topology.algebra.order.proj_Icc
⟷
Mathlib.Topology.Algebra.Order.ProjIcc
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Patrick Massot
-/
-import Data.Set.Intervals.ProjIcc
+import Order.Interval.Set.ProjIcc
import Topology.Order.Basic
#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Patrick Massot
-/
-import Mathbin.Data.Set.Intervals.ProjIcc
-import Mathbin.Topology.Order.Basic
+import Data.Set.Intervals.ProjIcc
+import Topology.Order.Basic
#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.order.proj_Icc
-! leanprover-community/mathlib commit 50832daea47b195a48b5b33b1c8b2162c48c3afc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.Set.Intervals.ProjIcc
import Mathbin.Topology.Order.Basic
+#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
+
/-!
# Projection onto a closed interval
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -28,12 +28,14 @@ open scoped Filter Topology
variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
+#print Filter.Tendsto.IccExtend' /-
theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
(hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
show Tendsto (↿f ∘ Prod.map id (projIcc a b h)) (𝓝 z ×ᶠ l) l' from
hf.comp <| tendsto_id.Prod_map tendsto_map
#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'
+-/
variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
@@ -52,27 +54,35 @@ theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
#align quotient_map_proj_Icc quotientMap_projIcc
-/
+#print continuous_IccExtend_iff /-
@[simp]
theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
quotientMap_projIcc.continuous_iff.symm
#align continuous_Icc_extend_iff continuous_IccExtend_iff
+-/
+#print Continuous.IccExtend /-
/-- See Note [continuity lemma statement]. -/
theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
(hg : Continuous g) : Continuous fun a => IccExtend h (f a) (g a) :=
hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
#align continuous.Icc_extend Continuous.IccExtend
+-/
+#print Continuous.Icc_extend' /-
/-- A useful special case of `continuous.Icc_extend`. -/
@[continuity]
theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Continuous (IccExtend h f) :=
hf.comp continuous_projIcc
#align continuous.Icc_extend' Continuous.Icc_extend'
+-/
+#print ContinuousAt.IccExtend /-
theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
(hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
ContinuousAt (fun a => IccExtend h (f a) (g a)) x :=
show ContinuousAt (↿f ∘ fun x => (x, projIcc a b h (g x))) x from
ContinuousAt.comp hf <| continuousAt_id.Prod <| continuous_projIcc.ContinuousAt.comp hg
#align continuous_at.Icc_extend ContinuousAt.IccExtend
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -24,7 +24,7 @@ to show that `Icc_extend h f` is continuous if and only if `f` is continuous.
open Set Filter
-open Filter Topology
+open scoped Filter Topology
variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
@@ -37,16 +37,20 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
+#print continuous_projIcc /-
@[continuity]
theorem continuous_projIcc : Continuous (projIcc a b h) :=
(continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
#align continuous_proj_Icc continuous_projIcc
+-/
+#print quotientMap_projIcc /-
theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
quotientMap_iff.2
⟨projIcc_surjective h, fun s =>
⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
#align quotient_map_proj_Icc quotientMap_projIcc
+-/
@[simp]
theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -28,9 +28,6 @@ open Filter Topology
variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
-/- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
(hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
@@ -40,64 +37,34 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
-/- warning: continuous_proj_Icc -> continuous_projIcc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], Continuous.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], Continuous.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-Case conversion may be inaccurate. Consider using '#align continuous_proj_Icc continuous_projIccₓ'. -/
@[continuity]
theorem continuous_projIcc : Continuous (projIcc a b h) :=
(continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
#align continuous_proj_Icc continuous_projIcc
-/- warning: quotient_map_proj_Icc -> quotientMap_projIcc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], QuotientMap.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], QuotientMap.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc quotientMap_projIccₓ'. -/
theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
quotientMap_iff.2
⟨projIcc_surjective h, fun s =>
⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
#align quotient_map_proj_Icc quotientMap_projIcc
-/- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, Iff (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f)) (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align continuous_Icc_extend_iff continuous_IccExtend_iffₓ'. -/
@[simp]
theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
quotientMap_projIcc.continuous_iff.symm
#align continuous_Icc_extend_iff continuous_IccExtend_iff
-/- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
/-- See Note [continuity lemma statement]. -/
theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
(hg : Continuous g) : Continuous fun a => IccExtend h (f a) (g a) :=
hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
#align continuous.Icc_extend Continuous.IccExtend
-/- warning: continuous.Icc_extend' -> Continuous.Icc_extend' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f))
-Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend' Continuous.Icc_extend'ₓ'. -/
/-- A useful special case of `continuous.Icc_extend`. -/
@[continuity]
theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Continuous (IccExtend h f) :=
hf.comp continuous_projIcc
#align continuous.Icc_extend' Continuous.Icc_extend'
-/- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/
theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
(hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
ContinuousAt (fun a => IccExtend h (f a) (g a)) x :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -60,10 +60,7 @@ Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc
theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
quotientMap_iff.2
⟨projIcc_surjective h, fun s =>
- ⟨fun hs => hs.Preimage continuous_projIcc, fun hs =>
- ⟨_, hs, by
- ext
- simp⟩⟩⟩
+ ⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
#align quotient_map_proj_Icc quotientMap_projIcc
/- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -29,10 +29,7 @@ open Filter Topology
variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
/- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u1} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {z : γ} {l : Filter.{u3} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u2} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Filter.prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (nhds.{u1} γ _inst_2 z) (Filter.map.{u3, u3} α (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (Set.projIcc.{u3} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ α) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> α -> β) (Prod.{u1, u3} γ α) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ (α -> β) α β (Function.hasUncurryBase.{u3, u2} α β)) (Function.comp.{succ u1, max (succ u2) (succ u3), max (succ u2) (succ u3)} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (α -> β) (Set.IccExtend.{u3, u2} α β _inst_1 a b h) f)) (Filter.prod.{u1, u3} γ α (nhds.{u1} γ _inst_2 z) l) l')
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
(hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
@@ -81,10 +78,7 @@ theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h
#align continuous_Icc_extend_iff continuous_IccExtend_iff
/- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f)) -> (Continuous.{u2, u3} γ α _inst_2 _inst_3 g) -> (Continuous.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)))
+<too large>
Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
/-- See Note [continuity lemma statement]. -/
theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
@@ -105,10 +99,7 @@ theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Contin
#align continuous.Icc_extend' Continuous.Icc_extend'
/- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {x : γ} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Prod.mk.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) x (Set.projIcc.{u3} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u2, u3} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)) x)
+<too large>
Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/
theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
(hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -30,7 +30,7 @@ variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α}
/- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
but is expected to have type
forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u1} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {z : γ} {l : Filter.{u3} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u2} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Filter.prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (nhds.{u1} γ _inst_2 z) (Filter.map.{u3, u3} α (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (Set.projIcc.{u3} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ α) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> α -> β) (Prod.{u1, u3} γ α) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ (α -> β) α β (Function.hasUncurryBase.{u3, u2} α β)) (Function.comp.{succ u1, max (succ u2) (succ u3), max (succ u2) (succ u3)} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (α -> β) (Set.IccExtend.{u3, u2} α β _inst_1 a b h) f)) (Filter.prod.{u1, u3} γ α (nhds.{u1} γ _inst_2 z) l) l')
Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
@@ -43,14 +43,23 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
-#print continuous_projIcc /-
+/- warning: continuous_proj_Icc -> continuous_projIcc is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], Continuous.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], Continuous.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+Case conversion may be inaccurate. Consider using '#align continuous_proj_Icc continuous_projIccₓ'. -/
@[continuity]
theorem continuous_projIcc : Continuous (projIcc a b h) :=
(continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
#align continuous_proj_Icc continuous_projIcc
--/
-#print quotientMap_projIcc /-
+/- warning: quotient_map_proj_Icc -> quotientMap_projIcc is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], QuotientMap.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], QuotientMap.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc quotientMap_projIccₓ'. -/
theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
quotientMap_iff.2
⟨projIcc_surjective h, fun s =>
@@ -59,11 +68,10 @@ theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
ext
simp⟩⟩⟩
#align quotient_map_proj_Icc quotientMap_projIcc
--/
/- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, Iff (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f)) (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f)
Case conversion may be inaccurate. Consider using '#align continuous_Icc_extend_iff continuous_IccExtend_iffₓ'. -/
@@ -74,7 +82,7 @@ theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h
/- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
but is expected to have type
forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f)) -> (Continuous.{u2, u3} γ α _inst_2 _inst_3 g) -> (Continuous.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)))
Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
@@ -86,7 +94,7 @@ theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : C
/- warning: continuous.Icc_extend' -> Continuous.Icc_extend' is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f))
Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend' Continuous.Icc_extend'ₓ'. -/
@@ -98,7 +106,7 @@ theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Contin
/- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
but is expected to have type
forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {x : γ} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Prod.mk.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) x (Set.projIcc.{u3} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u2, u3} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)) x)
Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Move Set.Ixx
, Finset.Ixx
, Multiset.Ixx
together under two different folders:
Order.Interval
for their definition and basic propertiesAlgebra.Order.Interval
for their algebraic propertiesMove the definitions of Multiset.Ixx
to what is now Order.Interval.Multiset
. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx
three years ago).
Move the algebraic results out of what is now Order.Interval.Finset.Basic
to a new file Algebra.Order.Interval.Finset.Basic
.
@@ -3,7 +3,7 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Patrick Massot
-/
-import Mathlib.Data.Set.Intervals.ProjIcc
+import Mathlib.Order.Interval.Set.ProjIcc
import Mathlib.Topology.Order.Basic
#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
@@ -20,7 +20,7 @@ open Set Filter Topology
variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
--- Porting note: new lemma
+-- Porting note (#10756): new lemma
protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
{lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -20,7 +20,7 @@ open Set Filter Topology
variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
--- porting note: new lemma
+-- Porting note: new lemma
protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
{lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -18,7 +18,7 @@ to show that `Set.IccExtend h f` is continuous if and only if `f` is continuous.
open Set Filter Topology
-variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
+variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
-- porting note: new lemma
protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
@@ -2,15 +2,12 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.order.proj_Icc
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.Set.Intervals.ProjIcc
import Mathlib.Topology.Order.Basic
+#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
+
/-!
# Projection onto a closed interval
SProd
to implement overloaded notation · ×ˢ ·
(#4200)
Currently, the following notations are changed from · ×ˢ ·
because Lean 4 can't deal with ambiguous notations.
| Definition | Notation |
| :
Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>
@@ -25,14 +25,14 @@ variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α}
-- porting note: new lemma
protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
- {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ᶠ la.map (projIcc a b h)) lb) :
- Tendsto (↿(IccExtend h ∘ f)) (lc ×ᶠ la) lb :=
+ {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
+ Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
hf.comp <| tendsto_id.prod_map tendsto_map
@[deprecated Filter.Tendsto.IccExtend]
theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
- (hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
- Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
+ (hf : Tendsto (↿f) (𝓝 z ×ˢ l.map (projIcc a b h)) l') :
+ Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ˢ l) l' :=
hf.IccExtend f
#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'
fix-comments.py
on all files.@@ -60,7 +60,7 @@ protected theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ →
from hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
#align continuous.Icc_extend Continuous.IccExtend
-/-- A useful special case of `continuous.Icc_extend`. -/
+/-- A useful special case of `Continuous.IccExtend`. -/
@[continuity]
protected theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) :
Continuous (IccExtend h f) :=
We implement the continuity tactic using aesop, this makes it more robust and reduces the code to trivial macros.
@@ -38,7 +38,7 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
--- porting note: todo: restore @[continuity]
+@[continuity]
theorem continuous_projIcc : Continuous (projIcc a b h) :=
(continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
#align continuous_proj_Icc continuous_projIcc
@@ -61,7 +61,7 @@ protected theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ →
#align continuous.Icc_extend Continuous.IccExtend
/-- A useful special case of `continuous.Icc_extend`. -/
--- porting note: todo: restore @[continuity]
+@[continuity]
protected theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) :
Continuous (IccExtend h f) :=
hf.comp continuous_projIcc
The unported dependencies are