topology.algebra.uniform_convergence
β·
Mathlib.Topology.Algebra.UniformConvergence
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -227,13 +227,13 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
refine' β¨U, hU, β¨S, Wβ©, β¨hS, hWβ©, _β©
rw [Set.smul_subset_iff]
intro a ha u hu x hx
- rw [SMulHomClass.map_smul]
+ rw [MulActionSemiHomClass.map_smul]
exact hUW (β¨ha, hu x hxβ© : (a, Ο u x) β U ΓΛ’ W)
Β· rintro a β¨S, Vβ© β¨hS, hVβ©
have : tendsto (fun x : E => a β’ x) (π 0) (π <| a β’ 0) := tendsto_id.const_smul a
rw [smul_zero] at this
refine' β¨β¨S, (Β· β’ Β·) a β»ΒΉ' Vβ©, β¨hS, this hVβ©, fun f hf x hx => _β©
- rw [SMulHomClass.map_smul]
+ rw [MulActionSemiHomClass.map_smul]
exact hf x hx
Β· rintro u β¨S, Vβ© β¨hS, hVβ©
rcases h u S hS hV with β¨r, hrpos, hrβ©
@@ -243,7 +243,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
Β· rw [ha0]
simp [mem_of_mem_nhds hV]
Β· rw [mem_ball_zero_iff] at ha
- rw [SMulHomClass.map_smul, Pi.smul_apply]
+ rw [MulActionSemiHomClass.map_smul, Pi.smul_apply]
have : Ο u x β aβ»ΒΉ β’ V :=
by
have ha0 : 0 < βaβ := norm_pos_iff.mpr ha0
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -126,7 +126,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => {f : Ξ± βα΅€ G | β x, f x β b i} :=
by
have := h.comap fun p : G Γ G => p.2 / p.1
- rw [β uniformity_eq_comap_nhds_one] at this
+ rw [β uniformity_eq_comap_nhds_one] at this
convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
ext i f
simp [UniformFun.gen]
@@ -167,7 +167,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
{f : Ξ± βα΅€[π] G | β x β Si.1, f x β b Si.2} :=
by
have := h.comap fun p : G Γ G => p.1 / p.2
- rw [β uniformity_eq_comap_nhds_one_swapped] at this
+ rw [β uniformity_eq_comap_nhds_one_swapped] at this
convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ π 1 hπβ hπβ this
ext i f
simp [UniformOnFun.gen]
@@ -220,9 +220,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
Β· rintro β¨S, Vβ© β¨hS, hVβ©
have : tendsto (fun kx : π Γ E => kx.1 β’ kx.2) (π (0, 0)) (π <| (0 : π) β’ 0) :=
continuous_smul.tendsto (0 : π Γ E)
- rw [zero_smul, nhds_prod_eq] at this
+ rw [zero_smul, nhds_prod_eq] at this
have := this hV
- rw [mem_map, mem_prod_iff] at this
+ rw [mem_map, mem_prod_iff] at this
rcases this with β¨U, hU, W, hW, hUWβ©
refine' β¨U, hU, β¨S, Wβ©, β¨hS, hWβ©, _β©
rw [Set.smul_subset_iff]
@@ -231,7 +231,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
exact hUW (β¨ha, hu x hxβ© : (a, Ο u x) β U ΓΛ’ W)
Β· rintro a β¨S, Vβ© β¨hS, hVβ©
have : tendsto (fun x : E => a β’ x) (π 0) (π <| a β’ 0) := tendsto_id.const_smul a
- rw [smul_zero] at this
+ rw [smul_zero] at this
refine' β¨β¨S, (Β· β’ Β·) a β»ΒΉ' Vβ©, β¨hS, this hVβ©, fun f hf x hx => _β©
rw [SMulHomClass.map_smul]
exact hf x hx
@@ -242,7 +242,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
by_cases ha0 : a = 0
Β· rw [ha0]
simp [mem_of_mem_nhds hV]
- Β· rw [mem_ball_zero_iff] at ha
+ Β· rw [mem_ball_zero_iff] at ha
rw [SMulHomClass.map_smul, Pi.smul_apply]
have : Ο u x β aβ»ΒΉ β’ V :=
by
@@ -250,7 +250,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
refine' (hr aβ»ΒΉ _) (Set.mem_image_of_mem (Ο u) hx)
rw [norm_inv, le_inv hrpos ha0]
exact ha.le
- rwa [Set.mem_inv_smul_set_iffβ ha0] at this
+ rwa [Set.mem_inv_smul_set_iffβ ha0] at this
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-/
-import Mathbin.Topology.UniformSpace.UniformConvergenceTopology
-import Mathbin.Analysis.LocallyConvex.Bounded
-import Mathbin.Topology.Algebra.FilterBasis
+import Topology.UniformSpace.UniformConvergenceTopology
+import Analysis.LocallyConvex.Bounded
+import Topology.Algebra.FilterBasis
#align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2b757fc5c341d88741b9c4630b1e8ba973c5726"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Topology.UniformSpace.UniformConvergenceTopology
import Mathbin.Analysis.LocallyConvex.Bounded
import Mathbin.Topology.Algebra.FilterBasis
+#align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2b757fc5c341d88741b9c4630b1e8ba973c5726"
+
/-!
# Algebraic facts about the topology of uniform convergence
mathlib commit https://github.com/leanprover-community/mathlib/commit/2a0ce625dbb0ffbc7d1316597de0b25c1ec75303
@@ -131,7 +131,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
have := h.comap fun p : G Γ G => p.2 / p.1
rw [β uniformity_eq_comap_nhds_one] at this
convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
- ext (i f)
+ ext i f
simp [UniformFun.gen]
#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
#align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
@@ -172,7 +172,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
have := h.comap fun p : G Γ G => p.1 / p.2
rw [β uniformity_eq_comap_nhds_one_swapped] at this
convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ π 1 hπβ hπβ this
- ext (i f)
+ ext i f
simp [UniformOnFun.gen]
#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
#align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -122,6 +122,7 @@ instance : UniformGroup (Ξ± βα΅€ G) :=
uniformContinuous_div).comp
UniformFun.uniformEquivProdArrow.symm.UniformContinuousβ©
+#print UniformFun.hasBasis_nhds_one_of_basis /-
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
@@ -134,7 +135,9 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
simp [UniformFun.gen]
#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
#align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
+-/
+#print UniformFun.hasBasis_nhds_one /-
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis (fun V : Set G => V β (π 1 : Filter G)) fun V =>
@@ -142,6 +145,7 @@ protected theorem UniformFun.hasBasis_nhds_one :
UniformFun.hasBasis_nhds_one_of_basis (basis_sets _)
#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_one
#align uniform_fun.has_basis_nhds_zero UniformFun.hasBasis_nhds_zero
+-/
/-- Let `π : set (set Ξ±)`. If `G` is a uniform group, then `Ξ± βα΅€[π] G` is a uniform group as
well. -/
@@ -157,6 +161,7 @@ instance : UniformGroup (Ξ± βα΅€[π] G) :=
uniformContinuous_div).comp
UniformOnFun.uniformEquivProdArrow.symm.UniformContinuousβ©
+#print UniformOnFun.hasBasis_nhds_one_of_basis /-
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G}
@@ -171,7 +176,9 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
simp [UniformOnFun.gen]
#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
#align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
+-/
+#print UniformOnFun.hasBasis_nhds_one /-
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) :
@@ -181,6 +188,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπ
UniformOnFun.hasBasis_nhds_one_of_basis π hπβ hπβ (basis_sets _)
#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_one
#align uniform_on_fun.has_basis_nhds_zero UniformOnFun.hasBasis_nhds_zero
+-/
end Group
@@ -191,6 +199,7 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print UniformOnFun.continuousSMul_induced_of_image_bounded /-
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
equipped with the topology of `π`-convergence, is a TVS.
@@ -246,7 +255,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
exact ha.le
rwa [Set.mem_inv_smul_set_iffβ ha0] at this
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
+-/
+#print UniformOnFun.continuousSMul_submodule_of_image_bounded /-
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
equipped with the topology of `π`-convergence, is a TVS.
@@ -261,6 +272,7 @@ theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (hπβ : π.
UniformOnFun.continuousSMul_induced_of_image_bounded π Ξ± E H hπβ hπβ
(linear_map.id.dom_restrict H : H ββ[π] Ξ± β E) inducing_subtype_val fun β¨u, huβ© => h u hu
#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded
+-/
end Module
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -125,7 +125,7 @@ instance : UniformGroup (Ξ± βα΅€ G) :=
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
- (π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => { f : Ξ± βα΅€ G | β x, f x β b i } :=
+ (π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => {f : Ξ± βα΅€ G | β x, f x β b i} :=
by
have := h.comap fun p : G Γ G => p.2 / p.1
rw [β uniformity_eq_comap_nhds_one] at this
@@ -138,7 +138,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis (fun V : Set G => V β (π 1 : Filter G)) fun V =>
- { f : Ξ± β G | β x, f x β V } :=
+ {f : Ξ± β G | β x, f x β V} :=
UniformFun.hasBasis_nhds_one_of_basis (basis_sets _)
#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_one
#align uniform_fun.has_basis_nhds_zero UniformFun.hasBasis_nhds_zero
@@ -162,7 +162,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
(hπβ : DirectedOn (Β· β Β·) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
(π 1 : Filter (Ξ± βα΅€[π] G)).HasBasis (fun Si : Set Ξ± Γ ΞΉ => Si.1 β π β§ p Si.2) fun Si =>
- { f : Ξ± βα΅€[π] G | β x β Si.1, f x β b Si.2 } :=
+ {f : Ξ± βα΅€[π] G | β x β Si.1, f x β b Si.2} :=
by
have := h.comap fun p : G Γ G => p.1 / p.2
rw [β uniformity_eq_comap_nhds_one_swapped] at this
@@ -177,7 +177,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπ
(hπβ : DirectedOn (Β· β Β·) π) :
(π 1 : Filter (Ξ± βα΅€[π] G)).HasBasis
(fun SV : Set Ξ± Γ Set G => SV.1 β π β§ SV.2 β (π 1 : Filter G)) fun SV =>
- { f : Ξ± βα΅€[π] G | β x β SV.1, f x β SV.2 } :=
+ {f : Ξ± βα΅€[π] G | β x β SV.1, f x β SV.2} :=
UniformOnFun.hasBasis_nhds_one_of_basis π hπβ hπβ (basis_sets _)
#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_one
#align uniform_on_fun.has_basis_nhds_zero UniformOnFun.hasBasis_nhds_zero
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -128,7 +128,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => { f : Ξ± βα΅€ G | β x, f x β b i } :=
by
have := h.comap fun p : G Γ G => p.2 / p.1
- rw [β uniformity_eq_comap_nhds_one] at this
+ rw [β uniformity_eq_comap_nhds_one] at this
convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
ext (i f)
simp [UniformFun.gen]
@@ -165,7 +165,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
{ f : Ξ± βα΅€[π] G | β x β Si.1, f x β b Si.2 } :=
by
have := h.comap fun p : G Γ G => p.1 / p.2
- rw [β uniformity_eq_comap_nhds_one_swapped] at this
+ rw [β uniformity_eq_comap_nhds_one_swapped] at this
convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ π 1 hπβ hπβ this
ext (i f)
simp [UniformOnFun.gen]
@@ -214,9 +214,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
Β· rintro β¨S, Vβ© β¨hS, hVβ©
have : tendsto (fun kx : π Γ E => kx.1 β’ kx.2) (π (0, 0)) (π <| (0 : π) β’ 0) :=
continuous_smul.tendsto (0 : π Γ E)
- rw [zero_smul, nhds_prod_eq] at this
+ rw [zero_smul, nhds_prod_eq] at this
have := this hV
- rw [mem_map, mem_prod_iff] at this
+ rw [mem_map, mem_prod_iff] at this
rcases this with β¨U, hU, W, hW, hUWβ©
refine' β¨U, hU, β¨S, Wβ©, β¨hS, hWβ©, _β©
rw [Set.smul_subset_iff]
@@ -225,7 +225,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
exact hUW (β¨ha, hu x hxβ© : (a, Ο u x) β U ΓΛ’ W)
Β· rintro a β¨S, Vβ© β¨hS, hVβ©
have : tendsto (fun x : E => a β’ x) (π 0) (π <| a β’ 0) := tendsto_id.const_smul a
- rw [smul_zero] at this
+ rw [smul_zero] at this
refine' β¨β¨S, (Β· β’ Β·) a β»ΒΉ' Vβ©, β¨hS, this hVβ©, fun f hf x hx => _β©
rw [SMulHomClass.map_smul]
exact hf x hx
@@ -236,7 +236,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
by_cases ha0 : a = 0
Β· rw [ha0]
simp [mem_of_mem_nhds hV]
- Β· rw [mem_ball_zero_iff] at ha
+ Β· rw [mem_ball_zero_iff] at ha
rw [SMulHomClass.map_smul, Pi.smul_apply]
have : Ο u x β aβ»ΒΉ β’ V :=
by
@@ -244,7 +244,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
refine' (hr aβ»ΒΉ _) (Set.mem_image_of_mem (Ο u) hx)
rw [norm_inv, le_inv hrpos ha0]
exact ha.le
- rwa [Set.mem_inv_smul_set_iffβ ha0] at this
+ rwa [Set.mem_inv_smul_set_iffβ ha0] at this
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -59,7 +59,7 @@ uniform convergence, strong dual
open Filter
-open Topology Pointwise UniformConvergence
+open scoped Topology Pointwise UniformConvergence
section AlgebraicInstances
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -122,12 +122,6 @@ instance : UniformGroup (Ξ± βα΅€ G) :=
uniformContinuous_div).comp
UniformFun.uniformEquivProdArrow.symm.UniformContinuousβ©
-/- warning: uniform_fun.has_basis_nhds_one_of_basis -> UniformFun.hasBasis_nhds_one_of_basis is a dubious translation:
-lean 3 declaration is
- forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, succ u3} (UniformFun.{u1, u2} Ξ± G) ΞΉ (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) p (fun (i : ΞΉ) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : UniformFun.{u1, u2} Ξ± G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b i))))
-but is expected to have type
- forall {Ξ± : Type.{u1}} {G : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : Group.{u3} G] [_inst_2 : UniformSpace.{u3} G] [_inst_3 : UniformGroup.{u3} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u3} G)}, (Filter.HasBasis.{u3, succ u2} G ΞΉ (nhds.{u3} G (UniformSpace.toTopologicalSpace.{u3} G _inst_2) (OfNat.ofNat.{u3} G 1 (One.toOfNat1.{u3} G (InvOneClass.toOne.{u3} G (DivInvOneMonoid.toInvOneClass.{u3} G (DivisionMonoid.toDivInvOneMonoid.{u3} G (Group.toDivisionMonoid.{u3} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u1 u3, succ u2} (UniformFun.{u1, u3} Ξ± G) ΞΉ (nhds.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (UniformFun.topologicalSpace.{u1, u3} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) 1 (One.toOfNat1.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (InvOneClass.toOne.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (Group.toDivisionMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (instGroupUniformFun.{u1, u3} Ξ± G _inst_1)))))))) p (fun (i : ΞΉ) => setOf.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (fun (f : UniformFun.{u1, u3} Ξ± G) => forall (x : Ξ±), Membership.mem.{u3, u3} G (Set.{u3} G) (Set.instMembershipSet.{u3} G) (f x) (b i))))
-Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basisβ'. -/
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
@@ -141,12 +135,6 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
#align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
-/- warning: uniform_fun.has_basis_nhds_one -> UniformFun.hasBasis_nhds_one is a dubious translation:
-lean 3 declaration is
- forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (UniformFun.{u1, u2} Ξ± G) (Set.{u2} G) (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) V (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) V))
-but is expected to have type
- forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1], Filter.HasBasis.{max u2 u1, succ u1} (UniformFun.{u2, u1} Ξ± G) (Set.{u1} G) (nhds.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (UniformFun.topologicalSpace.{u2, u1} Ξ± G _inst_2) (OfNat.ofNat.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) 1 (One.toOfNat1.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (InvOneClass.toOne.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (Group.toDivisionMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (instGroupUniformFun.{u2, u1} Ξ± G _inst_1)))))))) (fun (V : Set.{u1} G) => Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) V (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1)))))))) (fun (V : Set.{u1} G) => setOf.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) V))
-Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_oneβ'. -/
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis (fun V : Set G => V β (π 1 : Filter G)) fun V =>
@@ -169,12 +157,6 @@ instance : UniformGroup (Ξ± βα΅€[π] G) :=
uniformContinuous_div).comp
UniformOnFun.uniformEquivProdArrow.symm.UniformContinuousβ©
-/- warning: uniform_on_fun.has_basis_nhds_one_of_basis -> UniformOnFun.hasBasis_nhds_one_of_basis is a dubious translation:
-lean 3 declaration is
- forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) π) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) π) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u3)} (UniformOnFun.{u1, u2} Ξ± G π) (Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.monoid.{u1, u2} Ξ± G π (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si) π) (p (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (fun (f : UniformOnFun.{u1, u2} Ξ± G π) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)))))))
-but is expected to have type
- forall {Ξ± : Type.{u3}} {G : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u3} (Set.{u3} Ξ±)), (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384) π) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u1} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u3 u2, max (succ u3) (succ u1)} (UniformOnFun.{u3, u2} Ξ± G π) (Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) (nhds.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u3, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) 1 (One.toOfNat1.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (InvOneClass.toOne.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (DivInvOneMonoid.toInvOneClass.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (DivisionMonoid.toDivInvOneMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (Group.toDivisionMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (instGroupUniformOnFun.{u3, u2} Ξ± G π _inst_1)))))))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si) π) (p (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => setOf.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (fun (f : UniformOnFun.{u3, u2} Ξ± G π) => forall (x : Ξ±), (Membership.mem.{u3, u3} Ξ± (Set.{u3} Ξ±) (Set.instMembershipSet.{u3} Ξ±) x (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)) -> (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) (f x) (b (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)))))))
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basisβ'. -/
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G}
@@ -190,12 +172,6 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
#align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
-/- warning: uniform_on_fun.has_basis_nhds_one -> UniformOnFun.hasBasis_nhds_one is a dubious translation:
-lean 3 declaration is
- forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) π) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) π) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (UniformOnFun.{u1, u2} Ξ± G π) (Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.monoid.{u1, u2} Ξ± G π (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) π) (Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (fun (f : UniformOnFun.{u1, u2} Ξ± G π) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)))))
-but is expected to have type
- forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1] (π : Set.{u2} (Set.{u2} Ξ±)), (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 : Set.{u2} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658 : Set.{u2} Ξ±) => HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.instHasSubsetSet.{u2} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658) π) -> (Filter.HasBasis.{max u2 u1, max (succ u2) (succ u1)} (UniformOnFun.{u2, u1} Ξ± G π) (Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) (nhds.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (UniformOnFun.topologicalSpace.{u2, u1} Ξ± G _inst_2 π) (OfNat.ofNat.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) 1 (One.toOfNat1.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (InvOneClass.toOne.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (Group.toDivisionMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (instGroupUniformOnFun.{u2, u1} Ξ± G π _inst_1)))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => And (Membership.mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.instMembershipSet.{u2} (Set.{u2} Ξ±)) (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) π) (Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1))))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => setOf.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (fun (f : UniformOnFun.{u2, u1} Ξ± G π) => forall (x : Ξ±), (Membership.mem.{u2, u2} Ξ± (Set.{u2} Ξ±) (Set.instMembershipSet.{u2} Ξ±) x (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)) -> (Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)))))
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_oneβ'. -/
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) :
@@ -214,9 +190,6 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
-/- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
@@ -274,9 +247,6 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
rwa [Set.mem_inv_smul_set_iffβ ha0] at this
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
-/- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ'. -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
equipped with the topology of `π`-convergence, is a TVS.
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -215,10 +215,7 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
/- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (Ο : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π H (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
-but is expected to have type
- forall (π : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) π) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) π) -> (forall (Ο : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 π) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toSMul.{u1, u4} π H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π H (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
+<too large>
Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
@@ -278,10 +275,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
/- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (H : Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π (MulOneClass.toHasMul.{u1} π (Monoid.toMulOneClass.{u1} π (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (CoeTCβ.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E π) (fun (x : UniformOnFun.{u2, u3} Ξ± E π) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π))))
-but is expected to have type
- forall (π : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {π : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967) π) -> (forall (H : Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E π), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π π _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (NormedAlgebra.id.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (MonoidWithZero.toMonoid.{u2} π (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E π) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 π))))
+<too large>
Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ'. -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -218,7 +218,7 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
lean 3 declaration is
forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (Ο : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π H (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
but is expected to have type
- forall (π : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) π) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) π) -> (forall (Ο : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 π) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toSMul.{u1, u4} π H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π H (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
+ forall (π : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) π) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) π) -> (forall (Ο : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 π) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toSMul.{u1, u4} π H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π H (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -281,7 +281,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
lean 3 declaration is
forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (H : Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π (MulOneClass.toHasMul.{u1} π (Monoid.toMulOneClass.{u1} π (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (CoeTCβ.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E π) (fun (x : UniformOnFun.{u2, u3} Ξ± E π) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π))))
but is expected to have type
- forall (π : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {π : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970) π) -> (forall (H : Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E π), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π π _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (NormedAlgebra.id.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (MonoidWithZero.toMonoid.{u2} π (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E π) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 π))))
+ forall (π : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {π : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967) π) -> (forall (H : Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E π), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π π _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (NormedAlgebra.id.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (MonoidWithZero.toMonoid.{u2} π (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E π) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 π))))
Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ'. -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
mathlib commit https://github.com/leanprover-community/mathlib/commit/86d04064ca33ee3d3405fbfc497d494fd2dd4796
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Algebra.FilterBasis
/-!
# Algebraic facts about the topology of uniform convergence
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file contains algebraic compatibility results about the uniform structure of uniform
convergence / `π`-convergence. They will mostly be useful for defining strong topologies on the
space of continuous linear maps between two topological vector spaces.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9b2b58d6b14b895b2f375108e765cb47de71aebd
@@ -119,6 +119,12 @@ instance : UniformGroup (Ξ± βα΅€ G) :=
uniformContinuous_div).comp
UniformFun.uniformEquivProdArrow.symm.UniformContinuousβ©
+/- warning: uniform_fun.has_basis_nhds_one_of_basis -> UniformFun.hasBasis_nhds_one_of_basis is a dubious translation:
+lean 3 declaration is
+ forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, succ u3} (UniformFun.{u1, u2} Ξ± G) ΞΉ (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) p (fun (i : ΞΉ) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : UniformFun.{u1, u2} Ξ± G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b i))))
+but is expected to have type
+ forall {Ξ± : Type.{u1}} {G : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : Group.{u3} G] [_inst_2 : UniformSpace.{u3} G] [_inst_3 : UniformGroup.{u3} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u3} G)}, (Filter.HasBasis.{u3, succ u2} G ΞΉ (nhds.{u3} G (UniformSpace.toTopologicalSpace.{u3} G _inst_2) (OfNat.ofNat.{u3} G 1 (One.toOfNat1.{u3} G (InvOneClass.toOne.{u3} G (DivInvOneMonoid.toInvOneClass.{u3} G (DivisionMonoid.toDivInvOneMonoid.{u3} G (Group.toDivisionMonoid.{u3} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u1 u3, succ u2} (UniformFun.{u1, u3} Ξ± G) ΞΉ (nhds.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (UniformFun.topologicalSpace.{u1, u3} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) 1 (One.toOfNat1.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (InvOneClass.toOne.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (Group.toDivisionMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (instGroupUniformFun.{u1, u3} Ξ± G _inst_1)))))))) p (fun (i : ΞΉ) => setOf.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (fun (f : UniformFun.{u1, u3} Ξ± G) => forall (x : Ξ±), Membership.mem.{u3, u3} G (Set.{u3} G) (Set.instMembershipSet.{u3} G) (f x) (b i))))
+Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basisβ'. -/
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
@@ -132,6 +138,12 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b :
#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
#align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
+/- warning: uniform_fun.has_basis_nhds_one -> UniformFun.hasBasis_nhds_one is a dubious translation:
+lean 3 declaration is
+ forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (UniformFun.{u1, u2} Ξ± G) (Set.{u2} G) (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) V (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) V))
+but is expected to have type
+ forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1], Filter.HasBasis.{max u2 u1, succ u1} (UniformFun.{u2, u1} Ξ± G) (Set.{u1} G) (nhds.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (UniformFun.topologicalSpace.{u2, u1} Ξ± G _inst_2) (OfNat.ofNat.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) 1 (One.toOfNat1.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (InvOneClass.toOne.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (Group.toDivisionMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (instGroupUniformFun.{u2, u1} Ξ± G _inst_1)))))))) (fun (V : Set.{u1} G) => Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) V (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1)))))))) (fun (V : Set.{u1} G) => setOf.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) V))
+Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_oneβ'. -/
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one :
(π 1 : Filter (Ξ± βα΅€ G)).HasBasis (fun V : Set G => V β (π 1 : Filter G)) fun V =>
@@ -154,6 +166,12 @@ instance : UniformGroup (Ξ± βα΅€[π] G) :=
uniformContinuous_div).comp
UniformOnFun.uniformEquivProdArrow.symm.UniformContinuousβ©
+/- warning: uniform_on_fun.has_basis_nhds_one_of_basis -> UniformOnFun.hasBasis_nhds_one_of_basis is a dubious translation:
+lean 3 declaration is
+ forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) π) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) π) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u3)} (UniformOnFun.{u1, u2} Ξ± G π) (Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.monoid.{u1, u2} Ξ± G π (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si) π) (p (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (fun (f : UniformOnFun.{u1, u2} Ξ± G π) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)))))))
+but is expected to have type
+ forall {Ξ± : Type.{u3}} {G : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u3} (Set.{u3} Ξ±)), (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384) π) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u1} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u3 u2, max (succ u3) (succ u1)} (UniformOnFun.{u3, u2} Ξ± G π) (Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) (nhds.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u3, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) 1 (One.toOfNat1.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (InvOneClass.toOne.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (DivInvOneMonoid.toInvOneClass.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (DivisionMonoid.toDivInvOneMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (Group.toDivisionMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (instGroupUniformOnFun.{u3, u2} Ξ± G π _inst_1)))))))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si) π) (p (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => setOf.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G π) (fun (f : UniformOnFun.{u3, u2} Ξ± G π) => forall (x : Ξ±), (Membership.mem.{u3, u3} Ξ± (Set.{u3} Ξ±) (Set.instMembershipSet.{u3} Ξ±) x (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)) -> (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) (f x) (b (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)))))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basisβ'. -/
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G}
@@ -169,6 +187,12 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
#align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
+/- warning: uniform_on_fun.has_basis_nhds_one -> UniformOnFun.hasBasis_nhds_one is a dubious translation:
+lean 3 declaration is
+ forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (π : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) π) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) π) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (UniformOnFun.{u1, u2} Ξ± G π) (Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 π) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (UniformOnFun.monoid.{u1, u2} Ξ± G π (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) π) (Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G π) (fun (f : UniformOnFun.{u1, u2} Ξ± G π) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)))))
+but is expected to have type
+ forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1] (π : Set.{u2} (Set.{u2} Ξ±)), (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 : Set.{u2} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658 : Set.{u2} Ξ±) => HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.instHasSubsetSet.{u2} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658) π) -> (Filter.HasBasis.{max u2 u1, max (succ u2) (succ u1)} (UniformOnFun.{u2, u1} Ξ± G π) (Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) (nhds.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (UniformOnFun.topologicalSpace.{u2, u1} Ξ± G _inst_2 π) (OfNat.ofNat.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) 1 (One.toOfNat1.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (InvOneClass.toOne.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (Group.toDivisionMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (instGroupUniformOnFun.{u2, u1} Ξ± G π _inst_1)))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => And (Membership.mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.instMembershipSet.{u2} (Set.{u2} Ξ±)) (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) π) (Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1))))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => setOf.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G π) (fun (f : UniformOnFun.{u2, u1} Ξ± G π) => forall (x : Ξ±), (Membership.mem.{u2, u2} Ξ± (Set.{u2} Ξ±) (Set.instMembershipSet.{u2} Ξ±) x (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)) -> (Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_oneβ'. -/
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπβ : π.Nonempty)
(hπβ : DirectedOn (Β· β Β·) π) :
@@ -187,6 +211,12 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
+/- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (Ο : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E π)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E π) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π H (UniformOnFun.{u2, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π H (UniformOnFun.{u2, u3} Ξ± E π) hom (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toHasSmul.{u1, u4} π H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π H (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π H (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
+but is expected to have type
+ forall (π : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) π) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) π) -> (forall (Ο : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E π) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 π) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E π) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (SMulZeroClass.toSMul.{u1, u4} π H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π H (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π H (UniformOnFun.{u5, u3} Ξ± E π) (MonoidWithZero.toMonoid.{u1} π (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E π) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π (UniformOnFun.{u5, u3} Ξ± E π) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π H (UniformOnFun.{u5, u3} Ξ± E π) hom (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο u) s))) -> (ContinuousSMul.{u1, u4} π H (SMulZeroClass.toSMul.{u1, u4} π H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π H (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π H (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π H (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_6))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
@@ -244,6 +274,12 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
rwa [Set.mem_inv_smul_set_iffβ ha0] at this
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
+/- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π E (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {π : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) π) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) π) -> (forall (H : Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π (MulOneClass.toHasMul.{u1} π (Monoid.toMulOneClass.{u1} π (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toMonoid.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (CoeTCβ.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E π) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E π) (fun (x : UniformOnFun.{u2, u3} Ξ± E π) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E π) (Submodule.setLike.{u1, max u2 u3} π (UniformOnFun.{u2, u3} Ξ± E π) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E π (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 π))))
+but is expected to have type
+ forall (π : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {π : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) π) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970) π) -> (forall (H : Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E π), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s π) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π π _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (NormedAlgebra.id.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (MonoidWithZero.toMonoid.{u2} π (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E π _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E π) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E π) (fun (x : UniformOnFun.{u3, u1} Ξ± E π) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E π)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E π) (Submodule.setLike.{u2, max u3 u1} π (UniformOnFun.{u3, u1} Ξ± E π) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E π (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 π))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ'. -/
/-- Let `E` be a TVS, `π : set (set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
equipped with the topology of `π`-convergence, is a TVS.
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -202,7 +202,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
by
have : TopologicalAddGroup H := by
rw [hΟ.induced]
- exact topological_add_group_induced Ο
+ exact topologicalAddGroup_induced Ο
have : (π 0 : Filter H).HasBasis _ _ :=
by
rw [hΟ.induced, nhds_induced, map_zero]
@@ -254,7 +254,7 @@ theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (hπβ : π.
(h : β u β H, β s β π, Bornology.IsVonNBounded π (u '' s)) :
@ContinuousSMul π H _ _ ((UniformOnFun.topologicalSpace Ξ± E π).induced (coe : H β Ξ± βα΅€[π] E)) :=
haveI : TopologicalAddGroup H :=
- topological_add_group_induced (linear_map.id.dom_restrict H : H ββ[π] Ξ± β E)
+ topologicalAddGroup_induced (linear_map.id.dom_restrict H : H ββ[π] Ξ± β E)
UniformOnFun.continuousSMul_induced_of_image_bounded π Ξ± E H hπβ hπβ
(linear_map.id.dom_restrict H : H ββ[π] Ξ± β E) inducing_subtype_val fun β¨u, huβ© => h u hu
#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
UniformOnFun.continuousSMul_induced_of_image_bounded
for UniformFun
s.Ο : H ββ[π] (Ξ± β E)
and ofFun β Ο
,
not Ο : H ββ[π] (Ξ± βα΅€[π] E)
.@@ -32,13 +32,6 @@ Like in `Topology/UniformSpace/UniformConvergenceTopology`, we use the type alia
`UniformFun` (denoted `Ξ± βα΅€ Ξ²`) and `UniformOnFun` (denoted `Ξ± βα΅€[π] Ξ²`) for functions from `Ξ±`
to `Ξ²` endowed with the structures of uniform convergence and `π`-convergence.
-## TODO
-
-* `UniformOnFun.continuousSMul_induced_of_image_bounded` unnecessarily asks for `π` to be
- nonempty and directed. This will be easy to solve once we know that replacing `π` by its
- ***noncovering*** bornology (i.e ***not*** what `Bornology` currently refers to in mathlib)
- doesn't change the topology.
-
## References
* [N. Bourbaki, *General Topology, Chapter X*][bourbaki1966]
@@ -51,7 +44,8 @@ uniform convergence, strong dual
-/
open Filter
-open scoped Topology Pointwise UniformConvergence
+
+open scoped Topology Pointwise UniformConvergence Uniformity
section AlgebraicInstances
@@ -313,7 +307,41 @@ section Module
variable (π Ξ± E H : Type*) {hom : Type*} [NormedField π] [AddCommGroup H] [Module π H]
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
[ContinuousSMul π E] {π : Set <| Set Ξ±}
- [FunLike hom H (Ξ± βα΅€[π] E)] [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
+ [FunLike hom H (Ξ± β E)] [LinearMapClass hom π H (Ξ± β E)]
+
+/-- Let `E` be a topological vector space over a normed field `π`, let `Ξ±` be any type.
+Let `H` be a submodule of `Ξ± βα΅€ E` such that the range of each `f β H` is von Neumann bounded.
+Then `H` is a topological vector space over `π`,
+i.e., the pointwise scalar multiplication is continuous in both variables.
+
+For convenience we require that `H` is a vector space over `π`
+with a topology induced by `UniformFun.ofFun β Ο`, where `Ο : H ββ[π] (Ξ± β E)`. -/
+lemma UniformFun.continuousSMul_induced_of_range_bounded (Ο : hom)
+ (hΟ : Inducing (ofFun β Ο)) (h : β u : H, Bornology.IsVonNBounded π (Set.range (Ο u))) :
+ ContinuousSMul π H := by
+ have : TopologicalAddGroup H :=
+ let ofFun' : (Ξ± β E) β+ (Ξ± βα΅€ E) := AddMonoidHom.id _
+ Inducing.topologicalAddGroup (ofFun'.comp (Ο : H β+ (Ξ± β E))) hΟ
+ have hb : (π (0 : H)).HasBasis (Β· β π (0 : E)) fun V β¦ {u | β x, Ο u x β V} := by
+ simp only [hΟ.nhds_eq_comap, Function.comp_apply, map_zero]
+ exact UniformFun.hasBasis_nhds_zero.comap _
+ apply ContinuousSMul.of_basis_zero hb
+ Β· intro U hU
+ have : Tendsto (fun x : π Γ E β¦ x.1 β’ x.2) (π 0) (π 0) :=
+ continuous_smul.tendsto' _ _ (zero_smul _ _)
+ rcases ((Filter.basis_sets _).prod_nhds (Filter.basis_sets _)).tendsto_left_iff.1 this U hU
+ with β¨β¨V, Wβ©, β¨hV, hWβ©, hVWβ©
+ refine β¨V, hV, W, hW, Set.smul_subset_iff.2 fun a ha u hu x β¦ ?_β©
+ rw [map_smul]
+ exact hVW (Set.mk_mem_prod ha (hu x))
+ Β· intro c U hU
+ have : Tendsto (c β’ Β· : E β E) (π 0) (π 0) :=
+ (continuous_const_smul c).tendsto' _ _ (smul_zero _)
+ refine β¨_, this hU, fun u hu x β¦ ?_β©
+ simpa only [map_smul] using hu x
+ Β· intro u U hU
+ simp only [Set.mem_setOf_eq, map_smul, Pi.smul_apply]
+ simpa only [Set.mapsTo_range_iff] using (h u hU).eventually_nhds_zero (mem_of_mem_nhds hU)
/-- Let `E` be a TVS, `π : Set (Set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
@@ -323,50 +351,20 @@ For convenience, we don't literally ask for `H : Submodule (Ξ± βα΅€[π] E)`.
result for any vector space `H` equipped with a linear inducing to `Ξ± βα΅€[π] E`, which is often
easier to use. We also state the `Submodule` version as
`UniformOnFun.continuousSMul_submodule_of_image_bounded`. -/
-theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.Nonempty)
- (hπβ : DirectedOn (Β· β Β·) π) (Ο : hom) (hΟ : Inducing Ο)
+theorem UniformOnFun.continuousSMul_induced_of_image_bounded (Ο : hom) (hΟ : Inducing (ofFun π β Ο))
(h : β u : H, β s β π, Bornology.IsVonNBounded π ((Ο u : Ξ± β E) '' s)) :
ContinuousSMul π H := by
- have : TopologicalAddGroup H := by
- rw [hΟ.induced]
- exact topologicalAddGroup_induced Ο
- have : (π 0 : Filter H).HasBasis _ _ := by
- rw [hΟ.induced, nhds_induced, map_zero]
- exact (UniformOnFun.hasBasis_nhds_zero π hπβ hπβ).comap Ο
- refine' ContinuousSMul.of_basis_zero this _ _ _
- Β· rintro β¨S, Vβ© β¨hS, hVβ©
- have : Tendsto (fun kx : π Γ E => kx.1 β’ kx.2) (π (0, 0)) (π <| (0 : π) β’ (0 : E)) :=
- continuous_smul.tendsto (0 : π Γ E)
- rw [zero_smul, nhds_prod_eq] at this
- have := this hV
- rw [mem_map, mem_prod_iff] at this
- rcases this with β¨U, hU, W, hW, hUWβ©
- refine' β¨U, hU, β¨S, Wβ©, β¨hS, hWβ©, _β©
- rw [Set.smul_subset_iff]
- intro a ha u hu x hx
- rw [map_smul]
- exact hUW (β¨ha, hu x hxβ© : (a, Ο u x) β U ΓΛ’ W)
- Β· rintro a β¨S, Vβ© β¨hS, hVβ©
- have : Tendsto (fun x : E => a β’ x) (π 0) (π <| a β’ (0 : E)) := tendsto_id.const_smul a
- rw [smul_zero] at this
- refine' β¨β¨S, (a β’ Β·) β»ΒΉ' Vβ©, β¨hS, this hVβ©, fun f hf x hx => _β©
- rw [map_smul]
- exact hf x hx
- Β· rintro u β¨S, Vβ© β¨hS, hVβ©
- rcases (h u S hS hV).exists_pos with β¨r, hrpos, hrβ©
- rw [Metric.eventually_nhds_iff_ball]
- refine' β¨rβ»ΒΉ, inv_pos.mpr hrpos, fun a ha x hx => _β©
- by_cases ha0 : a = 0
- Β· rw [ha0]
- simpa using mem_of_mem_nhds hV
- Β· rw [mem_ball_zero_iff] at ha
- rw [map_smul, Pi.smul_apply]
- have : Ο u x β aβ»ΒΉ β’ V := by
- have ha0 : 0 < βaβ := norm_pos_iff.mpr ha0
- refine' (hr aβ»ΒΉ _) (Set.mem_image_of_mem (Ο u) hx)
- rw [norm_inv, le_inv hrpos ha0]
- exact ha.le
- rwa [Set.mem_inv_smul_set_iffβ ha0] at this
+ obtain rfl := hΟ.induced; clear hΟ
+ simp only [induced_iInf, UniformOnFun.topologicalSpace_eq, induced_compose]
+ refine continuousSMul_iInf fun s β¦ continuousSMul_iInf fun hs β¦ ?_
+ letI : TopologicalSpace H :=
+ .induced (UniformFun.ofFun β s.restrict β Ο) (UniformFun.topologicalSpace s E)
+ set Ο' : H ββ[π] (s β E) :=
+ { toFun := s.restrict β Ο,
+ map_smul' := fun c x β¦ by exact congr_arg s.restrict (map_smul Ο c x),
+ map_add' := fun x y β¦ by exact congr_arg s.restrict (map_add Ο x y) }
+ refine UniformFun.continuousSMul_induced_of_range_bounded π s E H Ο' β¨rflβ© fun u β¦ ?_
+ simpa only [Set.image_eq_range] using h u s hs
#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
/-- Let `E` be a TVS, `π : Set (Set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
@@ -374,13 +372,10 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
equipped with the topology of `π`-convergence, is a TVS.
If you have a hard time using this lemma, try the one above instead. -/
-theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (hπβ : π.Nonempty)
- (hπβ : DirectedOn (Β· β Β·) π) (H : Submodule π (Ξ± βα΅€[π] E))
+theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (H : Submodule π (Ξ± βα΅€[π] E))
(h : β u β H, β s β π, Bornology.IsVonNBounded π (u '' s)) :
@ContinuousSMul π H _ _ ((UniformOnFun.topologicalSpace Ξ± E π).induced ((β) : H β Ξ± βα΅€[π] E)) :=
- haveI : TopologicalAddGroup H :=
- topologicalAddGroup_induced (LinearMap.id.domRestrict H : H ββ[π] Ξ± β E)
- UniformOnFun.continuousSMul_induced_of_image_bounded π Ξ± E H hπβ hπβ
+ UniformOnFun.continuousSMul_induced_of_image_bounded π Ξ± E H
(LinearMap.id.domRestrict H : H ββ[π] Ξ± β E) inducing_subtype_val fun β¨u, huβ© => h u hu
#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded
The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun
instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike
is EquivLike
, since that has a custom coe_injective'
field that is easier to implement. All other classes should take FunLike
or EquivLike
as a parameter.
Previously, morphism classes would be Type
-valued and extend FunLike
:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
extends FunLike F A B :=
(map_op : β (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
After this PR, they should be Prop
-valued and take FunLike
as a parameter:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
[FunLike F A B] : Prop :=
(map_op : β (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
(Note that A B
stay marked as outParam
even though they are not purely required to be so due to the FunLike
parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam
is slightly faster.)
Similarly, MyEquivClass
should take EquivLike
as a parameter.
As a result, every mention of [MyHomClass F A B]
should become [FunLike F A B] [MyHomClass F A B]
.
While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul
is more expensive. This is due to suboptimal processing of arguments. For example:
variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)
theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y
example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _
Before this PR, applying map_mul f
gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Since M
and N
are out_param
s, [MulHomClass F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found.
After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Now [FunLike F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found, before trying MulHomClass F M N
which fails. Since the Mul
hierarchy is very big, this can be slow to fail, especially when there is no such Mul
instance.
A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul
to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N]
because MulHomClass
fails or succeeds much faster than the others.
As a consequence, the simpNF
linter is much slower since by design it tries and fails to apply many map_
lemmas. The same issue occurs a few times in existing calls to simp [map_mul]
, where map_mul
is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.
simp
not firing sometimesThis affects map_smulββ
and related definitions. For simp
lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw
can find every argument to map_smulββ
successfully but simp
can't: leanprover/lean4#3701.
Especially in the category theory library, we might sometimes have a type A
which is also accessible as a synonym (Bundled A hA).1
. Instance synthesis doesn't always work if we have f : A β* B
but x * y : (Bundled A hA).1
or vice versa. This seems to be mostly fixed by keeping A B
as outParam
s in MulHomClass F A B
. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1
instead of using the syntax in the discrimination tree.)
The timeouts can be worked around for now by specifying which map_mul
we mean, either as map_mul f
for some explicit f
, or as e.g. MonoidHomClass.map_mul
.
map_smulββ
not firing as simp
lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulββ
a simp
lemma instead of the generic map_smulββ
. Writing simp [map_smulββ _]
also works.
Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -312,7 +312,8 @@ section Module
variable (π Ξ± E H : Type*) {hom : Type*} [NormedField π] [AddCommGroup H] [Module π H]
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
- [ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
+ [ContinuousSMul π E] {π : Set <| Set Ξ±}
+ [FunLike hom H (Ξ± βα΅€[π] E)] [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
/-- Let `E` be a TVS, `π : Set (Set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
Absorbs
(#9676)
Redefine Absorbs
and Absorbent
in terms of the cobounded
filter.
@@ -352,7 +352,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
rw [map_smul]
exact hf x hx
Β· rintro u β¨S, Vβ© β¨hS, hVβ©
- rcases h u S hS hV with β¨r, hrpos, hrβ©
+ rcases (h u S hS hV).exists_pos with β¨r, hrpos, hrβ©
rw [Metric.eventually_nhds_iff_ball]
refine' β¨rβ»ΒΉ, inv_pos.mpr hrpos, fun a ha x hx => _β©
by_cases ha0 : a = 0
UniformOnFun
is uniformly continuous (#9714)
UniformInducing.uniformContinuousConstSMul
and its additive version;Ξ± βα΅€ X
and Ξ± βα΅€[π] X
are uniformly continuous;E βSL[Ο] F
is uniformly continuous;M
explicit in ContinuousLinearMap.strongTopology.continuousConstSMul
,
drop unneeded arguments.@@ -292,6 +292,22 @@ protected theorem UniformOnFun.hasBasis_nhds_one (π : Set <| Set Ξ±) (hπ
end Group
+section ConstSMul
+
+variable (M Ξ± X : Type*) [SMul M X] [UniformSpace X] [UniformContinuousConstSMul M X]
+
+instance UniformFun.uniformContinuousConstSMul :
+ UniformContinuousConstSMul M (Ξ± βα΅€ X) where
+ uniformContinuous_const_smul c := UniformFun.postcomp_uniformContinuous <|
+ uniformContinuous_const_smul c
+
+instance UniformFunOn.uniformContinuousConstSMul {π : Set (Set Ξ±)} :
+ UniformContinuousConstSMul M (Ξ± βα΅€[π] X) where
+ uniformContinuous_const_smul c := UniformOnFun.postcomp_uniformContinuous <|
+ uniformContinuous_const_smul c
+
+end ConstSMul
+
section Module
variable (π Ξ± E H : Type*) {hom : Type*} [NormedField π] [AddCommGroup H] [Module π H]
variable
, fix types (#9132)
variable
.toFun
/ofFun
to abuse the definitional equality less often.Topology.Algebra.UniformConvergence
.*_apply
lemmas with toFun_*
/ofFun_*
lemmas.@@ -50,16 +50,80 @@ uniform convergence, strong dual
-/
-set_option autoImplicit true
+open Filter
+open scoped Topology Pointwise UniformConvergence
+section AlgebraicInstances
-open Filter
+variable {Ξ± Ξ² ΞΉ R : Type*} {π : Set <| Set Ξ±} {x : Ξ±}
-open Topology Pointwise UniformConvergence
+@[to_additive] instance [One Ξ²] : One (Ξ± βα΅€ Ξ²) := Pi.instOne
-section AlgebraicInstances
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_one [One Ξ²] : toFun (1 : Ξ± βα΅€ Ξ²) = 1 := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_one [One Ξ²] : ofFun (1 : Ξ± β Ξ²) = 1 := rfl
+
+@[to_additive] instance [One Ξ²] : One (Ξ± βα΅€[π] Ξ²) := Pi.instOne
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_one [One Ξ²] : toFun π (1 : Ξ± βα΅€[π] Ξ²) = 1 := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.one_apply [One Ξ²] : ofFun π (1 : Ξ± β Ξ²) = 1 := rfl
+
+@[to_additive] instance [Mul Ξ²] : Mul (Ξ± βα΅€ Ξ²) := Pi.instMul
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_mul [Mul Ξ²] (f g : Ξ± βα΅€ Ξ²) : toFun (f * g) = toFun f * toFun g := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_mul [Mul Ξ²] (f g : Ξ± β Ξ²) : ofFun (f * g) = ofFun f * ofFun g := rfl
+
+@[to_additive] instance [Mul Ξ²] : Mul (Ξ± βα΅€[π] Ξ²) := Pi.instMul
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_mul [Mul Ξ²] (f g : Ξ± βα΅€[π] Ξ²) :
+ toFun π (f * g) = toFun π f * toFun π g :=
+ rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_mul [Mul Ξ²] (f g : Ξ± β Ξ²) : ofFun π (f * g) = ofFun π f * ofFun π g := rfl
+
+@[to_additive] instance [Inv Ξ²] : Inv (Ξ± βα΅€ Ξ²) := Pi.instInv
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_inv [Inv Ξ²] (f : Ξ± βα΅€ Ξ²) : toFun (fβ»ΒΉ) = (toFun f)β»ΒΉ := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_inv [Inv Ξ²] (f : Ξ± β Ξ²) : ofFun (fβ»ΒΉ) = (ofFun f)β»ΒΉ := rfl
+
+@[to_additive] instance [Inv Ξ²] : Inv (Ξ± βα΅€[π] Ξ²) := Pi.instInv
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_inv [Inv Ξ²] (f : Ξ± βα΅€[π] Ξ²) : toFun π (fβ»ΒΉ) = (toFun π f)β»ΒΉ := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_inv [Inv Ξ²] (f : Ξ± β Ξ²) : ofFun π (fβ»ΒΉ) = (ofFun π f)β»ΒΉ := rfl
-variable {Ξ± Ξ² ΞΉ R : Type*} {π : Set <| Set Ξ±}
+@[to_additive] instance [Div Ξ²] : Div (Ξ± βα΅€ Ξ²) := Pi.instDiv
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_div [Div Ξ²] (f g : Ξ± βα΅€ Ξ²) : toFun (f / g) = toFun f / toFun g := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_div [Div Ξ²] (f g : Ξ± β Ξ²) : ofFun (f / g) = ofFun f / ofFun g := rfl
+
+@[to_additive] instance [Div Ξ²] : Div (Ξ± βα΅€[π] Ξ²) := Pi.instDiv
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_div [Div Ξ²] (f g : Ξ± βα΅€[π] Ξ²) :
+ toFun π (f / g) = toFun π f / toFun π g :=
+ rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_div [Div Ξ²] (f g : Ξ± β Ξ²) : ofFun π (f / g) = ofFun π f / ofFun π g := rfl
@[to_additive]
instance [Monoid Ξ²] : Monoid (Ξ± βα΅€ Ξ²) :=
@@ -93,37 +157,63 @@ instance [CommGroup Ξ²] : CommGroup (Ξ± βα΅€ Ξ²) :=
instance [CommGroup Ξ²] : CommGroup (Ξ± βα΅€[π] Ξ²) :=
Pi.commGroup
-instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± βα΅€ Ξ²) :=
- Pi.module _ _ _
+instance {M : Type*} [SMul M Ξ²] : SMul M (Ξ± βα΅€ Ξ²) := Pi.instSMul
-instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± βα΅€[π] Ξ²) :=
- Pi.module _ _ _
+@[simp]
+lemma UniformFun.toFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± βα΅€ Ξ²) :
+ toFun (c β’ f) = c β’ toFun f :=
+ rfl
--- Porting note: unfortunately `simp` will no longer use `Pi.one_apply` etc.
--- on `Ξ± βα΅€ Ξ²` or `Ξ± βα΅€[π] Ξ²`, so we restate some of these here. More may be needed later.
-@[to_additive (attr := simp)]
-lemma UniformFun.one_apply [Monoid Ξ²] : (1 : Ξ± βα΅€ Ξ²) x = 1 := Pi.one_apply x
+@[simp]
+lemma UniformFun.ofFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β Ξ²) :
+ ofFun (c β’ f) = c β’ ofFun f :=
+ rfl
-@[to_additive (attr := simp)]
-lemma UniformOnFun.one_apply [Monoid Ξ²] : (1 : Ξ± βα΅€[π] Ξ²) x = 1 := Pi.one_apply x
+instance {M : Type*} [SMul M Ξ²] : SMul M (Ξ± βα΅€[π] Ξ²) := Pi.instSMul
-@[to_additive (attr := simp)]
-lemma UniformFun.mul_apply [Monoid Ξ²] : (f * g : Ξ± βα΅€ Ξ²) x = f x * g x := Pi.mul_apply f g x
+@[simp]
+lemma UniformOnFun.toFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± βα΅€[π] Ξ²) :
+ toFun π (c β’ f) = c β’ toFun π f :=
+ rfl
-@[to_additive (attr := simp)]
-lemma UniformOnFun.mul_apply [Monoid Ξ²] : (f * g : Ξ± βα΅€[π] Ξ²) x = f x * g x := Pi.mul_apply f g x
+@[simp]
+lemma UniformOnFun.ofFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β Ξ²) :
+ ofFun π (c β’ f) = c β’ ofFun π f :=
+ rfl
-@[to_additive (attr := simp)]
-lemma UniformFun.inv_apply [Group Ξ²] : (f : Ξ± βα΅€ Ξ²)β»ΒΉ x = (f x)β»ΒΉ := Pi.inv_apply f x
+instance {M N : Type*} [SMul M N] [SMul M Ξ²] [SMul N Ξ²] [IsScalarTower M N Ξ²] :
+ IsScalarTower M N (Ξ± βα΅€ Ξ²) :=
+ Pi.isScalarTower
-@[to_additive (attr := simp)]
-lemma UniformOnFun.inv_apply [Group Ξ²] : (f : Ξ± βα΅€[π] Ξ²)β»ΒΉ x = (f x)β»ΒΉ := Pi.inv_apply f x
+instance {M N : Type*} [SMul M N] [SMul M Ξ²] [SMul N Ξ²] [IsScalarTower M N Ξ²] :
+ IsScalarTower M N (Ξ± βα΅€[π] Ξ²) :=
+ Pi.isScalarTower
-@[to_additive (attr := simp)]
-lemma UniformFun.div_apply [Group Ξ²] : (f / g : Ξ± βα΅€ Ξ²) x = f x / g x := Pi.div_apply f g x
+instance {M N : Type*} [SMul M Ξ²] [SMul N Ξ²] [SMulCommClass M N Ξ²] :
+ SMulCommClass M N (Ξ± βα΅€ Ξ²) :=
+ Pi.smulCommClass
-@[to_additive (attr := simp)]
-lemma UniformOnFun.div_apply [Group Ξ²] : (f / g : Ξ± βα΅€[π] Ξ²) x = f x / g x := Pi.div_apply f g x
+instance {M N : Type*} [SMul M Ξ²] [SMul N Ξ²] [SMulCommClass M N Ξ²] :
+ SMulCommClass M N (Ξ± βα΅€[π] Ξ²) :=
+ Pi.smulCommClass
+
+instance {M : Type*} [Monoid M] [MulAction M Ξ²] : MulAction M (Ξ± βα΅€ Ξ²) := Pi.mulAction _
+
+instance {M : Type*} [Monoid M] [MulAction M Ξ²] : MulAction M (Ξ± βα΅€[π] Ξ²) := Pi.mulAction _
+
+instance {M : Type*} [Monoid M] [AddMonoid Ξ²] [DistribMulAction M Ξ²] :
+ DistribMulAction M (Ξ± βα΅€ Ξ²) :=
+ Pi.distribMulAction _
+
+instance {M : Type*} [Monoid M] [AddMonoid Ξ²] [DistribMulAction M Ξ²] :
+ DistribMulAction M (Ξ± βα΅€[π] Ξ²) :=
+ Pi.distribMulAction _
+
+instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± βα΅€ Ξ²) :=
+ Pi.module _ _ _
+
+instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± βα΅€[π] Ξ²) :=
+ Pi.module _ _ _
end AlgebraicInstances
@@ -146,12 +236,12 @@ instance : UniformGroup (Ξ± βα΅€ G) :=
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
- (π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => { f : Ξ± βα΅€ G | β x, f x β b i } := by
+ (π 1 : Filter (Ξ± βα΅€ G)).HasBasis p fun i => { f : Ξ± βα΅€ G | β x, toFun f x β b i } := by
have := h.comap fun p : G Γ G => p.2 / p.1
rw [β uniformity_eq_comap_nhds_one] at this
convert UniformFun.hasBasis_nhds_of_basis Ξ± _ (1 : Ξ± βα΅€ G) this
-- Porting note: removed `ext i f` here, as it has already been done by `convert`.
- simp [UniformFun.gen]
+ simp
#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
#align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
@@ -181,7 +271,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (π : Set <| Set Ξ±)
(hπβ : DirectedOn (Β· β Β·) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G}
(h : (π 1 : Filter G).HasBasis p b) :
(π 1 : Filter (Ξ± βα΅€[π] G)).HasBasis (fun Si : Set Ξ± Γ ΞΉ => Si.1 β π β§ p Si.2) fun Si =>
- { f : Ξ± βα΅€[π] G | β x β Si.1, f x β b Si.2 } := by
+ { f : Ξ± βα΅€[π] G | β x β Si.1, toFun π f x β b Si.2 } := by
have := h.comap fun p : G Γ G => p.1 / p.2
rw [β uniformity_eq_comap_nhds_one_swapped] at this
convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ π (1 : Ξ± βα΅€[π] G) hπβ hπβ this
Filter.map_smul
(#8935)
We use SMulHomClass.map_smul
much more often, even when the Filter
namespace is opened.
@@ -237,13 +237,13 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
refine' β¨U, hU, β¨S, Wβ©, β¨hS, hWβ©, _β©
rw [Set.smul_subset_iff]
intro a ha u hu x hx
- rw [SMulHomClass.map_smul]
+ rw [map_smul]
exact hUW (β¨ha, hu x hxβ© : (a, Ο u x) β U ΓΛ’ W)
Β· rintro a β¨S, Vβ© β¨hS, hVβ©
have : Tendsto (fun x : E => a β’ x) (π 0) (π <| a β’ (0 : E)) := tendsto_id.const_smul a
rw [smul_zero] at this
refine' β¨β¨S, (a β’ Β·) β»ΒΉ' Vβ©, β¨hS, this hVβ©, fun f hf x hx => _β©
- rw [SMulHomClass.map_smul]
+ rw [map_smul]
exact hf x hx
Β· rintro u β¨S, Vβ© β¨hS, hVβ©
rcases h u S hS hV with β¨r, hrpos, hrβ©
@@ -253,7 +253,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
Β· rw [ha0]
simpa using mem_of_mem_nhds hV
Β· rw [mem_ball_zero_iff] at ha
- rw [SMulHomClass.map_smul, Pi.smul_apply]
+ rw [map_smul, Pi.smul_apply]
have : Ο u x β aβ»ΒΉ β’ V := by
have ha0 : 0 < βaβ := norm_pos_iff.mpr ha0
refine' (hr aβ»ΒΉ _) (Set.mem_image_of_mem (Ο u) hx)
Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.
The intent of this PR is to make autoImplicit
opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true
in the few files that rely on it.
That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.
I claim that many of the uses of autoImplicit
in these files are accidental; situations such as:
variables
are in scope, but pasting the lemma in the wrong sectionHaving set_option autoImplicit false
as the default prevents these types of mistake being made in the 90% of files where autoImplicit
s are not used at all, and causes them to be caught by CI during review.
I think there were various points during the port where we encouraged porters to delete the universes u v
lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.
A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18
as the no:dontcare:yes
vote ratio.
While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true
has been placed locally within a section, rather than at the top of the file.
@@ -50,6 +50,8 @@ uniform convergence, strong dual
-/
+set_option autoImplicit true
+
open Filter
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -57,7 +57,7 @@ open Topology Pointwise UniformConvergence
section AlgebraicInstances
-variable {Ξ± Ξ² ΞΉ R : Type _} {π : Set <| Set Ξ±}
+variable {Ξ± Ξ² ΞΉ R : Type*} {π : Set <| Set Ξ±}
@[to_additive]
instance [Monoid Ξ²] : Monoid (Ξ± βα΅€ Ξ²) :=
@@ -127,7 +127,7 @@ end AlgebraicInstances
section Group
-variable {Ξ± G ΞΉ : Type _} [Group G] {π : Set <| Set Ξ±} [UniformSpace G] [UniformGroup G]
+variable {Ξ± G ΞΉ : Type*} [Group G] {π : Set <| Set Ξ±} [UniformSpace G] [UniformGroup G]
/-- If `G` is a uniform group, then `Ξ± βα΅€ G` is a uniform group as well. -/
@[to_additive "If `G` is a uniform additive group,
@@ -202,7 +202,7 @@ end Group
section Module
-variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup H] [Module π H]
+variable (π Ξ± E H : Type*) {hom : Type*} [NormedField π] [AddCommGroup H] [Module π H]
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
@@ -2,16 +2,13 @@
Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Topology.UniformSpace.UniformConvergenceTopology
import Mathlib.Analysis.LocallyConvex.Bounded
import Mathlib.Topology.Algebra.FilterBasis
+#align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
/-!
# Algebraic facts about the topology of uniform convergence
Now that leanprover/lean4#2210 has been merged, this PR:
set_option synthInstance.etaExperiment true
commands (and some etaExperiment%
term elaborators)set_option maxHeartbeats
commandsCo-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>
@@ -209,10 +209,6 @@ variable (π Ξ± E H : Type _) {hom : Type _} [NormedField π] [AddCommGroup
[AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
[ContinuousSMul π E] {π : Set <| Set Ξ±} [LinearMapClass hom π H (Ξ± βα΅€[π] E)]
--- Porting note:
--- This is another alarming location where we need to use
--- `eta_experiment%` to elaborate a particular subterm, but having `synthInstance.etaExperiment`
--- on for the whole declaration breaks other typeclass search.
/-- Let `E` be a TVS, `π : Set (Set Ξ±)` and `H` a submodule of `Ξ± βα΅€[π] E`. If the image of any
`S β π` by any `u β H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
equipped with the topology of `π`-convergence, is a TVS.
@@ -231,7 +227,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (hπβ : π.No
have : (π 0 : Filter H).HasBasis _ _ := by
rw [hΟ.induced, nhds_induced, map_zero]
exact (UniformOnFun.hasBasis_nhds_zero π hπβ hπβ).comap Ο
- refine' eta_experiment% ContinuousSMul.of_basis_zero this _ _ _
+ refine' ContinuousSMul.of_basis_zero this _ _ _
Β· rintro β¨S, Vβ© β¨hS, hVβ©
have : Tendsto (fun kx : π Γ E => kx.1 β’ kx.2) (π (0, 0)) (π <| (0 : π) β’ (0 : E)) :=
continuous_smul.tendsto (0 : π Γ E)
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file