologicalSpace α] [OrderTopology α]
variable [LinearOrder β] [TopologicalSpace β] [OrderTopology β]
@@ -299,7 +299,7 @@ this for an `OrderIso` between to partial orders with order topology.
namespace OrderIso
-variable {α β : Type _} [PartialOrder α] [PartialOrder β] [TopologicalSpace α] [TopologicalSpace β]
+variable {α β : Type*} [PartialOrder α] [PartialOrder β] [TopologicalSpace α] [TopologicalSpace β]
[OrderTopology α] [OrderTopology β]
protected theorem continuous (e : α ≃o β) : Continuous e := by
@@ -2,15 +2,12 @@
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov, Heather Macbeth
-
-! This file was ported from Lean 3 source module topology.algebra.order.monotone_continuity
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Topology.Order.Basic
import Mathlib.Topology.Homeomorph
+#align_import topology.algebra.order.monotone_continuity from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
+
/-!
# Continuity of monotone functions
The unported dependencies are