topology.algebra.uniform_convergence ⟷ Mathlib.Topology.Algebra.UniformConvergence

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -227,13 +227,13 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩
     rw [Set.smul_subset_iff]
     intro a ha u hu x hx
-    rw [SMulHomClass.map_smul]
+    rw [MulActionSemiHomClass.map_smul]
     exact hUW (⟨ha, hu x hx⟩ : (a, Ο† u x) ∈ U Γ—Λ’ W)
   · rintro a ⟨S, V⟩ ⟨hS, hV⟩
     have : tendsto (fun x : E => a β€’ x) (𝓝 0) (𝓝 <| a β€’ 0) := tendsto_id.const_smul a
     rw [smul_zero] at this
     refine' ⟨⟨S, (Β· β€’ Β·) a ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩
-    rw [SMulHomClass.map_smul]
+    rw [MulActionSemiHomClass.map_smul]
     exact hf x hx
   · rintro u ⟨S, V⟩ ⟨hS, hV⟩
     rcases h u S hS hV with ⟨r, hrpos, hr⟩
@@ -243,7 +243,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     Β· rw [ha0]
       simp [mem_of_mem_nhds hV]
     Β· rw [mem_ball_zero_iff] at ha
-      rw [SMulHomClass.map_smul, Pi.smul_apply]
+      rw [MulActionSemiHomClass.map_smul, Pi.smul_apply]
       have : Ο† u x ∈ a⁻¹ β€’ V :=
         by
         have ha0 : 0 < β€–aβ€– := norm_pos_iff.mpr ha0
Diff
@@ -126,7 +126,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => {f : Ξ± β†’α΅€ G | βˆ€ x, f x ∈ b i} :=
   by
   have := h.comap fun p : G Γ— G => p.2 / p.1
-  rw [← uniformity_eq_comap_nhds_one] at this 
+  rw [← uniformity_eq_comap_nhds_one] at this
   convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
   ext i f
   simp [UniformFun.gen]
@@ -167,7 +167,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
       {f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
   by
   have := h.comap fun p : G Γ— G => p.1 / p.2
-  rw [← uniformity_eq_comap_nhds_one_swapped] at this 
+  rw [← uniformity_eq_comap_nhds_one_swapped] at this
   convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ 𝔖 1 h𝔖₁ h𝔖₂ this
   ext i f
   simp [UniformOnFun.gen]
@@ -220,9 +220,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
   · rintro ⟨S, V⟩ ⟨hS, hV⟩
     have : tendsto (fun kx : π•œ Γ— E => kx.1 β€’ kx.2) (𝓝 (0, 0)) (𝓝 <| (0 : π•œ) β€’ 0) :=
       continuous_smul.tendsto (0 : π•œ Γ— E)
-    rw [zero_smul, nhds_prod_eq] at this 
+    rw [zero_smul, nhds_prod_eq] at this
     have := this hV
-    rw [mem_map, mem_prod_iff] at this 
+    rw [mem_map, mem_prod_iff] at this
     rcases this with ⟨U, hU, W, hW, hUW⟩
     refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩
     rw [Set.smul_subset_iff]
@@ -231,7 +231,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     exact hUW (⟨ha, hu x hx⟩ : (a, Ο† u x) ∈ U Γ—Λ’ W)
   · rintro a ⟨S, V⟩ ⟨hS, hV⟩
     have : tendsto (fun x : E => a β€’ x) (𝓝 0) (𝓝 <| a β€’ 0) := tendsto_id.const_smul a
-    rw [smul_zero] at this 
+    rw [smul_zero] at this
     refine' ⟨⟨S, (Β· β€’ Β·) a ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩
     rw [SMulHomClass.map_smul]
     exact hf x hx
@@ -242,7 +242,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     by_cases ha0 : a = 0
     Β· rw [ha0]
       simp [mem_of_mem_nhds hV]
-    Β· rw [mem_ball_zero_iff] at ha 
+    Β· rw [mem_ball_zero_iff] at ha
       rw [SMulHomClass.map_smul, Pi.smul_apply]
       have : Ο† u x ∈ a⁻¹ β€’ V :=
         by
@@ -250,7 +250,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
         refine' (hr a⁻¹ _) (Set.mem_image_of_mem (Ο† u) hx)
         rw [norm_inv, le_inv hrpos ha0]
         exact ha.le
-      rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this 
+      rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 -/
-import Mathbin.Topology.UniformSpace.UniformConvergenceTopology
-import Mathbin.Analysis.LocallyConvex.Bounded
-import Mathbin.Topology.Algebra.FilterBasis
+import Topology.UniformSpace.UniformConvergenceTopology
+import Analysis.LocallyConvex.Bounded
+import Topology.Algebra.FilterBasis
 
 #align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2b757fc5c341d88741b9c4630b1e8ba973c5726"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.UniformSpace.UniformConvergenceTopology
 import Mathbin.Analysis.LocallyConvex.Bounded
 import Mathbin.Topology.Algebra.FilterBasis
 
+#align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2b757fc5c341d88741b9c4630b1e8ba973c5726"
+
 /-!
 # Algebraic facts about the topology of uniform convergence
 
Diff
@@ -131,7 +131,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
   have := h.comap fun p : G Γ— G => p.2 / p.1
   rw [← uniformity_eq_comap_nhds_one] at this 
   convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
-  ext (i f)
+  ext i f
   simp [UniformFun.gen]
 #align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
 #align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
@@ -172,7 +172,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
   have := h.comap fun p : G Γ— G => p.1 / p.2
   rw [← uniformity_eq_comap_nhds_one_swapped] at this 
   convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ 𝔖 1 h𝔖₁ h𝔖₂ this
-  ext (i f)
+  ext i f
   simp [UniformOnFun.gen]
 #align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
 #align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
Diff
@@ -122,6 +122,7 @@ instance : UniformGroup (Ξ± β†’α΅€ G) :=
           uniformContinuous_div).comp
       UniformFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
+#print UniformFun.hasBasis_nhds_one_of_basis /-
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
@@ -134,7 +135,9 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
   simp [UniformFun.gen]
 #align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
 #align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
+-/
 
+#print UniformFun.hasBasis_nhds_one /-
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one :
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V =>
@@ -142,6 +145,7 @@ protected theorem UniformFun.hasBasis_nhds_one :
   UniformFun.hasBasis_nhds_one_of_basis (basis_sets _)
 #align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_one
 #align uniform_fun.has_basis_nhds_zero UniformFun.hasBasis_nhds_zero
+-/
 
 /-- Let `𝔖 : set (set Ξ±)`. If `G` is a uniform group, then `Ξ± β†’α΅€[𝔖] G` is a uniform group as
 well. -/
@@ -157,6 +161,7 @@ instance : UniformGroup (Ξ± β†’α΅€[𝔖] G) :=
           uniformContinuous_div).comp
       UniformOnFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
+#print UniformOnFun.hasBasis_nhds_one_of_basis /-
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
@@ -171,7 +176,9 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
   simp [UniformOnFun.gen]
 #align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
 #align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
+-/
 
+#print UniformOnFun.hasBasis_nhds_one /-
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
@@ -181,6 +188,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖
   UniformOnFun.hasBasis_nhds_one_of_basis 𝔖 h𝔖₁ h𝔖₂ (basis_sets _)
 #align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_one
 #align uniform_on_fun.has_basis_nhds_zero UniformOnFun.hasBasis_nhds_zero
+-/
 
 end Group
 
@@ -191,6 +199,7 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print UniformOnFun.continuousSMul_induced_of_image_bounded /-
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
 equipped with the topology of `𝔖`-convergence, is a TVS.
@@ -246,7 +255,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
         exact ha.le
       rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this 
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
+-/
 
+#print UniformOnFun.continuousSMul_submodule_of_image_bounded /-
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
 equipped with the topology of `𝔖`-convergence, is a TVS.
@@ -261,6 +272,7 @@ theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (h𝔖₁ : 𝔖.
   UniformOnFun.continuousSMul_induced_of_image_bounded π•œ Ξ± E H h𝔖₁ h𝔖₂
     (linear_map.id.dom_restrict H : H β†’β‚—[π•œ] Ξ± β†’ E) inducing_subtype_val fun ⟨u, hu⟩ => h u hu
 #align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded
+-/
 
 end Module
 
Diff
@@ -125,7 +125,7 @@ instance : UniformGroup (Ξ± β†’α΅€ G) :=
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
-    (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => { f : Ξ± β†’α΅€ G | βˆ€ x, f x ∈ b i } :=
+    (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => {f : Ξ± β†’α΅€ G | βˆ€ x, f x ∈ b i} :=
   by
   have := h.comap fun p : G Γ— G => p.2 / p.1
   rw [← uniformity_eq_comap_nhds_one] at this 
@@ -138,7 +138,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one :
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V =>
-      { f : Ξ± β†’ G | βˆ€ x, f x ∈ V } :=
+      {f : Ξ± β†’ G | βˆ€ x, f x ∈ V} :=
   UniformFun.hasBasis_nhds_one_of_basis (basis_sets _)
 #align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_one
 #align uniform_fun.has_basis_nhds_zero UniformFun.hasBasis_nhds_zero
@@ -162,7 +162,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
     (𝓝 1 : Filter (Ξ± β†’α΅€[𝔖] G)).HasBasis (fun Si : Set Ξ± Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2) fun Si =>
-      { f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
+      {f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, f x ∈ b Si.2} :=
   by
   have := h.comap fun p : G Γ— G => p.1 / p.2
   rw [← uniformity_eq_comap_nhds_one_swapped] at this 
@@ -177,7 +177,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
     (𝓝 1 : Filter (Ξ± β†’α΅€[𝔖] G)).HasBasis
       (fun SV : Set Ξ± Γ— Set G => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 1 : Filter G)) fun SV =>
-      { f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ SV.1, f x ∈ SV.2 } :=
+      {f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ SV.1, f x ∈ SV.2} :=
   UniformOnFun.hasBasis_nhds_one_of_basis 𝔖 h𝔖₁ h𝔖₂ (basis_sets _)
 #align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_one
 #align uniform_on_fun.has_basis_nhds_zero UniformOnFun.hasBasis_nhds_zero
Diff
@@ -128,7 +128,7 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => { f : Ξ± β†’α΅€ G | βˆ€ x, f x ∈ b i } :=
   by
   have := h.comap fun p : G Γ— G => p.2 / p.1
-  rw [← uniformity_eq_comap_nhds_one] at this
+  rw [← uniformity_eq_comap_nhds_one] at this 
   convert UniformFun.hasBasis_nhds_of_basis Ξ± _ 1 this
   ext (i f)
   simp [UniformFun.gen]
@@ -165,7 +165,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
       { f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } :=
   by
   have := h.comap fun p : G Γ— G => p.1 / p.2
-  rw [← uniformity_eq_comap_nhds_one_swapped] at this
+  rw [← uniformity_eq_comap_nhds_one_swapped] at this 
   convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ 𝔖 1 h𝔖₁ h𝔖₂ this
   ext (i f)
   simp [UniformOnFun.gen]
@@ -214,9 +214,9 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
   · rintro ⟨S, V⟩ ⟨hS, hV⟩
     have : tendsto (fun kx : π•œ Γ— E => kx.1 β€’ kx.2) (𝓝 (0, 0)) (𝓝 <| (0 : π•œ) β€’ 0) :=
       continuous_smul.tendsto (0 : π•œ Γ— E)
-    rw [zero_smul, nhds_prod_eq] at this
+    rw [zero_smul, nhds_prod_eq] at this 
     have := this hV
-    rw [mem_map, mem_prod_iff] at this
+    rw [mem_map, mem_prod_iff] at this 
     rcases this with ⟨U, hU, W, hW, hUW⟩
     refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩
     rw [Set.smul_subset_iff]
@@ -225,7 +225,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     exact hUW (⟨ha, hu x hx⟩ : (a, Ο† u x) ∈ U Γ—Λ’ W)
   · rintro a ⟨S, V⟩ ⟨hS, hV⟩
     have : tendsto (fun x : E => a β€’ x) (𝓝 0) (𝓝 <| a β€’ 0) := tendsto_id.const_smul a
-    rw [smul_zero] at this
+    rw [smul_zero] at this 
     refine' ⟨⟨S, (Β· β€’ Β·) a ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩
     rw [SMulHomClass.map_smul]
     exact hf x hx
@@ -236,7 +236,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     by_cases ha0 : a = 0
     Β· rw [ha0]
       simp [mem_of_mem_nhds hV]
-    Β· rw [mem_ball_zero_iff] at ha
+    Β· rw [mem_ball_zero_iff] at ha 
       rw [SMulHomClass.map_smul, Pi.smul_apply]
       have : Ο† u x ∈ a⁻¹ β€’ V :=
         by
@@ -244,7 +244,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
         refine' (hr a⁻¹ _) (Set.mem_image_of_mem (Ο† u) hx)
         rw [norm_inv, le_inv hrpos ha0]
         exact ha.le
-      rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this
+      rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this 
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
Diff
@@ -59,7 +59,7 @@ uniform convergence, strong dual
 
 open Filter
 
-open Topology Pointwise UniformConvergence
+open scoped Topology Pointwise UniformConvergence
 
 section AlgebraicInstances
 
Diff
@@ -122,12 +122,6 @@ instance : UniformGroup (Ξ± β†’α΅€ G) :=
           uniformContinuous_div).comp
       UniformFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
-/- warning: uniform_fun.has_basis_nhds_one_of_basis -> UniformFun.hasBasis_nhds_one_of_basis is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, succ u3} (UniformFun.{u1, u2} Ξ± G) ΞΉ (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) p (fun (i : ΞΉ) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : UniformFun.{u1, u2} Ξ± G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b i))))
-but is expected to have type
-  forall {Ξ± : Type.{u1}} {G : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : Group.{u3} G] [_inst_2 : UniformSpace.{u3} G] [_inst_3 : UniformGroup.{u3} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u3} G)}, (Filter.HasBasis.{u3, succ u2} G ΞΉ (nhds.{u3} G (UniformSpace.toTopologicalSpace.{u3} G _inst_2) (OfNat.ofNat.{u3} G 1 (One.toOfNat1.{u3} G (InvOneClass.toOne.{u3} G (DivInvOneMonoid.toInvOneClass.{u3} G (DivisionMonoid.toDivInvOneMonoid.{u3} G (Group.toDivisionMonoid.{u3} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u1 u3, succ u2} (UniformFun.{u1, u3} Ξ± G) ΞΉ (nhds.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (UniformFun.topologicalSpace.{u1, u3} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) 1 (One.toOfNat1.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (InvOneClass.toOne.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (Group.toDivisionMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (instGroupUniformFun.{u1, u3} Ξ± G _inst_1)))))))) p (fun (i : ΞΉ) => setOf.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (fun (f : UniformFun.{u1, u3} Ξ± G) => forall (x : Ξ±), Membership.mem.{u3, u3} G (Set.{u3} G) (Set.instMembershipSet.{u3} G) (f x) (b i))))
-Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basisβ‚“'. -/
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
@@ -141,12 +135,6 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
 #align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
 #align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
 
-/- warning: uniform_fun.has_basis_nhds_one -> UniformFun.hasBasis_nhds_one is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (UniformFun.{u1, u2} Ξ± G) (Set.{u2} G) (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) V (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) V))
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1], Filter.HasBasis.{max u2 u1, succ u1} (UniformFun.{u2, u1} Ξ± G) (Set.{u1} G) (nhds.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (UniformFun.topologicalSpace.{u2, u1} Ξ± G _inst_2) (OfNat.ofNat.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) 1 (One.toOfNat1.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (InvOneClass.toOne.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (Group.toDivisionMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (instGroupUniformFun.{u2, u1} Ξ± G _inst_1)))))))) (fun (V : Set.{u1} G) => Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) V (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1)))))))) (fun (V : Set.{u1} G) => setOf.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) V))
-Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_oneβ‚“'. -/
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one :
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V =>
@@ -169,12 +157,6 @@ instance : UniformGroup (Ξ± β†’α΅€[𝔖] G) :=
           uniformContinuous_div).comp
       UniformOnFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
-/- warning: uniform_on_fun.has_basis_nhds_one_of_basis -> UniformOnFun.hasBasis_nhds_one_of_basis is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) 𝔖) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u3)} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.monoid.{u1, u2} Ξ± G 𝔖 (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si) 𝔖) (p (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u1, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)))))))
-but is expected to have type
-  forall {Ξ± : Type.{u3}} {G : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u3} (Set.{u3} Ξ±)), (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u1} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u3 u2, max (succ u3) (succ u1)} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) (nhds.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u3, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) 1 (One.toOfNat1.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (InvOneClass.toOne.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (DivInvOneMonoid.toInvOneClass.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (DivisionMonoid.toDivInvOneMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (Group.toDivisionMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (instGroupUniformOnFun.{u3, u2} Ξ± G 𝔖 _inst_1)))))))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => setOf.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u3, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.mem.{u3, u3} Ξ± (Set.{u3} Ξ±) (Set.instMembershipSet.{u3} Ξ±) x (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)) -> (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) (f x) (b (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)))))))
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basisβ‚“'. -/
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
@@ -190,12 +172,6 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
 #align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
 #align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
 
-/- warning: uniform_on_fun.has_basis_nhds_one -> UniformOnFun.hasBasis_nhds_one is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) 𝔖) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) 𝔖) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.monoid.{u1, u2} Ξ± G 𝔖 (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) 𝔖) (Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u1, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)))))
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1] (𝔖 : Set.{u2} (Set.{u2} Ξ±)), (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 : Set.{u2} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658 : Set.{u2} Ξ±) => HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.instHasSubsetSet.{u2} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658) 𝔖) -> (Filter.HasBasis.{max u2 u1, max (succ u2) (succ u1)} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) (nhds.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u2, u1} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) 1 (One.toOfNat1.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (InvOneClass.toOne.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (Group.toDivisionMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (instGroupUniformOnFun.{u2, u1} Ξ± G 𝔖 _inst_1)))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => And (Membership.mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.instMembershipSet.{u2} (Set.{u2} Ξ±)) (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) 𝔖) (Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1))))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => setOf.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (fun (f : UniformOnFun.{u2, u1} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.mem.{u2, u2} Ξ± (Set.{u2} Ξ±) (Set.instMembershipSet.{u2} Ξ±) x (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)) -> (Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)))))
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_oneβ‚“'. -/
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
@@ -214,9 +190,6 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
-/- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
@@ -274,9 +247,6 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
       rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 
-/- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ‚“'. -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
 equipped with the topology of `𝔖`-convergence, is a TVS.
Diff
@@ -215,10 +215,7 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
 /- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο†)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ H (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
-but is expected to have type
-  forall (π•œ : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) 𝔖) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 𝔖) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο†)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toSMul.{u1, u4} π•œ H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ H (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
+<too large>
 Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
@@ -278,10 +275,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 
 /- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (H : Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π•œ (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π•œ π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π•œ (MulOneClass.toHasMul.{u1} π•œ (Monoid.toMulOneClass.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (CoeTCβ‚“.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (fun (x : UniformOnFun.{u2, u3} Ξ± E 𝔖) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {𝔖 : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967) 𝔖) -> (forall (H : Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E 𝔖), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π•œ (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π•œ π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π•œ π•œ (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π•œ π•œ _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (NormedAlgebra.id.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 𝔖))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ‚“'. -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
Diff
@@ -218,7 +218,7 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
 lean 3 declaration is
   forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο†)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ H (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
 but is expected to have type
-  forall (π•œ : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) 𝔖) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 𝔖) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο†)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toSMul.{u1, u4} π•œ H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ H (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
+  forall (π•œ : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) 𝔖) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 𝔖) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο†)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2187 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toSMul.{u1, u4} π•œ H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ H (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
 Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
Diff
@@ -281,7 +281,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
 lean 3 declaration is
   forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (H : Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π•œ (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π•œ π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π•œ (MulOneClass.toHasMul.{u1} π•œ (Monoid.toMulOneClass.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (CoeTCβ‚“.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (fun (x : UniformOnFun.{u2, u3} Ξ± E 𝔖) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖))))
 but is expected to have type
-  forall (π•œ : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {𝔖 : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970) 𝔖) -> (forall (H : Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E 𝔖), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π•œ (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π•œ π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π•œ π•œ (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π•œ π•œ _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (NormedAlgebra.id.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 𝔖))))
+  forall (π•œ : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {𝔖 : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2965 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2967) 𝔖) -> (forall (H : Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E 𝔖), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π•œ (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π•œ π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π•œ π•œ (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π•œ π•œ _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (NormedAlgebra.id.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 𝔖))))
 Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ‚“'. -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
 
 ! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit f2b757fc5c341d88741b9c4630b1e8ba973c5726
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Algebra.FilterBasis
 /-!
 # Algebraic facts about the topology of uniform convergence
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file contains algebraic compatibility results about the uniform structure of uniform
 convergence / `𝔖`-convergence. They will mostly be useful for defining strong topologies on the
 space of continuous linear maps between two topological vector spaces.
Diff
@@ -119,6 +119,12 @@ instance : UniformGroup (Ξ± β†’α΅€ G) :=
           uniformContinuous_div).comp
       UniformFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
+/- warning: uniform_fun.has_basis_nhds_one_of_basis -> UniformFun.hasBasis_nhds_one_of_basis is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, succ u3} (UniformFun.{u1, u2} Ξ± G) ΞΉ (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) p (fun (i : ΞΉ) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : UniformFun.{u1, u2} Ξ± G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b i))))
+but is expected to have type
+  forall {Ξ± : Type.{u1}} {G : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : Group.{u3} G] [_inst_2 : UniformSpace.{u3} G] [_inst_3 : UniformGroup.{u3} G _inst_2 _inst_1] {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u3} G)}, (Filter.HasBasis.{u3, succ u2} G ΞΉ (nhds.{u3} G (UniformSpace.toTopologicalSpace.{u3} G _inst_2) (OfNat.ofNat.{u3} G 1 (One.toOfNat1.{u3} G (InvOneClass.toOne.{u3} G (DivInvOneMonoid.toInvOneClass.{u3} G (DivisionMonoid.toDivInvOneMonoid.{u3} G (Group.toDivisionMonoid.{u3} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u1 u3, succ u2} (UniformFun.{u1, u3} Ξ± G) ΞΉ (nhds.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (UniformFun.topologicalSpace.{u1, u3} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) 1 (One.toOfNat1.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (InvOneClass.toOne.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (Group.toDivisionMonoid.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (instGroupUniformFun.{u1, u3} Ξ± G _inst_1)))))))) p (fun (i : ΞΉ) => setOf.{max u1 u3} (UniformFun.{u1, u3} Ξ± G) (fun (f : UniformFun.{u1, u3} Ξ± G) => forall (x : Ξ±), Membership.mem.{u3, u3} G (Set.{u3} G) (Set.instMembershipSet.{u3} G) (f x) (b i))))
+Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basisβ‚“'. -/
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
@@ -132,6 +138,12 @@ protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : 
 #align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
 #align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
 
+/- warning: uniform_fun.has_basis_nhds_one -> UniformFun.hasBasis_nhds_one is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1], Filter.HasBasis.{max u1 u2, succ u2} (UniformFun.{u1, u2} Ξ± G) (Set.{u2} G) (nhds.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.topologicalSpace.{u1, u2} Ξ± G _inst_2) (OfNat.ofNat.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (OfNat.mk.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) 1 (One.one.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (MulOneClass.toHasOne.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (Monoid.toMulOneClass.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (UniformFun.monoid.{u1, u2} Ξ± G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) V (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (V : Set.{u2} G) => setOf.{max u1 u2} (UniformFun.{u1, u2} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) V))
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1], Filter.HasBasis.{max u2 u1, succ u1} (UniformFun.{u2, u1} Ξ± G) (Set.{u1} G) (nhds.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (UniformFun.topologicalSpace.{u2, u1} Ξ± G _inst_2) (OfNat.ofNat.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) 1 (One.toOfNat1.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (InvOneClass.toOne.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (Group.toDivisionMonoid.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (instGroupUniformFun.{u2, u1} Ξ± G _inst_1)))))))) (fun (V : Set.{u1} G) => Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) V (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1)))))))) (fun (V : Set.{u1} G) => setOf.{max u2 u1} (UniformFun.{u2, u1} Ξ± G) (fun (f : Ξ± -> G) => forall (x : Ξ±), Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) V))
+Case conversion may be inaccurate. Consider using '#align uniform_fun.has_basis_nhds_one UniformFun.hasBasis_nhds_oneβ‚“'. -/
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one :
     (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V =>
@@ -154,6 +166,12 @@ instance : UniformGroup (Ξ± β†’α΅€[𝔖] G) :=
           uniformContinuous_div).comp
       UniformOnFun.uniformEquivProdArrow.symm.UniformContinuous⟩
 
+/- warning: uniform_on_fun.has_basis_nhds_one_of_basis -> UniformOnFun.hasBasis_nhds_one_of_basis is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {G : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) 𝔖) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u3} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))) p b) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u3)} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.monoid.{u1, u2} Ξ± G 𝔖 (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si) 𝔖) (p (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u1, u3} (Set.{u1} Ξ±) ΞΉ) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u1, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (b (Prod.snd.{u1, u3} (Set.{u1} Ξ±) ΞΉ Si)))))))
+but is expected to have type
+  forall {Ξ± : Type.{u3}} {G : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u3} (Set.{u3} Ξ±)), (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1382 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1384) 𝔖) -> (forall {p : ΞΉ -> Prop} {b : ΞΉ -> (Set.{u2} G)}, (Filter.HasBasis.{u2, succ u1} G ΞΉ (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_1))))))) p b) -> (Filter.HasBasis.{max u3 u2, max (succ u3) (succ u1)} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) (nhds.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u3, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) 1 (One.toOfNat1.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (InvOneClass.toOne.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (DivInvOneMonoid.toInvOneClass.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (DivisionMonoid.toDivInvOneMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (Group.toDivisionMonoid.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (instGroupUniformOnFun.{u3, u2} Ξ± G 𝔖 _inst_1)))))))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => And (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si) 𝔖) (p (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si))) (fun (Si : Prod.{u3, u1} (Set.{u3} Ξ±) ΞΉ) => setOf.{max u3 u2} (UniformOnFun.{u3, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u3, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.mem.{u3, u3} Ξ± (Set.{u3} Ξ±) (Set.instMembershipSet.{u3} Ξ±) x (Prod.fst.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)) -> (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) (f x) (b (Prod.snd.{u3, u1} (Set.{u3} Ξ±) ΞΉ Si)))))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basisβ‚“'. -/
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
@@ -169,6 +187,12 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
 #align uniform_on_fun.has_basis_nhds_one_of_basis UniformOnFun.hasBasis_nhds_one_of_basis
 #align uniform_on_fun.has_basis_nhds_zero_of_basis UniformOnFun.hasBasis_nhds_zero_of_basis
 
+/- warning: uniform_on_fun.has_basis_nhds_one -> UniformOnFun.hasBasis_nhds_one is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {G : Type.{u2}} [_inst_1 : Group.{u2} G] [_inst_2 : UniformSpace.{u2} G] [_inst_3 : UniformGroup.{u2} G _inst_2 _inst_1] (𝔖 : Set.{u1} (Set.{u1} Ξ±)), (Set.Nonempty.{u1} (Set.{u1} Ξ±) 𝔖) -> (DirectedOn.{u1} (Set.{u1} Ξ±) (HasSubset.Subset.{u1} (Set.{u1} Ξ±) (Set.hasSubset.{u1} Ξ±)) 𝔖) -> (Filter.HasBasis.{max u1 u2, max (succ u1) (succ u2)} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) (nhds.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u1, u2} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (OfNat.mk.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) 1 (One.one.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (MulOneClass.toHasOne.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (Monoid.toMulOneClass.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (UniformOnFun.monoid.{u1, u2} Ξ± G 𝔖 (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => And (Membership.Mem.{u1, u1} (Set.{u1} Ξ±) (Set.{u1} (Set.{u1} Ξ±)) (Set.hasMem.{u1} (Set.{u1} Ξ±)) (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) 𝔖) (Membership.Mem.{u2, u2} (Set.{u2} G) (Filter.{u2} G) (Filter.hasMem.{u2} G) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV) (nhds.{u2} G (UniformSpace.toTopologicalSpace.{u2} G _inst_2) (OfNat.ofNat.{u2} G 1 (OfNat.mk.{u2} G 1 (One.one.{u2} G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_1)))))))))) (fun (SV : Prod.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G)) => setOf.{max u1 u2} (UniformOnFun.{u1, u2} Ξ± G 𝔖) (fun (f : UniformOnFun.{u1, u2} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.Mem.{u1, u1} Ξ± (Set.{u1} Ξ±) (Set.hasMem.{u1} Ξ±) x (Prod.fst.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)) -> (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) (f x) (Prod.snd.{u1, u2} (Set.{u1} Ξ±) (Set.{u2} G) SV)))))
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {G : Type.{u1}} [_inst_1 : Group.{u1} G] [_inst_2 : UniformSpace.{u1} G] [_inst_3 : UniformGroup.{u1} G _inst_2 _inst_1] (𝔖 : Set.{u2} (Set.{u2} Ξ±)), (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 : Set.{u2} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658 : Set.{u2} Ξ±) => HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.instHasSubsetSet.{u2} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1656 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1658) 𝔖) -> (Filter.HasBasis.{max u2 u1, max (succ u2) (succ u1)} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) (nhds.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (UniformOnFun.topologicalSpace.{u2, u1} Ξ± G _inst_2 𝔖) (OfNat.ofNat.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) 1 (One.toOfNat1.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (InvOneClass.toOne.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (DivInvOneMonoid.toInvOneClass.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (DivisionMonoid.toDivInvOneMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (Group.toDivisionMonoid.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (instGroupUniformOnFun.{u2, u1} Ξ± G 𝔖 _inst_1)))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => And (Membership.mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.instMembershipSet.{u2} (Set.{u2} Ξ±)) (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) 𝔖) (Membership.mem.{u1, u1} (Set.{u1} G) (Filter.{u1} G) (instMembershipSetFilter.{u1} G) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV) (nhds.{u1} G (UniformSpace.toTopologicalSpace.{u1} G _inst_2) (OfNat.ofNat.{u1} G 1 (One.toOfNat1.{u1} G (InvOneClass.toOne.{u1} G (DivInvOneMonoid.toInvOneClass.{u1} G (DivisionMonoid.toDivInvOneMonoid.{u1} G (Group.toDivisionMonoid.{u1} G _inst_1))))))))) (fun (SV : Prod.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G)) => setOf.{max u2 u1} (UniformOnFun.{u2, u1} Ξ± G 𝔖) (fun (f : UniformOnFun.{u2, u1} Ξ± G 𝔖) => forall (x : Ξ±), (Membership.mem.{u2, u2} Ξ± (Set.{u2} Ξ±) (Set.instMembershipSet.{u2} Ξ±) x (Prod.fst.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)) -> (Membership.mem.{u1, u1} G (Set.{u1} G) (Set.instMembershipSet.{u1} G) (f x) (Prod.snd.{u2, u1} (Set.{u2} Ξ±) (Set.{u1} G) SV)))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_basis_nhds_one UniformOnFun.hasBasis_nhds_oneβ‚“'. -/
 @[to_additive]
 protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖₁ : 𝔖.Nonempty)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) :
@@ -187,6 +211,12 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
+/- warning: uniform_on_fun.has_continuous_smul_induced_of_image_bounded -> UniformOnFun.continuousSMul_induced_of_image_bounded is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u5}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)} [_inst_10 : LinearMapClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u2 u3} H (UniformOnFun.{u2, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖) (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο†)) -> (forall (u : H) (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E (coeFn.{succ u5, max (succ u4) (succ (max u2 u3))} hom (fun (_x : hom) => H -> (UniformOnFun.{u2, u3} Ξ± E 𝔖)) (FunLike.hasCoeToFun.{succ u5, succ u4, succ (max u2 u3)} hom H (fun (_x : H) => UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulHomClass.toFunLike.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (DistribSMul.toSmulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (DistribSMul.toSmulZeroClass.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSmulHomClass.{u5, u1, u4, max u2 u3} hom π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u2 u3, u5} π•œ H (UniformOnFun.{u2, u3} Ξ± E 𝔖) hom (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10)))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toHasSmul.{u1, u4} π•œ H (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ H (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u4} H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)))) (Module.toMulActionWithZero.{u1, u4} π•œ H (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
+but is expected to have type
+  forall (π•œ : Type.{u1}) (Ξ± : Type.{u5}) (E : Type.{u3}) (H : Type.{u4}) {hom : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u4} H] [_inst_3 : Module.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : TopologicalSpace.{u4} H] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u5} (Set.{u5} Ξ±)} [_inst_10 : LinearMapClass.{u2, u1, u4, max u3 u5} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)], (Set.Nonempty.{u5} (Set.{u5} Ξ±) 𝔖) -> (DirectedOn.{u5} (Set.{u5} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 : Set.{u5} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902 : Set.{u5} Ξ±) => HasSubset.Subset.{u5} (Set.{u5} Ξ±) (Set.instHasSubsetSet.{u5} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1900 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.1902) 𝔖) -> (forall (Ο† : hom), (Inducing.{u4, max u5 u3} H (UniformOnFun.{u5, u3} Ξ± E 𝔖) _inst_6 (UniformOnFun.topologicalSpace.{u5, u3} Ξ± E _inst_7 𝔖) (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο†)) -> (forall (u : H) (s : Set.{u5} Ξ±), (Membership.mem.{u5, u5} (Set.{u5} Ξ±) (Set.{u5} (Set.{u5} Ξ±)) (Set.instMembershipSet.{u5} (Set.{u5} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π•œ E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, u3} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u5, u3} Ξ± E (FunLike.coe.{succ u2, succ u4, max (succ u5) (succ u3)} hom H (fun (_x : H) => (fun (x._@.Mathlib.Algebra.Hom.GroupAction._hyg.2186 : H) => UniformOnFun.{u5, u3} Ξ± E 𝔖) _x) (SMulHomClass.toFunLike.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (SMulZeroClass.toSMul.{u1, u4} π•œ H (AddMonoid.toZero.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribSMul.toSMulZeroClass.{u1, u4} π•œ H (AddMonoid.toAddZeroClass.{u4} H (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2))) (DistribMulAction.toDistribSMul.{u1, u4} π•œ H (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (SMulZeroClass.toSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toZero.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribSMul.toSMulZeroClass.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (DistribMulAction.toDistribSMul.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (DistribMulActionHomClass.toSMulHomClass.{u2, u1, u4, max u5 u3} hom π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))))) (AddCommMonoid.toAddMonoid.{u4} H (AddCommGroup.toAddCommMonoid.{u4} H _inst_2)) (AddCommMonoid.toAddMonoid.{max u5 u3} (UniformOnFun.{u5, u3} Ξ± E 𝔖) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))) (Module.toDistribMulAction.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3) (Module.toDistribMulAction.{u1, max u5 u3} π•œ (UniformOnFun.{u5, u3} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SemilinearMapClass.distribMulActionHomClass.{u1, u4, max u5 u3, u2} π•œ H (UniformOnFun.{u5, u3} Ξ± E 𝔖) hom (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) (instAddCommMonoidUniformOnFun.{u5, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) _inst_3 (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u5, u3, u1} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) _inst_10))) Ο† u) s))) -> (ContinuousSMul.{u1, u4} π•œ H (SMulZeroClass.toSMul.{u1, u4} π•œ H (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ H (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ H (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u4} H (SubNegZeroMonoid.toNegZeroClass.{u4} H (SubtractionMonoid.toSubNegZeroMonoid.{u4} H (SubtractionCommMonoid.toSubtractionMonoid.{u4} H (AddCommGroup.toDivisionAddCommMonoid.{u4} H _inst_2))))) (Module.toMulActionWithZero.{u1, u4} π•œ H (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} H _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_6))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_boundedβ‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
@@ -244,6 +274,12 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
       rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 
+/- warning: uniform_on_fun.has_continuous_smul_submodule_of_image_bounded -> UniformOnFun.continuousSMul_submodule_of_image_bounded is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (Ξ± : Type.{u2}) (E : Type.{u3}) [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_7 : UniformSpace.{u3} E] [_inst_8 : UniformAddGroup.{u3} E _inst_7 (AddCommGroup.toAddGroup.{u3} E _inst_4)] [_inst_9 : ContinuousSMul.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7)] {𝔖 : Set.{u2} (Set.{u2} Ξ±)}, (Set.Nonempty.{u2} (Set.{u2} Ξ±) 𝔖) -> (DirectedOn.{u2} (Set.{u2} Ξ±) (HasSubset.Subset.{u2} (Set.{u2} Ξ±) (Set.hasSubset.{u2} Ξ±)) 𝔖) -> (forall (H : Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)), (forall (u : Ξ± -> E), (Membership.Mem.{max u2 u3, max u2 u3} (Ξ± -> E) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u2} Ξ±), (Membership.Mem.{u2, u2} (Set.{u2} Ξ±) (Set.{u2} (Set.{u2} Ξ±)) (Set.hasMem.{u2} (Set.{u2} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u1, u3} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u3} E _inst_7) (Set.image.{u2, u3} Ξ± E u s)))) -> (ContinuousSMul.{u1, max u2 u3} π•œ (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (Submodule.smul.{u1, u1, max u2 u3} π•œ π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5) H (Mul.toSMul.{u1} π•œ (MulOneClass.toHasMul.{u1} π•œ (Monoid.toMulOneClass.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))))) (MulAction.toHasSmul.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)))) (IsScalarTower.left.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (MulActionWithZero.toMulAction.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddMonoid.toAddZeroClass.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (AddCommMonoid.toAddMonoid.{max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4))))) (Module.toMulActionWithZero.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u2 u3, max u2 u3} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) ((fun (a : Type.{max u2 u3}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{succ (max u2 u3), max (succ u2) (succ u3)} a b] => self.0) (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (HasLiftT.mk.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (CoeTCβ‚“.coe.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeBase.{succ (max u2 u3), max (succ u2) (succ u3)} (coeSort.{succ (max u2 u3), succ (succ (max u2 u3))} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) Type.{max u2 u3} (SetLike.hasCoeToSort.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) H) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (coeSubtype.{max (succ u2) (succ u3)} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (fun (x : UniformOnFun.{u2, u3} Ξ± E 𝔖) => Membership.Mem.{max u2 u3, max u2 u3} (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (SetLike.hasMem.{max u2 u3, max u2 u3} (Submodule.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5)) (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Submodule.setLike.{u1, max u2 u3} π•œ (UniformOnFun.{u2, u3} Ξ± E 𝔖) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (UniformOnFun.addCommMonoid.{u2, u3} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)) (UniformOnFun.module.{u2, u3, u1} Ξ± E π•œ 𝔖 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))) x H)))))) (UniformOnFun.topologicalSpace.{u2, u3} Ξ± E _inst_7 𝔖))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) (Ξ± : Type.{u3}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] [_inst_7 : UniformSpace.{u1} E] [_inst_8 : UniformAddGroup.{u1} E _inst_7 (AddCommGroup.toAddGroup.{u1} E _inst_4)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7)] {𝔖 : Set.{u3} (Set.{u3} Ξ±)}, (Set.Nonempty.{u3} (Set.{u3} Ξ±) 𝔖) -> (DirectedOn.{u3} (Set.{u3} Ξ±) (fun (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 : Set.{u3} Ξ±) (x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970 : Set.{u3} Ξ±) => HasSubset.Subset.{u3} (Set.{u3} Ξ±) (Set.instHasSubsetSet.{u3} Ξ±) x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2968 x._@.Mathlib.Topology.Algebra.UniformConvergence._hyg.2970) 𝔖) -> (forall (H : Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)), (forall (u : UniformOnFun.{u3, u1} Ξ± E 𝔖), (Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) u H) -> (forall (s : Set.{u3} Ξ±), (Membership.mem.{u3, u3} (Set.{u3} Ξ±) (Set.{u3} (Set.{u3} Ξ±)) (Set.instMembershipSet.{u3} (Set.{u3} Ξ±)) s 𝔖) -> (Bornology.IsVonNBounded.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (UniformSpace.toTopologicalSpace.{u1} E _inst_7) (Set.image.{u3, u1} Ξ± E u s)))) -> (ContinuousSMul.{u2, max u3 u1} π•œ (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (Submodule.smul.{u2, u2, max u3 u1} π•œ π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5) H (Algebra.toSMul.{u2, u2} π•œ π•œ (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (NormedAlgebra.toAlgebra.{u2, u2} π•œ π•œ _inst_1 (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (NormedAlgebra.id.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (IsScalarTower.left.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (MonoidWithZero.toMonoid.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))))) (MulActionWithZero.toMulAction.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubNegZeroMonoid.toNegZeroClass.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionMonoid.toSubNegZeroMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (SubtractionCommMonoid.toSubtractionMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (AddCommGroup.toDivisionAddCommMonoid.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (instAddCommGroupUniformOnFun.{u3, u1} Ξ± E 𝔖 _inst_4)))))) (Module.toMulActionWithZero.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) (TopologicalSpace.induced.{max u3 u1, max u3 u1} (Subtype.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (SetLike.instMembership.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))) x H)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Subtype.val.{succ (max u3 u1)} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (fun (x : UniformOnFun.{u3, u1} Ξ± E 𝔖) => Membership.mem.{max u3 u1, max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Set.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) (Set.instMembershipSet.{max u3 u1} (UniformOnFun.{u3, u1} Ξ± E 𝔖)) x (SetLike.coe.{max u3 u1, max u3 u1} (Submodule.{u2, max u1 u3} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) (UniformOnFun.{u3, u1} Ξ± E 𝔖) (Submodule.setLike.{u2, max u3 u1} π•œ (UniformOnFun.{u3, u1} Ξ± E 𝔖) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (instAddCommMonoidUniformOnFun.{u3, u1} Ξ± E 𝔖 (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)) (instModuleUniformOnFunInstAddCommMonoidUniformOnFun.{u3, u1, u2} Ξ± E π•œ 𝔖 (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)) H))) (UniformOnFun.topologicalSpace.{u3, u1} Ξ± E _inst_7 𝔖))))
+Case conversion may be inaccurate. Consider using '#align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_boundedβ‚“'. -/
 /-- Let `E` be a TVS, `𝔖 : set (set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `bornology.is_vonN_bounded`), then `H`,
 equipped with the topology of `𝔖`-convergence, is a TVS.
Diff
@@ -202,7 +202,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
   by
   have : TopologicalAddGroup H := by
     rw [hφ.induced]
-    exact topological_add_group_induced Ο†
+    exact topologicalAddGroup_induced Ο†
   have : (𝓝 0 : Filter H).HasBasis _ _ :=
     by
     rw [hφ.induced, nhds_induced, map_zero]
@@ -254,7 +254,7 @@ theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (h𝔖₁ : 𝔖.
     (h : βˆ€ u ∈ H, βˆ€ s ∈ 𝔖, Bornology.IsVonNBounded π•œ (u '' s)) :
     @ContinuousSMul π•œ H _ _ ((UniformOnFun.topologicalSpace Ξ± E 𝔖).induced (coe : H β†’ Ξ± β†’α΅€[𝔖] E)) :=
   haveI : TopologicalAddGroup H :=
-    topological_add_group_induced (linear_map.id.dom_restrict H : H β†’β‚—[π•œ] Ξ± β†’ E)
+    topologicalAddGroup_induced (linear_map.id.dom_restrict H : H β†’β‚—[π•œ] Ξ± β†’ E)
   UniformOnFun.continuousSMul_induced_of_image_bounded π•œ Ξ± E H h𝔖₁ h𝔖₂
     (linear_map.id.dom_restrict H : H β†’β‚—[π•œ] Ξ± β†’ E) inducing_subtype_val fun ⟨u, hu⟩ => h u hu
 #align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded

Changes in mathlib4

mathlib3
mathlib4
feat(Algebra/UniformConvergence): drop unneeded assumptions (#10321)
  • Prove a version of UniformOnFun.continuousSMul_induced_of_image_bounded for UniformFuns.
  • Deal with Ο† : H β†’β‚—[π•œ] (Ξ± β†’ E) and ofFun ∘ Ο†, not Ο† : H β†’β‚—[π•œ] (Ξ± β†’α΅€[𝔖] E).
  • Drop unneeded assumptions (nonempty, directed).
Diff
@@ -32,13 +32,6 @@ Like in `Topology/UniformSpace/UniformConvergenceTopology`, we use the type alia
 `UniformFun` (denoted `Ξ± β†’α΅€ Ξ²`) and `UniformOnFun` (denoted `Ξ± β†’α΅€[𝔖] Ξ²`) for functions from `Ξ±`
 to `Ξ²` endowed with the structures of uniform convergence and `𝔖`-convergence.
 
-## TODO
-
-* `UniformOnFun.continuousSMul_induced_of_image_bounded` unnecessarily asks for `𝔖` to be
-  nonempty and directed. This will be easy to solve once we know that replacing `𝔖` by its
-  ***noncovering*** bornology (i.e ***not*** what `Bornology` currently refers to in mathlib)
-  doesn't change the topology.
-
 ## References
 
 * [N. Bourbaki, *General Topology, Chapter X*][bourbaki1966]
@@ -51,7 +44,8 @@ uniform convergence, strong dual
 -/
 
 open Filter
-open scoped Topology Pointwise UniformConvergence
+
+open scoped Topology Pointwise UniformConvergence Uniformity
 
 section AlgebraicInstances
 
@@ -313,7 +307,41 @@ section Module
 variable (π•œ Ξ± E H : Type*) {hom : Type*} [NormedField π•œ] [AddCommGroup H] [Module π•œ H]
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±}
-  [FunLike hom H (Ξ± β†’α΅€[𝔖] E)] [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
+  [FunLike hom H (Ξ± β†’ E)] [LinearMapClass hom π•œ H (Ξ± β†’ E)]
+
+/-- Let `E` be a topological vector space over a normed field `π•œ`, let `Ξ±` be any type.
+Let `H` be a submodule of `Ξ± β†’α΅€ E` such that the range of each `f ∈ H` is von Neumann bounded.
+Then `H` is a topological vector space over `π•œ`,
+i.e., the pointwise scalar multiplication is continuous in both variables.
+
+For convenience we require that `H` is a vector space over `π•œ`
+with a topology induced by `UniformFun.ofFun ∘ Ο†`, where `Ο† : H β†’β‚—[π•œ] (Ξ± β†’ E)`. -/
+lemma UniformFun.continuousSMul_induced_of_range_bounded (Ο† : hom)
+    (hΟ† : Inducing (ofFun ∘ Ο†)) (h : βˆ€ u : H, Bornology.IsVonNBounded π•œ (Set.range (Ο† u))) :
+    ContinuousSMul π•œ H := by
+  have : TopologicalAddGroup H :=
+    let ofFun' : (Ξ± β†’ E) β†’+ (Ξ± β†’α΅€ E) := AddMonoidHom.id _
+    Inducing.topologicalAddGroup (ofFun'.comp (φ : H →+ (α → E))) hφ
+  have hb : (𝓝 (0 : H)).HasBasis (Β· ∈ 𝓝 (0 : E)) fun V ↦ {u | βˆ€ x, Ο† u x ∈ V} := by
+    simp only [hφ.nhds_eq_comap, Function.comp_apply, map_zero]
+    exact UniformFun.hasBasis_nhds_zero.comap _
+  apply ContinuousSMul.of_basis_zero hb
+  Β· intro U hU
+    have : Tendsto (fun x : π•œ Γ— E ↦ x.1 β€’ x.2) (𝓝 0) (𝓝 0) :=
+      continuous_smul.tendsto' _ _ (zero_smul _ _)
+    rcases ((Filter.basis_sets _).prod_nhds (Filter.basis_sets _)).tendsto_left_iff.1 this U hU
+      with ⟨⟨V, W⟩, ⟨hV, hW⟩, hVW⟩
+    refine ⟨V, hV, W, hW, Set.smul_subset_iff.2 fun a ha u hu x ↦ ?_⟩
+    rw [map_smul]
+    exact hVW (Set.mk_mem_prod ha (hu x))
+  Β· intro c U hU
+    have : Tendsto (c β€’ Β· : E β†’ E) (𝓝 0) (𝓝 0) :=
+      (continuous_const_smul c).tendsto' _ _ (smul_zero _)
+    refine ⟨_, this hU, fun u hu x ↦ ?_⟩
+    simpa only [map_smul] using hu x
+  Β· intro u U hU
+    simp only [Set.mem_setOf_eq, map_smul, Pi.smul_apply]
+    simpa only [Set.mapsTo_range_iff] using (h u hU).eventually_nhds_zero (mem_of_mem_nhds hU)
 
 /-- Let `E` be a TVS, `𝔖 : Set (Set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
@@ -323,50 +351,20 @@ For convenience, we don't literally ask for `H : Submodule (Ξ± β†’α΅€[𝔖] E)`.
 result for any vector space `H` equipped with a linear inducing to `Ξ± β†’α΅€[𝔖] E`, which is often
 easier to use. We also state the `Submodule` version as
 `UniformOnFun.continuousSMul_submodule_of_image_bounded`. -/
-theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.Nonempty)
-    (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (Ο† : hom) (hΟ† : Inducing Ο†)
+theorem UniformOnFun.continuousSMul_induced_of_image_bounded (Ο† : hom) (hΟ† : Inducing (ofFun 𝔖 ∘ Ο†))
     (h : βˆ€ u : H, βˆ€ s ∈ 𝔖, Bornology.IsVonNBounded π•œ ((Ο† u : Ξ± β†’ E) '' s)) :
     ContinuousSMul π•œ H := by
-  have : TopologicalAddGroup H := by
-    rw [hφ.induced]
-    exact topologicalAddGroup_induced Ο†
-  have : (𝓝 0 : Filter H).HasBasis _ _ := by
-    rw [hφ.induced, nhds_induced, map_zero]
-    exact (UniformOnFun.hasBasis_nhds_zero 𝔖 h𝔖₁ h𝔖₂).comap Ο†
-  refine' ContinuousSMul.of_basis_zero this _ _ _
-  · rintro ⟨S, V⟩ ⟨hS, hV⟩
-    have : Tendsto (fun kx : π•œ Γ— E => kx.1 β€’ kx.2) (𝓝 (0, 0)) (𝓝 <| (0 : π•œ) β€’ (0 : E)) :=
-      continuous_smul.tendsto (0 : π•œ Γ— E)
-    rw [zero_smul, nhds_prod_eq] at this
-    have := this hV
-    rw [mem_map, mem_prod_iff] at this
-    rcases this with ⟨U, hU, W, hW, hUW⟩
-    refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩
-    rw [Set.smul_subset_iff]
-    intro a ha u hu x hx
-    rw [map_smul]
-    exact hUW (⟨ha, hu x hx⟩ : (a, Ο† u x) ∈ U Γ—Λ’ W)
-  · rintro a ⟨S, V⟩ ⟨hS, hV⟩
-    have : Tendsto (fun x : E => a β€’ x) (𝓝 0) (𝓝 <| a β€’ (0 : E)) := tendsto_id.const_smul a
-    rw [smul_zero] at this
-    refine' ⟨⟨S, (a β€’ Β·) ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩
-    rw [map_smul]
-    exact hf x hx
-  · rintro u ⟨S, V⟩ ⟨hS, hV⟩
-    rcases (h u S hS hV).exists_pos with ⟨r, hrpos, hr⟩
-    rw [Metric.eventually_nhds_iff_ball]
-    refine' ⟨r⁻¹, inv_pos.mpr hrpos, fun a ha x hx => _⟩
-    by_cases ha0 : a = 0
-    Β· rw [ha0]
-      simpa using mem_of_mem_nhds hV
-    Β· rw [mem_ball_zero_iff] at ha
-      rw [map_smul, Pi.smul_apply]
-      have : Ο† u x ∈ a⁻¹ β€’ V := by
-        have ha0 : 0 < β€–aβ€– := norm_pos_iff.mpr ha0
-        refine' (hr a⁻¹ _) (Set.mem_image_of_mem (Ο† u) hx)
-        rw [norm_inv, le_inv hrpos ha0]
-        exact ha.le
-      rwa [Set.mem_inv_smul_set_iffβ‚€ ha0] at this
+  obtain rfl := hφ.induced; clear hφ
+  simp only [induced_iInf, UniformOnFun.topologicalSpace_eq, induced_compose]
+  refine continuousSMul_iInf fun s ↦ continuousSMul_iInf fun hs ↦ ?_
+  letI : TopologicalSpace H :=
+    .induced (UniformFun.ofFun ∘ s.restrict ∘ Ο†) (UniformFun.topologicalSpace s E)
+  set Ο†' : H β†’β‚—[π•œ] (s β†’ E) :=
+    { toFun := s.restrict ∘ Ο†,
+      map_smul' := fun c x ↦ by exact congr_arg s.restrict (map_smul Ο† c x),
+      map_add' := fun x y ↦ by exact congr_arg s.restrict (map_add Ο† x y) }
+  refine UniformFun.continuousSMul_induced_of_range_bounded π•œ s E H Ο†' ⟨rfl⟩ fun u ↦ ?_
+  simpa only [Set.image_eq_range] using h u s hs
 #align uniform_on_fun.has_continuous_smul_induced_of_image_bounded UniformOnFun.continuousSMul_induced_of_image_bounded
 
 /-- Let `E` be a TVS, `𝔖 : Set (Set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
@@ -374,13 +372,10 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
 equipped with the topology of `𝔖`-convergence, is a TVS.
 
 If you have a hard time using this lemma, try the one above instead. -/
-theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (h𝔖₁ : 𝔖.Nonempty)
-    (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) (H : Submodule π•œ (Ξ± β†’α΅€[𝔖] E))
+theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (H : Submodule π•œ (Ξ± β†’α΅€[𝔖] E))
     (h : βˆ€ u ∈ H, βˆ€ s ∈ 𝔖, Bornology.IsVonNBounded π•œ (u '' s)) :
     @ContinuousSMul π•œ H _ _ ((UniformOnFun.topologicalSpace Ξ± E 𝔖).induced ((↑) : H β†’ Ξ± β†’α΅€[𝔖] E)) :=
-  haveI : TopologicalAddGroup H :=
-    topologicalAddGroup_induced (LinearMap.id.domRestrict H : H β†’β‚—[π•œ] Ξ± β†’ E)
-  UniformOnFun.continuousSMul_induced_of_image_bounded π•œ Ξ± E H h𝔖₁ h𝔖₂
+  UniformOnFun.continuousSMul_induced_of_image_bounded π•œ Ξ± E H
     (LinearMap.id.domRestrict H : H β†’β‚—[π•œ] Ξ± β†’ E) inducing_subtype_val fun ⟨u, hu⟩ => h u hu
 #align uniform_on_fun.has_continuous_smul_submodule_of_image_bounded UniformOnFun.continuousSMul_submodule_of_image_bounded
 
refactor(Data/FunLike): use unbundled inheritance from FunLike (#8386)

The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike is EquivLike, since that has a custom coe_injective' field that is easier to implement. All other classes should take FunLike or EquivLike as a parameter.

Zulip thread

Important changes

Previously, morphism classes would be Type-valued and extend FunLike:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  extends FunLike F A B :=
(map_op : βˆ€ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

After this PR, they should be Prop-valued and take FunLike as a parameter:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  [FunLike F A B] : Prop :=
(map_op : βˆ€ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

(Note that A B stay marked as outParam even though they are not purely required to be so due to the FunLike parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam is slightly faster.)

Similarly, MyEquivClass should take EquivLike as a parameter.

As a result, every mention of [MyHomClass F A B] should become [FunLike F A B] [MyHomClass F A B].

Remaining issues

Slower (failing) search

While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul is more expensive. This is due to suboptimal processing of arguments. For example:

variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)

theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y

example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _

Before this PR, applying map_mul f gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Since M and N are out_params, [MulHomClass F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found.

After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Now [FunLike F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found, before trying MulHomClass F M N which fails. Since the Mul hierarchy is very big, this can be slow to fail, especially when there is no such Mul instance.

A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N] because MulHomClass fails or succeeds much faster than the others.

As a consequence, the simpNF linter is much slower since by design it tries and fails to apply many map_ lemmas. The same issue occurs a few times in existing calls to simp [map_mul], where map_mul is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.

simp not firing sometimes

This affects map_smulβ‚›β‚— and related definitions. For simp lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw can find every argument to map_smulβ‚›β‚— successfully but simp can't: leanprover/lean4#3701.

Missing instances due to unification failing

Especially in the category theory library, we might sometimes have a type A which is also accessible as a synonym (Bundled A hA).1. Instance synthesis doesn't always work if we have f : A β†’* B but x * y : (Bundled A hA).1 or vice versa. This seems to be mostly fixed by keeping A B as outParams in MulHomClass F A B. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1 instead of using the syntax in the discrimination tree.)

Workaround for issues

The timeouts can be worked around for now by specifying which map_mul we mean, either as map_mul f for some explicit f, or as e.g. MonoidHomClass.map_mul.

map_smulβ‚›β‚— not firing as simp lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulβ‚›β‚— a simp lemma instead of the generic map_smulβ‚›β‚—. Writing simp [map_smulβ‚›β‚— _] also works.

Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -312,7 +312,8 @@ section Module
 
 variable (π•œ Ξ± E H : Type*) {hom : Type*} [NormedField π•œ] [AddCommGroup H] [Module π•œ H]
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
-  [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
+  [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±}
+  [FunLike hom H (Ξ± β†’α΅€[𝔖] E)] [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
 /-- Let `E` be a TVS, `𝔖 : Set (Set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
refactor: redefine Absorbs (#9676)

Redefine Absorbs and Absorbent in terms of the cobounded filter.

Diff
@@ -352,7 +352,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     rw [map_smul]
     exact hf x hx
   · rintro u ⟨S, V⟩ ⟨hS, hV⟩
-    rcases h u S hS hV with ⟨r, hrpos, hr⟩
+    rcases (h u S hS hV).exists_pos with ⟨r, hrpos, hr⟩
     rw [Metric.eventually_nhds_iff_ball]
     refine' ⟨r⁻¹, inv_pos.mpr hrpos, fun a ha x hx => _⟩
     by_cases ha0 : a = 0
feat: action on UniformOnFun is uniformly continuous (#9714)
  • add UniformInducing.uniformContinuousConstSMul and its additive version;
  • use it to prove that the pointwise actions on Ξ± β†’α΅€ X and Ξ± β†’α΅€[𝔖] X are uniformly continuous;
  • use the latter facts to prove that the pointwise action on E β†’SL[Οƒ] F is uniformly continuous;
  • make M explicit in ContinuousLinearMap.strongTopology.continuousConstSMul, drop unneeded arguments.
Diff
@@ -292,6 +292,22 @@ protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set Ξ±) (h𝔖
 
 end Group
 
+section ConstSMul
+
+variable (M Ξ± X : Type*) [SMul M X] [UniformSpace X] [UniformContinuousConstSMul M X]
+
+instance UniformFun.uniformContinuousConstSMul :
+    UniformContinuousConstSMul M (Ξ± β†’α΅€ X) where
+  uniformContinuous_const_smul c := UniformFun.postcomp_uniformContinuous <|
+    uniformContinuous_const_smul c
+
+instance UniformFunOn.uniformContinuousConstSMul {𝔖 : Set (Set Ξ±)} :
+    UniformContinuousConstSMul M (Ξ± β†’α΅€[𝔖] X) where
+  uniformContinuous_const_smul c := UniformOnFun.postcomp_uniformContinuous <|
+    uniformContinuous_const_smul c
+
+end ConstSMul
+
 section Module
 
 variable (π•œ Ξ± E H : Type*) {hom : Type*} [NormedField π•œ] [AddCommGroup H] [Module π•œ H]
chore(UniformConvergenceTopology): use variable, fix types (#9132)
  • Use variable.
  • Add toFun/ofFun to abuse the definitional equality less often.
  • Review instances in Topology.Algebra.UniformConvergence.
  • Replace *_apply lemmas with toFun_*/ofFun_* lemmas.
Diff
@@ -50,16 +50,80 @@ uniform convergence, strong dual
 
 -/
 
-set_option autoImplicit true
+open Filter
+open scoped Topology Pointwise UniformConvergence
 
+section AlgebraicInstances
 
-open Filter
+variable {Ξ± Ξ² ΞΉ R : Type*} {𝔖 : Set <| Set Ξ±} {x : Ξ±}
 
-open Topology Pointwise UniformConvergence
+@[to_additive] instance [One Ξ²] : One (Ξ± β†’α΅€ Ξ²) := Pi.instOne
 
-section AlgebraicInstances
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_one [One Ξ²] : toFun (1 : Ξ± β†’α΅€ Ξ²) = 1 := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_one [One Ξ²] : ofFun (1 : Ξ± β†’ Ξ²) = 1 := rfl
+
+@[to_additive] instance [One Ξ²] : One (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.instOne
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_one [One Ξ²] : toFun 𝔖 (1 : Ξ± β†’α΅€[𝔖] Ξ²) = 1 := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.one_apply [One Ξ²] : ofFun 𝔖 (1 : Ξ± β†’ Ξ²) = 1 := rfl
+
+@[to_additive] instance [Mul Ξ²] : Mul (Ξ± β†’α΅€ Ξ²) := Pi.instMul
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_mul [Mul Ξ²] (f g : Ξ± β†’α΅€ Ξ²) : toFun (f * g) = toFun f * toFun g := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_mul [Mul Ξ²] (f g : Ξ± β†’ Ξ²) : ofFun (f * g) = ofFun f * ofFun g := rfl
+
+@[to_additive] instance [Mul Ξ²] : Mul (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.instMul
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_mul [Mul Ξ²] (f g : Ξ± β†’α΅€[𝔖] Ξ²) :
+    toFun 𝔖 (f * g) = toFun 𝔖 f * toFun 𝔖 g :=
+  rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_mul [Mul Ξ²] (f g : Ξ± β†’ Ξ²) : ofFun 𝔖 (f * g) = ofFun 𝔖 f * ofFun 𝔖 g := rfl
+
+@[to_additive] instance [Inv Ξ²] : Inv (Ξ± β†’α΅€ Ξ²) := Pi.instInv
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_inv [Inv Ξ²] (f : Ξ± β†’α΅€ Ξ²) : toFun (f⁻¹) = (toFun f)⁻¹ := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_inv [Inv Ξ²] (f : Ξ± β†’ Ξ²) : ofFun (f⁻¹) = (ofFun f)⁻¹ := rfl
+
+@[to_additive] instance [Inv Ξ²] : Inv (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.instInv
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_inv [Inv Ξ²] (f : Ξ± β†’α΅€[𝔖] Ξ²) : toFun 𝔖 (f⁻¹) = (toFun 𝔖 f)⁻¹ := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_inv [Inv Ξ²] (f : Ξ± β†’ Ξ²) : ofFun 𝔖 (f⁻¹) = (ofFun 𝔖 f)⁻¹ := rfl
 
-variable {Ξ± Ξ² ΞΉ R : Type*} {𝔖 : Set <| Set Ξ±}
+@[to_additive] instance [Div Ξ²] : Div (Ξ± β†’α΅€ Ξ²) := Pi.instDiv
+
+@[to_additive (attr := simp)]
+lemma UniformFun.toFun_div [Div Ξ²] (f g : Ξ± β†’α΅€ Ξ²) : toFun (f / g) = toFun f / toFun g := rfl
+
+@[to_additive (attr := simp)]
+lemma UniformFun.ofFun_div [Div Ξ²] (f g : Ξ± β†’ Ξ²) : ofFun (f / g) = ofFun f / ofFun g := rfl
+
+@[to_additive] instance [Div Ξ²] : Div (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.instDiv
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.toFun_div [Div Ξ²] (f g : Ξ± β†’α΅€[𝔖] Ξ²) :
+    toFun 𝔖 (f / g) = toFun 𝔖 f / toFun 𝔖 g :=
+  rfl
+
+@[to_additive (attr := simp)]
+lemma UniformOnFun.ofFun_div [Div Ξ²] (f g : Ξ± β†’ Ξ²) : ofFun 𝔖 (f / g) = ofFun 𝔖 f / ofFun 𝔖 g := rfl
 
 @[to_additive]
 instance [Monoid Ξ²] : Monoid (Ξ± β†’α΅€ Ξ²) :=
@@ -93,37 +157,63 @@ instance [CommGroup Ξ²] : CommGroup (Ξ± β†’α΅€ Ξ²) :=
 instance [CommGroup Ξ²] : CommGroup (Ξ± β†’α΅€[𝔖] Ξ²) :=
   Pi.commGroup
 
-instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± β†’α΅€ Ξ²) :=
-  Pi.module _ _ _
+instance {M : Type*} [SMul M Ξ²] : SMul M (Ξ± β†’α΅€ Ξ²) := Pi.instSMul
 
-instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± β†’α΅€[𝔖] Ξ²) :=
-  Pi.module _ _ _
+@[simp]
+lemma UniformFun.toFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β†’α΅€ Ξ²) :
+    toFun (c β€’ f) = c β€’ toFun f :=
+  rfl
 
--- Porting note: unfortunately `simp` will no longer use `Pi.one_apply` etc.
--- on `Ξ± β†’α΅€ Ξ²` or `Ξ± β†’α΅€[𝔖] Ξ²`, so we restate some of these here. More may be needed later.
-@[to_additive (attr := simp)]
-lemma UniformFun.one_apply [Monoid Ξ²] : (1 : Ξ± β†’α΅€ Ξ²) x = 1 := Pi.one_apply x
+@[simp]
+lemma UniformFun.ofFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β†’ Ξ²) :
+    ofFun (c β€’ f) = c β€’ ofFun f :=
+  rfl
 
-@[to_additive (attr := simp)]
-lemma UniformOnFun.one_apply [Monoid Ξ²] : (1 : Ξ± β†’α΅€[𝔖] Ξ²) x = 1 := Pi.one_apply x
+instance {M : Type*} [SMul M Ξ²] : SMul M (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.instSMul
 
-@[to_additive (attr := simp)]
-lemma UniformFun.mul_apply [Monoid Ξ²] : (f * g : Ξ± β†’α΅€ Ξ²) x = f x * g x := Pi.mul_apply f g x
+@[simp]
+lemma UniformOnFun.toFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β†’α΅€[𝔖] Ξ²) :
+    toFun 𝔖 (c β€’ f) = c β€’ toFun 𝔖 f :=
+  rfl
 
-@[to_additive (attr := simp)]
-lemma UniformOnFun.mul_apply [Monoid Ξ²] : (f * g : Ξ± β†’α΅€[𝔖] Ξ²) x = f x * g x := Pi.mul_apply f g x
+@[simp]
+lemma UniformOnFun.ofFun_smul {M : Type*} [SMul M Ξ²] (c : M) (f : Ξ± β†’ Ξ²) :
+    ofFun 𝔖 (c β€’ f) = c β€’ ofFun 𝔖 f :=
+  rfl
 
-@[to_additive (attr := simp)]
-lemma UniformFun.inv_apply [Group Ξ²] : (f : Ξ± β†’α΅€ Ξ²)⁻¹ x = (f x)⁻¹ := Pi.inv_apply f x
+instance {M N : Type*} [SMul M N] [SMul M Ξ²] [SMul N Ξ²] [IsScalarTower M N Ξ²] :
+    IsScalarTower M N (Ξ± β†’α΅€ Ξ²) :=
+  Pi.isScalarTower
 
-@[to_additive (attr := simp)]
-lemma UniformOnFun.inv_apply [Group Ξ²] : (f : Ξ± β†’α΅€[𝔖] Ξ²)⁻¹ x = (f x)⁻¹ := Pi.inv_apply f x
+instance {M N : Type*} [SMul M N] [SMul M Ξ²] [SMul N Ξ²] [IsScalarTower M N Ξ²] :
+    IsScalarTower M N (Ξ± β†’α΅€[𝔖] Ξ²) :=
+  Pi.isScalarTower
 
-@[to_additive (attr := simp)]
-lemma UniformFun.div_apply [Group Ξ²] : (f / g : Ξ± β†’α΅€ Ξ²) x = f x / g x := Pi.div_apply f g x
+instance {M N : Type*} [SMul M Ξ²] [SMul N Ξ²] [SMulCommClass M N Ξ²] :
+    SMulCommClass M N (Ξ± β†’α΅€ Ξ²) :=
+  Pi.smulCommClass
 
-@[to_additive (attr := simp)]
-lemma UniformOnFun.div_apply [Group Ξ²] : (f / g : Ξ± β†’α΅€[𝔖] Ξ²) x = f x / g x := Pi.div_apply f g x
+instance {M N : Type*} [SMul M Ξ²] [SMul N Ξ²] [SMulCommClass M N Ξ²] :
+    SMulCommClass M N (Ξ± β†’α΅€[𝔖] Ξ²) :=
+  Pi.smulCommClass
+
+instance {M : Type*} [Monoid M] [MulAction M Ξ²] : MulAction M (Ξ± β†’α΅€ Ξ²) := Pi.mulAction _
+
+instance {M : Type*} [Monoid M] [MulAction M Ξ²] : MulAction M (Ξ± β†’α΅€[𝔖] Ξ²) := Pi.mulAction _
+
+instance {M : Type*} [Monoid M] [AddMonoid Ξ²] [DistribMulAction M Ξ²] :
+    DistribMulAction M (Ξ± β†’α΅€ Ξ²) :=
+  Pi.distribMulAction _
+
+instance {M : Type*} [Monoid M] [AddMonoid Ξ²] [DistribMulAction M Ξ²] :
+    DistribMulAction M (Ξ± β†’α΅€[𝔖] Ξ²) :=
+  Pi.distribMulAction _
+
+instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± β†’α΅€ Ξ²) :=
+  Pi.module _ _ _
+
+instance [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (Ξ± β†’α΅€[𝔖] Ξ²) :=
+  Pi.module _ _ _
 
 end AlgebraicInstances
 
@@ -146,12 +236,12 @@ instance : UniformGroup (Ξ± β†’α΅€ G) :=
 @[to_additive]
 protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
-    (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => { f : Ξ± β†’α΅€ G | βˆ€ x, f x ∈ b i } := by
+    (𝓝 1 : Filter (Ξ± β†’α΅€ G)).HasBasis p fun i => { f : Ξ± β†’α΅€ G | βˆ€ x, toFun f x ∈ b i } := by
   have := h.comap fun p : G Γ— G => p.2 / p.1
   rw [← uniformity_eq_comap_nhds_one] at this
   convert UniformFun.hasBasis_nhds_of_basis Ξ± _ (1 : Ξ± β†’α΅€ G) this
   -- Porting note: removed `ext i f` here, as it has already been done by `convert`.
-  simp [UniformFun.gen]
+  simp
 #align uniform_fun.has_basis_nhds_one_of_basis UniformFun.hasBasis_nhds_one_of_basis
 #align uniform_fun.has_basis_nhds_zero_of_basis UniformFun.hasBasis_nhds_zero_of_basis
 
@@ -181,7 +271,7 @@ protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set Ξ±)
     (h𝔖₂ : DirectedOn (Β· βŠ† Β·) 𝔖) {p : ΞΉ β†’ Prop} {b : ΞΉ β†’ Set G}
     (h : (𝓝 1 : Filter G).HasBasis p b) :
     (𝓝 1 : Filter (Ξ± β†’α΅€[𝔖] G)).HasBasis (fun Si : Set Ξ± Γ— ΞΉ => Si.1 ∈ 𝔖 ∧ p Si.2) fun Si =>
-      { f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, f x ∈ b Si.2 } := by
+      { f : Ξ± β†’α΅€[𝔖] G | βˆ€ x ∈ Si.1, toFun 𝔖 f x ∈ b Si.2 } := by
   have := h.comap fun p : G Γ— G => p.1 / p.2
   rw [← uniformity_eq_comap_nhds_one_swapped] at this
   convert UniformOnFun.hasBasis_nhds_of_basis Ξ± _ 𝔖 (1 : Ξ± β†’α΅€[𝔖] G) h𝔖₁ h𝔖₂ this
chore(Order/Filter): protect Filter.map_smul (#8935)

We use SMulHomClass.map_smul much more often, even when the Filter namespace is opened.

Diff
@@ -237,13 +237,13 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩
     rw [Set.smul_subset_iff]
     intro a ha u hu x hx
-    rw [SMulHomClass.map_smul]
+    rw [map_smul]
     exact hUW (⟨ha, hu x hx⟩ : (a, Ο† u x) ∈ U Γ—Λ’ W)
   · rintro a ⟨S, V⟩ ⟨hS, hV⟩
     have : Tendsto (fun x : E => a β€’ x) (𝓝 0) (𝓝 <| a β€’ (0 : E)) := tendsto_id.const_smul a
     rw [smul_zero] at this
     refine' ⟨⟨S, (a β€’ Β·) ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩
-    rw [SMulHomClass.map_smul]
+    rw [map_smul]
     exact hf x hx
   · rintro u ⟨S, V⟩ ⟨hS, hV⟩
     rcases h u S hS hV with ⟨r, hrpos, hr⟩
@@ -253,7 +253,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
     Β· rw [ha0]
       simpa using mem_of_mem_nhds hV
     Β· rw [mem_ball_zero_iff] at ha
-      rw [SMulHomClass.map_smul, Pi.smul_apply]
+      rw [map_smul, Pi.smul_apply]
       have : Ο† u x ∈ a⁻¹ β€’ V := by
         have ha0 : 0 < β€–aβ€– := norm_pos_iff.mpr ha0
         refine' (hr a⁻¹ _) (Set.mem_image_of_mem (Ο† u) hx)
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -50,6 +50,8 @@ uniform convergence, strong dual
 
 -/
 
+set_option autoImplicit true
+
 
 open Filter
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -57,7 +57,7 @@ open Topology Pointwise UniformConvergence
 
 section AlgebraicInstances
 
-variable {Ξ± Ξ² ΞΉ R : Type _} {𝔖 : Set <| Set Ξ±}
+variable {Ξ± Ξ² ΞΉ R : Type*} {𝔖 : Set <| Set Ξ±}
 
 @[to_additive]
 instance [Monoid Ξ²] : Monoid (Ξ± β†’α΅€ Ξ²) :=
@@ -127,7 +127,7 @@ end AlgebraicInstances
 
 section Group
 
-variable {Ξ± G ΞΉ : Type _} [Group G] {𝔖 : Set <| Set Ξ±} [UniformSpace G] [UniformGroup G]
+variable {Ξ± G ΞΉ : Type*} [Group G] {𝔖 : Set <| Set Ξ±} [UniformSpace G] [UniformGroup G]
 
 /-- If `G` is a uniform group, then `Ξ± β†’α΅€ G` is a uniform group as well. -/
 @[to_additive "If `G` is a uniform additive group,
@@ -202,7 +202,7 @@ end Group
 
 section Module
 
-variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup H] [Module π•œ H]
+variable (π•œ Ξ± E H : Type*) {hom : Type*} [NormedField π•œ] [AddCommGroup H] [Module π•œ H]
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker
-
-! This file was ported from Lean 3 source module topology.algebra.uniform_convergence
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.UniformSpace.UniformConvergenceTopology
 import Mathlib.Analysis.LocallyConvex.Bounded
 import Mathlib.Topology.Algebra.FilterBasis
 
+#align_import topology.algebra.uniform_convergence from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Algebraic facts about the topology of uniform convergence
 
chore: reenable eta, bump to nightly 2023-05-16 (#3414)

Now that leanprover/lean4#2210 has been merged, this PR:

  • removes all the set_option synthInstance.etaExperiment true commands (and some etaExperiment% term elaborators)
  • removes many but not quite all set_option maxHeartbeats commands
  • makes various other changes required to cope with leanprover/lean4#2210.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -209,10 +209,6 @@ variable (π•œ Ξ± E H : Type _) {hom : Type _} [NormedField π•œ] [AddCommGroup
   [AddCommGroup E] [Module π•œ E] [TopologicalSpace H] [UniformSpace E] [UniformAddGroup E]
   [ContinuousSMul π•œ E] {𝔖 : Set <| Set Ξ±} [LinearMapClass hom π•œ H (Ξ± β†’α΅€[𝔖] E)]
 
--- Porting note:
--- This is another alarming location where we need to use
--- `eta_experiment%` to elaborate a particular subterm, but having `synthInstance.etaExperiment`
--- on for the whole declaration breaks other typeclass search.
 /-- Let `E` be a TVS, `𝔖 : Set (Set Ξ±)` and `H` a submodule of `Ξ± β†’α΅€[𝔖] E`. If the image of any
 `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
 equipped with the topology of `𝔖`-convergence, is a TVS.
@@ -231,7 +227,7 @@ theorem UniformOnFun.continuousSMul_induced_of_image_bounded (h𝔖₁ : 𝔖.No
   have : (𝓝 0 : Filter H).HasBasis _ _ := by
     rw [hφ.induced, nhds_induced, map_zero]
     exact (UniformOnFun.hasBasis_nhds_zero 𝔖 h𝔖₁ h𝔖₂).comap Ο†
-  refine' eta_experiment% ContinuousSMul.of_basis_zero this _ _ _
+  refine' ContinuousSMul.of_basis_zero this _ _ _
   · rintro ⟨S, V⟩ ⟨hS, hV⟩
     have : Tendsto (fun kx : π•œ Γ— E => kx.1 β€’ kx.2) (𝓝 (0, 0)) (𝓝 <| (0 : π•œ) β€’ (0 : E)) :=
       continuous_smul.tendsto (0 : π•œ Γ— E)
feat: port Topology.Algebra.UniformConvergence (#3664)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 10 + 629

630 files ported (98.4%)
276555 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file