topology.algebra.order.proj_IccMathlib.Topology.Algebra.Order.ProjIcc

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov, Patrick Massot
 -/
-import Data.Set.Intervals.ProjIcc
+import Order.Interval.Set.ProjIcc
 import Topology.Order.Basic
 
 #align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov, Patrick Massot
 -/
-import Mathbin.Data.Set.Intervals.ProjIcc
-import Mathbin.Topology.Order.Basic
+import Data.Set.Intervals.ProjIcc
+import Topology.Order.Basic
 
 #align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov, Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.order.proj_Icc
-! leanprover-community/mathlib commit 50832daea47b195a48b5b33b1c8b2162c48c3afc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Set.Intervals.ProjIcc
 import Mathbin.Topology.Order.Basic
 
+#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"50832daea47b195a48b5b33b1c8b2162c48c3afc"
+
 /-!
 # Projection onto a closed interval
 
Diff
@@ -28,12 +28,14 @@ open scoped Filter Topology
 
 variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
+#print Filter.Tendsto.IccExtend' /-
 theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
     (hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
     Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
   show Tendsto (↿f ∘ Prod.map id (projIcc a b h)) (𝓝 z ×ᶠ l) l' from
     hf.comp <| tendsto_id.Prod_map tendsto_map
 #align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'
+-/
 
 variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
 
@@ -52,27 +54,35 @@ theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
 #align quotient_map_proj_Icc quotientMap_projIcc
 -/
 
+#print continuous_IccExtend_iff /-
 @[simp]
 theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
   quotientMap_projIcc.continuous_iff.symm
 #align continuous_Icc_extend_iff continuous_IccExtend_iff
+-/
 
+#print Continuous.IccExtend /-
 /-- See Note [continuity lemma statement]. -/
 theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
     (hg : Continuous g) : Continuous fun a => IccExtend h (f a) (g a) :=
   hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
 #align continuous.Icc_extend Continuous.IccExtend
+-/
 
+#print Continuous.Icc_extend' /-
 /-- A useful special case of `continuous.Icc_extend`. -/
 @[continuity]
 theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Continuous (IccExtend h f) :=
   hf.comp continuous_projIcc
 #align continuous.Icc_extend' Continuous.Icc_extend'
+-/
 
+#print ContinuousAt.IccExtend /-
 theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
     (hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
     ContinuousAt (fun a => IccExtend h (f a) (g a)) x :=
   show ContinuousAt (↿f ∘ fun x => (x, projIcc a b h (g x))) x from
     ContinuousAt.comp hf <| continuousAt_id.Prod <| continuous_projIcc.ContinuousAt.comp hg
 #align continuous_at.Icc_extend ContinuousAt.IccExtend
+-/
 
Diff
@@ -24,7 +24,7 @@ to show that `Icc_extend h f` is continuous if and only if `f` is continuous.
 
 open Set Filter
 
-open Filter Topology
+open scoped Filter Topology
 
 variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
@@ -37,16 +37,20 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
 
 variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
 
+#print continuous_projIcc /-
 @[continuity]
 theorem continuous_projIcc : Continuous (projIcc a b h) :=
   (continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
 #align continuous_proj_Icc continuous_projIcc
+-/
 
+#print quotientMap_projIcc /-
 theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
   quotientMap_iff.2
     ⟨projIcc_surjective h, fun s =>
       ⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
 #align quotient_map_proj_Icc quotientMap_projIcc
+-/
 
 @[simp]
 theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
Diff
@@ -28,9 +28,6 @@ open Filter Topology
 
 variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
-/- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
 theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
     (hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
     Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
@@ -40,64 +37,34 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
 
 variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
 
-/- warning: continuous_proj_Icc -> continuous_projIcc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], Continuous.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], Continuous.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-Case conversion may be inaccurate. Consider using '#align continuous_proj_Icc continuous_projIccₓ'. -/
 @[continuity]
 theorem continuous_projIcc : Continuous (projIcc a b h) :=
   (continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
 #align continuous_proj_Icc continuous_projIcc
 
-/- warning: quotient_map_proj_Icc -> quotientMap_projIcc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], QuotientMap.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], QuotientMap.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
-Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc quotientMap_projIccₓ'. -/
 theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
   quotientMap_iff.2
     ⟨projIcc_surjective h, fun s =>
       ⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
 #align quotient_map_proj_Icc quotientMap_projIcc
 
-/- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, Iff (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f)) (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align continuous_Icc_extend_iff continuous_IccExtend_iffₓ'. -/
 @[simp]
 theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h f) ↔ Continuous f :=
   quotientMap_projIcc.continuous_iff.symm
 #align continuous_Icc_extend_iff continuous_IccExtend_iff
 
-/- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
 /-- See Note [continuity lemma statement]. -/
 theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
     (hg : Continuous g) : Continuous fun a => IccExtend h (f a) (g a) :=
   hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
 #align continuous.Icc_extend Continuous.IccExtend
 
-/- warning: continuous.Icc_extend' -> Continuous.Icc_extend' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f))
-Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend' Continuous.Icc_extend'ₓ'. -/
 /-- A useful special case of `continuous.Icc_extend`. -/
 @[continuity]
 theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Continuous (IccExtend h f) :=
   hf.comp continuous_projIcc
 #align continuous.Icc_extend' Continuous.Icc_extend'
 
-/- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/
 theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
     (hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
     ContinuousAt (fun a => IccExtend h (f a) (g a)) x :=
Diff
@@ -60,10 +60,7 @@ Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc
 theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
   quotientMap_iff.2
     ⟨projIcc_surjective h, fun s =>
-      ⟨fun hs => hs.Preimage continuous_projIcc, fun hs =>
-        ⟨_, hs, by
-          ext
-          simp⟩⟩⟩
+      ⟨fun hs => hs.Preimage continuous_projIcc, fun hs => ⟨_, hs, by ext; simp⟩⟩⟩
 #align quotient_map_proj_Icc quotientMap_projIcc
 
 /- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
Diff
@@ -29,10 +29,7 @@ open Filter Topology
 variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
 /- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u1} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {z : γ} {l : Filter.{u3} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u2} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Filter.prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (nhds.{u1} γ _inst_2 z) (Filter.map.{u3, u3} α (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (Set.projIcc.{u3} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ α) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> α -> β) (Prod.{u1, u3} γ α) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ (α -> β) α β (Function.hasUncurryBase.{u3, u2} α β)) (Function.comp.{succ u1, max (succ u2) (succ u3), max (succ u2) (succ u3)} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (α -> β) (Set.IccExtend.{u3, u2} α β _inst_1 a b h) f)) (Filter.prod.{u1, u3} γ α (nhds.{u1} γ _inst_2 z) l) l')
+<too large>
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
 theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
     (hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
@@ -81,10 +78,7 @@ theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h
 #align continuous_Icc_extend_iff continuous_IccExtend_iff
 
 /- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f)) -> (Continuous.{u2, u3} γ α _inst_2 _inst_3 g) -> (Continuous.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
 /-- See Note [continuity lemma statement]. -/
 theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : Continuous ↿f)
@@ -105,10 +99,7 @@ theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Contin
 #align continuous.Icc_extend' Continuous.Icc_extend'
 
 /- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {x : γ} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Prod.mk.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) x (Set.projIcc.{u3} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u2, u3} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/
 theorem ContinuousAt.IccExtend {x : γ} (f : γ → Icc a b → β) {g : γ → α}
     (hf : ContinuousAt (↿f) (x, projIcc a b h (g x))) (hg : ContinuousAt g x) :
Diff
@@ -30,7 +30,7 @@ variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α}
 
 /- warning: filter.tendsto.Icc_extend -> Filter.Tendsto.IccExtend' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {z : γ} {l : Filter.{u1} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Filter.prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (nhds.{u3} γ _inst_2 z) (Filter.map.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) (Set.projIcc.{u1} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u3, u1} γ α) β (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> α -> β) (Prod.{u3, u1} γ α) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ (α -> β) α β (Function.hasUncurryBase.{u1, u2} α β)) (Function.comp.{succ u3, max (succ u1) (succ u2), max (succ u1) (succ u2)} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (α -> β) (Set.IccExtend.{u1, u2} α β _inst_1 a b h) f)) (Filter.prod.{u3, u1} γ α (nhds.{u3} γ _inst_2 z) l) l')
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u1} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {z : γ} {l : Filter.{u3} α} {l' : Filter.{u2} β}, (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u2} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Filter.prod.{u1, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (nhds.{u1} γ _inst_2 z) (Filter.map.{u3, u3} α (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) (Set.projIcc.{u3} α _inst_1 a b h) l)) l') -> (Filter.Tendsto.{max u3 u1, u2} (Prod.{u1, u3} γ α) β (Function.HasUncurry.uncurry.{max (max u3 u2) u1, max u3 u1, u2} (γ -> α -> β) (Prod.{u1, u3} γ α) β (Function.hasUncurryInduction.{u1, max u3 u2, u3, u2} γ (α -> β) α β (Function.hasUncurryBase.{u3, u2} α β)) (Function.comp.{succ u1, max (succ u2) (succ u3), max (succ u2) (succ u3)} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (α -> β) (Set.IccExtend.{u3, u2} α β _inst_1 a b h) f)) (Filter.prod.{u1, u3} γ α (nhds.{u1} γ _inst_2 z) l) l')
 Case conversion may be inaccurate. Consider using '#align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'ₓ'. -/
@@ -43,14 +43,23 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
 
 variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
 
-#print continuous_projIcc /-
+/- warning: continuous_proj_Icc -> continuous_projIcc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], Continuous.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], Continuous.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+Case conversion may be inaccurate. Consider using '#align continuous_proj_Icc continuous_projIccₓ'. -/
 @[continuity]
 theorem continuous_projIcc : Continuous (projIcc a b h) :=
   (continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
 #align continuous_proj_Icc continuous_projIcc
--/
 
-#print quotientMap_projIcc /-
+/- warning: quotient_map_proj_Icc -> quotientMap_projIcc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))], QuotientMap.{u1, u1} α (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))], QuotientMap.{u1, u1} α (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3 (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b)) _inst_3) (Set.projIcc.{u1} α _inst_1 a b h)
+Case conversion may be inaccurate. Consider using '#align quotient_map_proj_Icc quotientMap_projIccₓ'. -/
 theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
   quotientMap_iff.2
     ⟨projIcc_surjective h, fun s =>
@@ -59,11 +68,10 @@ theorem quotientMap_projIcc : QuotientMap (projIcc a b h) :=
           ext
           simp⟩⟩⟩
 #align quotient_map_proj_Icc quotientMap_projIcc
--/
 
 /- warning: continuous_Icc_extend_iff -> continuous_IccExtend_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, Iff (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f)) (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, Iff (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f)) (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f)
 Case conversion may be inaccurate. Consider using '#align continuous_Icc_extend_iff continuous_IccExtend_iffₓ'. -/
@@ -74,7 +82,7 @@ theorem continuous_IccExtend_iff {f : Icc a b → β} : Continuous (IccExtend h
 
 /- warning: continuous.Icc_extend -> Continuous.IccExtend is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f)) -> (Continuous.{u3, u1} γ α _inst_2 _inst_3 g) -> (Continuous.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β} {g : γ -> α}, (Continuous.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f)) -> (Continuous.{u2, u3} γ α _inst_2 _inst_3 g) -> (Continuous.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)))
 Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend Continuous.IccExtendₓ'. -/
@@ -86,7 +94,7 @@ theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → α} (hf : C
 
 /- warning: continuous.Icc_extend' -> Continuous.Icc_extend' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {f : (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β}, (Continuous.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u1, u2} α β _inst_3 _inst_5 (Set.IccExtend.{u1, u2} α β _inst_1 a b h f))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrder.{u2} α] {a : α} {b : α} {h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u2} α] [_inst_4 : OrderTopology.{u2} α _inst_3 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {f : (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) -> β}, (Continuous.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a b)) _inst_3) _inst_5 f) -> (Continuous.{u2, u1} α β _inst_3 _inst_5 (Set.IccExtend.{u2, u1} α β _inst_1 a b h f))
 Case conversion may be inaccurate. Consider using '#align continuous.Icc_extend' Continuous.Icc_extend'ₓ'. -/
@@ -98,7 +106,7 @@ theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) : Contin
 
 /- warning: continuous_at.Icc_extend -> ContinuousAt.IccExtend is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : TopologicalSpace.{u3} γ] {a : α} {b : α} {h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : OrderTopology.{u1} α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))] [_inst_5 : TopologicalSpace.{u2} β] {x : γ} (f : γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u1, u2} (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Prod.topologicalSpace.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_2 (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max u3 u1 u2, max u3 u1, u2} (γ -> (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (Prod.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b))) β (Function.hasUncurryInduction.{u3, max u1 u2, u1, u2} γ ((coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) -> β) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β (Function.hasUncurryBase.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) β)) f) (Prod.mk.{u3, u1} γ (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b)) x (Set.projIcc.{u1} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u3, u1} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u3, u2} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u1, u2} α β _inst_1 a b h (f a_1) (g a_1)) x)
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : LinearOrder.{u3} α] [_inst_2 : TopologicalSpace.{u2} γ] {a : α} {b : α} {h : LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) a b} [_inst_3 : TopologicalSpace.{u3} α] [_inst_4 : OrderTopology.{u3} α _inst_3 (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))] [_inst_5 : TopologicalSpace.{u1} β] {x : γ} (f : γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) {g : γ -> α}, (ContinuousAt.{max u3 u2, u1} (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (instTopologicalSpaceProd.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_2 (instTopologicalSpaceSubtype.{u3} α (fun (x : α) => Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) _inst_3)) _inst_5 (Function.HasUncurry.uncurry.{max (max u3 u1) u2, max u3 u2, u1} (γ -> (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Prod.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b))) β (Function.hasUncurryInduction.{u2, max u3 u1, u3, u1} γ ((Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) -> β) (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β (Function.hasUncurryBase.{u3, u1} (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) β)) f) (Prod.mk.{u2, u3} γ (Set.Elem.{u3} α (Set.Icc.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))))) a b)) x (Set.projIcc.{u3} α _inst_1 a b h (g x)))) -> (ContinuousAt.{u2, u3} γ α _inst_2 _inst_3 g x) -> (ContinuousAt.{u2, u1} γ β _inst_2 _inst_5 (fun (a_1 : γ) => Set.IccExtend.{u3, u1} α β _inst_1 a b h (f a_1) (g a_1)) x)
 Case conversion may be inaccurate. Consider using '#align continuous_at.Icc_extend ContinuousAt.IccExtendₓ'. -/

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov, Patrick Massot
 -/
-import Mathlib.Data.Set.Intervals.ProjIcc
+import Mathlib.Order.Interval.Set.ProjIcc
 import Mathlib.Topology.Order.Basic
 
 #align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -20,7 +20,7 @@ open Set Filter Topology
 
 variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
--- Porting note: new lemma
+-- Porting note (#10756): new lemma
 protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
     {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
     Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -20,7 +20,7 @@ open Set Filter Topology
 
 variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
--- porting note: new lemma
+-- Porting note: new lemma
 protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
     {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
     Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -18,7 +18,7 @@ to show that `Set.IccExtend h f` is continuous if and only if `f` is continuous.
 
 open Set Filter Topology
 
-variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
+variable {α β γ : Type*} [LinearOrder α] [TopologicalSpace γ] {a b c : α} {h : a ≤ b}
 
 -- porting note: new lemma
 protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov, Patrick Massot
-
-! This file was ported from Lean 3 source module topology.algebra.order.proj_Icc
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Set.Intervals.ProjIcc
 import Mathlib.Topology.Order.Basic
 
+#align_import topology.algebra.order.proj_Icc from "leanprover-community/mathlib"@"4c19a16e4b705bf135cf9a80ac18fcc99c438514"
+
 /-!
 # Projection onto a closed interval
 
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -25,14 +25,14 @@ variable {α β γ : Type _} [LinearOrder α] [TopologicalSpace γ] {a b c : α}
 
 -- porting note: new lemma
 protected theorem Filter.Tendsto.IccExtend (f : γ → Icc a b → β) {la : Filter α} {lb : Filter β}
-    {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ᶠ la.map (projIcc a b h)) lb) :
-    Tendsto (↿(IccExtend h ∘ f)) (lc ×ᶠ la) lb :=
+    {lc : Filter γ} (hf : Tendsto (↿f) (lc ×ˢ la.map (projIcc a b h)) lb) :
+    Tendsto (↿(IccExtend h ∘ f)) (lc ×ˢ la) lb :=
   hf.comp <| tendsto_id.prod_map tendsto_map
 
 @[deprecated Filter.Tendsto.IccExtend]
 theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filter α} {l' : Filter β}
-    (hf : Tendsto (↿f) (𝓝 z ×ᶠ l.map (projIcc a b h)) l') :
-    Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ᶠ l) l' :=
+    (hf : Tendsto (↿f) (𝓝 z ×ˢ l.map (projIcc a b h)) l') :
+    Tendsto (↿(IccExtend h ∘ f)) (𝓝 z ×ˢ l) l' :=
   hf.IccExtend f
 #align filter.tendsto.Icc_extend Filter.Tendsto.IccExtend'
 
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -60,7 +60,7 @@ protected theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → 
   from hf.comp <| continuous_id.prod_mk <| continuous_projIcc.comp hg
 #align continuous.Icc_extend Continuous.IccExtend
 
-/-- A useful special case of `continuous.Icc_extend`. -/
+/-- A useful special case of `Continuous.IccExtend`. -/
 @[continuity]
 protected theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) :
     Continuous (IccExtend h f) :=
feat: port continuity tactic (#2145)

We implement the continuity tactic using aesop, this makes it more robust and reduces the code to trivial macros.

Diff
@@ -38,7 +38,7 @@ theorem Filter.Tendsto.IccExtend' (f : γ → Icc a b → β) {z : γ} {l : Filt
 
 variable [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β]
 
--- porting note: todo: restore @[continuity]
+@[continuity]
 theorem continuous_projIcc : Continuous (projIcc a b h) :=
   (continuous_const.max <| continuous_const.min continuous_id).subtype_mk _
 #align continuous_proj_Icc continuous_projIcc
@@ -61,7 +61,7 @@ protected theorem Continuous.IccExtend {f : γ → Icc a b → β} {g : γ → 
 #align continuous.Icc_extend Continuous.IccExtend
 
 /-- A useful special case of `continuous.Icc_extend`. -/
--- porting note: todo: restore @[continuity]
+@[continuity]
 protected theorem Continuous.Icc_extend' {f : Icc a b → β} (hf : Continuous f) :
     Continuous (IccExtend h f) :=
   hf.comp continuous_projIcc
feat: port Topology.Algebra.Order.ProjIcc (#2115)

Dependencies 8 + 318

319 files ported (97.6%)
139850 lines ported (96.5%)
Show graph

The unported dependencies are