topology.bornology.hom
⟷
Mathlib.Topology.Bornology.Hom
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -47,7 +47,7 @@ section
You should extend this class when you extend `locally_bounded_map`. -/
class LocallyBoundedMapClass (F : Type _) (α β : outParam <| Type _) [Bornology α]
- [Bornology β] extends FunLike F α fun _ => β where
+ [Bornology β] extends DFunLike F α fun _ => β where
comap_cobounded_le (f : F) : (cobounded β).comap f ≤ cobounded α
#align locally_bounded_map_class LocallyBoundedMapClass
-/
@@ -80,7 +80,7 @@ instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β :=
- FunLike.hasCoeToFun
+ DFunLike.hasCoeToFun
@[simp]
theorem toFun_eq_coe {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :=
@@ -90,7 +90,7 @@ theorem toFun_eq_coe {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :
#print LocallyBoundedMap.ext /-
@[ext]
theorem ext {f g : LocallyBoundedMap α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align locally_bounded_map.ext LocallyBoundedMap.ext
-/
@@ -111,7 +111,7 @@ theorem coe_copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) :
#print LocallyBoundedMap.copy_eq /-
theorem copy_eq (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align locally_bounded_map.copy_eq LocallyBoundedMap.copy_eq
-/
@@ -215,7 +215,7 @@ theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f
#print LocallyBoundedMap.cancel_right /-
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
-import Mathbin.Topology.Bornology.Basic
+import Topology.Bornology.Basic
#align_import topology.bornology.hom from "leanprover-community/mathlib"@"fac369018417f980cec5fcdafc766a69f88d8cfe"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -56,11 +56,11 @@ end
export LocallyBoundedMapClass (comap_cobounded_le)
-#print IsBounded.image /-
-theorem IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] {f : F}
+#print Bornology.IsBounded.image /-
+theorem Bornology.IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] {f : F}
{s : Set α} (hs : IsBounded s) : IsBounded (f '' s) :=
comap_cobounded_le_iff.1 (comap_cobounded_le f) hs
-#align is_bounded.image IsBounded.image
+#align is_bounded.image Bornology.IsBounded.image
-/
instance [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] :
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,14 +2,11 @@
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module topology.bornology.hom
-! leanprover-community/mathlib commit fac369018417f980cec5fcdafc766a69f88d8cfe
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Topology.Bornology.Basic
+#align_import topology.bornology.hom from "leanprover-community/mathlib"@"fac369018417f980cec5fcdafc766a69f88d8cfe"
+
/-!
# Locally bounded maps
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -59,10 +59,12 @@ end
export LocallyBoundedMapClass (comap_cobounded_le)
+#print IsBounded.image /-
theorem IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] {f : F}
{s : Set α} (hs : IsBounded s) : IsBounded (f '' s) :=
comap_cobounded_le_iff.1 (comap_cobounded_le f) hs
#align is_bounded.image IsBounded.image
+-/
instance [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] :
CoeTC F (LocallyBoundedMap α β) :=
@@ -88,25 +90,33 @@ theorem toFun_eq_coe {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :
rfl
#align locally_bounded_map.to_fun_eq_coe LocallyBoundedMap.toFun_eq_coe
+#print LocallyBoundedMap.ext /-
@[ext]
theorem ext {f g : LocallyBoundedMap α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align locally_bounded_map.ext LocallyBoundedMap.ext
+-/
+#print LocallyBoundedMap.copy /-
/-- Copy of a `locally_bounded_map` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : LocallyBoundedMap α β :=
⟨f', h.symm ▸ f.comap_cobounded_le'⟩
#align locally_bounded_map.copy LocallyBoundedMap.copy
+-/
+#print LocallyBoundedMap.coe_copy /-
@[simp]
theorem coe_copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align locally_bounded_map.coe_copy LocallyBoundedMap.coe_copy
+-/
+#print LocallyBoundedMap.copy_eq /-
theorem copy_eq (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align locally_bounded_map.copy_eq LocallyBoundedMap.copy_eq
+-/
#print LocallyBoundedMap.ofMapBounded /-
/-- Construct a `locally_bounded_map` from the fact that the function maps bounded sets to bounded
@@ -116,15 +126,19 @@ def ofMapBounded (f : α → β) (h) : LocallyBoundedMap α β :=
#align locally_bounded_map.of_map_bounded LocallyBoundedMap.ofMapBounded
-/
+#print LocallyBoundedMap.coe_ofMapBounded /-
@[simp]
theorem coe_ofMapBounded (f : α → β) {h} : ⇑(ofMapBounded f h) = f :=
rfl
#align locally_bounded_map.coe_of_map_bounded LocallyBoundedMap.coe_ofMapBounded
+-/
+#print LocallyBoundedMap.ofMapBounded_apply /-
@[simp]
theorem ofMapBounded_apply (f : α → β) {h} (a : α) : ofMapBounded f h a = f a :=
rfl
#align locally_bounded_map.of_map_bounded_apply LocallyBoundedMap.ofMapBounded_apply
+-/
variable (α)
@@ -138,17 +152,21 @@ protected def id : LocallyBoundedMap α α :=
instance : Inhabited (LocallyBoundedMap α α) :=
⟨LocallyBoundedMap.id α⟩
+#print LocallyBoundedMap.coe_id /-
@[simp]
theorem coe_id : ⇑(LocallyBoundedMap.id α) = id :=
rfl
#align locally_bounded_map.coe_id LocallyBoundedMap.coe_id
+-/
variable {α}
+#print LocallyBoundedMap.id_apply /-
@[simp]
theorem id_apply (a : α) : LocallyBoundedMap.id α a = a :=
rfl
#align locally_bounded_map.id_apply LocallyBoundedMap.id_apply
+-/
#print LocallyBoundedMap.comp /-
/-- Composition of `locally_bounded_map`s as a `locally_bounded_map`. -/
@@ -160,42 +178,56 @@ def comp (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) : LocallyBo
#align locally_bounded_map.comp LocallyBoundedMap.comp
-/
+#print LocallyBoundedMap.coe_comp /-
@[simp]
theorem coe_comp (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) : ⇑(f.comp g) = f ∘ g :=
rfl
#align locally_bounded_map.coe_comp LocallyBoundedMap.coe_comp
+-/
+#print LocallyBoundedMap.comp_apply /-
@[simp]
theorem comp_apply (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) (a : α) :
f.comp g a = f (g a) :=
rfl
#align locally_bounded_map.comp_apply LocallyBoundedMap.comp_apply
+-/
+#print LocallyBoundedMap.comp_assoc /-
@[simp]
theorem comp_assoc (f : LocallyBoundedMap γ δ) (g : LocallyBoundedMap β γ)
(h : LocallyBoundedMap α β) : (f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align locally_bounded_map.comp_assoc LocallyBoundedMap.comp_assoc
+-/
+#print LocallyBoundedMap.comp_id /-
@[simp]
theorem comp_id (f : LocallyBoundedMap α β) : f.comp (LocallyBoundedMap.id α) = f :=
ext fun a => rfl
#align locally_bounded_map.comp_id LocallyBoundedMap.comp_id
+-/
+#print LocallyBoundedMap.id_comp /-
@[simp]
theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f = f :=
ext fun a => rfl
#align locally_bounded_map.id_comp LocallyBoundedMap.id_comp
+-/
+#print LocallyBoundedMap.cancel_right /-
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
+-/
+#print LocallyBoundedMap.cancel_left /-
theorem cancel_left {g : LocallyBoundedMap β γ} {f₁ f₂ : LocallyBoundedMap α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align locally_bounded_map.cancel_left LocallyBoundedMap.cancel_left
+-/
end LocallyBoundedMap
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -50,7 +50,7 @@ section
You should extend this class when you extend `locally_bounded_map`. -/
class LocallyBoundedMapClass (F : Type _) (α β : outParam <| Type _) [Bornology α]
- [Bornology β] extends FunLike F α fun _ => β where
+ [Bornology β] extends FunLike F α fun _ => β where
comap_cobounded_le (f : F) : (cobounded β).comap f ≤ cobounded α
#align locally_bounded_map_class LocallyBoundedMapClass
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -83,12 +83,10 @@ directly. -/
instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β :=
FunLike.hasCoeToFun
-/- warning: locally_bounded_map.to_fun_eq_coe clashes with [anonymous] -> [anonymous]
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.to_fun_eq_coe [anonymous]ₓ'. -/
@[simp]
-theorem [anonymous] {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :=
+theorem toFun_eq_coe {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :=
rfl
-#align locally_bounded_map.to_fun_eq_coe [anonymous]
+#align locally_bounded_map.to_fun_eq_coe LocallyBoundedMap.toFun_eq_coe
@[ext]
theorem ext {f g : LocallyBoundedMap α β} (h : ∀ a, f a = g a) : f = g :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -59,12 +59,6 @@ end
export LocallyBoundedMapClass (comap_cobounded_le)
-/- warning: is_bounded.image -> IsBounded.image is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u3} β] [_inst_3 : LocallyBoundedMapClass.{u1, u2, u3} F α β _inst_1 _inst_2] {f : F} {s : Set.{u2} α}, (Bornology.IsBounded.{u2} α _inst_1 s) -> (Bornology.IsBounded.{u3} β _inst_2 (Set.image.{u2, u3} α β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (LocallyBoundedMapClass.toFunLike.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3)) f) s))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Bornology.{u3} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : LocallyBoundedMapClass.{u1, u3, u2} F α β _inst_1 _inst_2] {f : F} {s : Set.{u3} α}, (Bornology.IsBounded.{u3} α _inst_1 s) -> (Bornology.IsBounded.{u2} β _inst_2 (Set.image.{u3, u2} α β (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3) f) s))
-Case conversion may be inaccurate. Consider using '#align is_bounded.image IsBounded.imageₓ'. -/
theorem IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] {f : F}
{s : Set α} (hs : IsBounded s) : IsBounded (f '' s) :=
comap_cobounded_le_iff.1 (comap_cobounded_le f) hs
@@ -90,57 +84,28 @@ instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β :=
FunLike.hasCoeToFun
/- warning: locally_bounded_map.to_fun_eq_coe clashes with [anonymous] -> [anonymous]
-warning: locally_bounded_map.to_fun_eq_coe -> [anonymous] is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] {f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (LocallyBoundedMap.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}}, (Nat -> α -> β) -> Nat -> (List.{u1} α) -> (List.{u2} β)
Case conversion may be inaccurate. Consider using '#align locally_bounded_map.to_fun_eq_coe [anonymous]ₓ'. -/
@[simp]
theorem [anonymous] {f : LocallyBoundedMap α β} : f.toFun = (f : α → β) :=
rfl
#align locally_bounded_map.to_fun_eq_coe [anonymous]
-/- warning: locally_bounded_map.ext -> LocallyBoundedMap.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] {f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2} {g : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] {f : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2} {g : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) g a)) -> (Eq.{max (succ u2) (succ u1)} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.ext LocallyBoundedMap.extₓ'. -/
@[ext]
theorem ext {f g : LocallyBoundedMap α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align locally_bounded_map.ext LocallyBoundedMap.ext
-/- warning: locally_bounded_map.copy -> LocallyBoundedMap.copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u2, u1, u2} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2)) f)) -> (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.copy LocallyBoundedMap.copyₓ'. -/
/-- Copy of a `locally_bounded_map` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : LocallyBoundedMap α β :=
⟨f', h.symm ▸ f.comap_cobounded_le'⟩
#align locally_bounded_map.copy LocallyBoundedMap.copy
-/- warning: locally_bounded_map.coe_copy -> LocallyBoundedMap.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) (LocallyBoundedMap.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.coe_copy LocallyBoundedMap.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align locally_bounded_map.coe_copy LocallyBoundedMap.coe_copy
-/- warning: locally_bounded_map.copy_eq -> LocallyBoundedMap.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) f)), Eq.{max (succ u2) (succ u1)} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) (LocallyBoundedMap.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.copy_eq LocallyBoundedMap.copy_eqₓ'. -/
theorem copy_eq (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align locally_bounded_map.copy_eq LocallyBoundedMap.copy_eq
@@ -153,23 +118,11 @@ def ofMapBounded (f : α → β) (h) : LocallyBoundedMap α β :=
#align locally_bounded_map.of_map_bounded LocallyBoundedMap.ofMapBounded
-/
-/- warning: locally_bounded_map.coe_of_map_bounded -> LocallyBoundedMap.coe_ofMapBounded is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : α -> β) {h : forall {{s : Set.{u1} α}}, (Bornology.IsBounded.{u1} α _inst_1 s) -> (Bornology.IsBounded.{u2} β _inst_2 (Set.image.{u1, u2} α β f s))}, Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.ofMapBounded.{u1, u2} α β _inst_1 _inst_2 f h)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : α -> β) {h : forall {{s : Set.{u2} α}}, (Bornology.IsBounded.{u2} α _inst_1 s) -> (Bornology.IsBounded.{u1} β _inst_2 (Set.image.{u2, u1} α β f s))}, Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) (LocallyBoundedMap.ofMapBounded.{u2, u1} α β _inst_1 _inst_2 f h)) f
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.coe_of_map_bounded LocallyBoundedMap.coe_ofMapBoundedₓ'. -/
@[simp]
theorem coe_ofMapBounded (f : α → β) {h} : ⇑(ofMapBounded f h) = f :=
rfl
#align locally_bounded_map.coe_of_map_bounded LocallyBoundedMap.coe_ofMapBounded
-/- warning: locally_bounded_map.of_map_bounded_apply -> LocallyBoundedMap.ofMapBounded_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : α -> β) {h : forall {{s : Set.{u1} α}}, (Bornology.IsBounded.{u1} α _inst_1 s) -> (Bornology.IsBounded.{u2} β _inst_2 (Set.image.{u1, u2} α β f s))} (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.ofMapBounded.{u1, u2} α β _inst_1 _inst_2 f h) a) (f a)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : α -> β) {h : forall {{s : Set.{u2} α}}, (Bornology.IsBounded.{u2} α _inst_1 s) -> (Bornology.IsBounded.{u1} β _inst_2 (Set.image.{u2, u1} α β f s))} (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u2 u1, u2, u1} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2)) (LocallyBoundedMap.ofMapBounded.{u2, u1} α β _inst_1 _inst_2 f h) a) (f a)
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.of_map_bounded_apply LocallyBoundedMap.ofMapBounded_applyₓ'. -/
@[simp]
theorem ofMapBounded_apply (f : α → β) {h} (a : α) : ofMapBounded f h a = f a :=
rfl
@@ -187,12 +140,6 @@ protected def id : LocallyBoundedMap α α :=
instance : Inhabited (LocallyBoundedMap α α) :=
⟨LocallyBoundedMap.id α⟩
-/- warning: locally_bounded_map.coe_id -> LocallyBoundedMap.coe_id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Bornology.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LocallyBoundedMap.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LocallyBoundedMap.id.{u1} α _inst_1)) (id.{succ u1} α)
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Bornology.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => α) _x) (LocallyBoundedMapClass.toFunLike.{u1, u1, u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) α α _inst_1 _inst_1 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1)) (LocallyBoundedMap.id.{u1} α _inst_1)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.coe_id LocallyBoundedMap.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LocallyBoundedMap.id α) = id :=
rfl
@@ -200,12 +147,6 @@ theorem coe_id : ⇑(LocallyBoundedMap.id α) = id :=
variable {α}
-/- warning: locally_bounded_map.id_apply -> LocallyBoundedMap.id_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Bornology.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LocallyBoundedMap.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LocallyBoundedMap.id.{u1} α _inst_1) a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Bornology.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => α) _x) (LocallyBoundedMapClass.toFunLike.{u1, u1, u1} (LocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1) α α _inst_1 _inst_1 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u1} α α _inst_1 _inst_1)) (LocallyBoundedMap.id.{u1} α _inst_1) a) a
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.id_apply LocallyBoundedMap.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LocallyBoundedMap.id α a = a :=
rfl
@@ -221,80 +162,38 @@ def comp (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) : LocallyBo
#align locally_bounded_map.comp LocallyBoundedMap.comp
-/
-/- warning: locally_bounded_map.coe_comp -> LocallyBoundedMap.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u3} γ] (f : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (g : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (α -> γ) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LocallyBoundedMap.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LocallyBoundedMap.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u3} β] [_inst_3 : Bornology.{u2} γ] (f : LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) (g : LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => γ) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => γ) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u2, u1, u2} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3)) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : β) => γ) _x) (LocallyBoundedMapClass.toFunLike.{max u3 u2, u3, u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3)) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u3, u1, u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2)) g))
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.coe_comp LocallyBoundedMap.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) : ⇑(f.comp g) = f ∘ g :=
rfl
#align locally_bounded_map.coe_comp LocallyBoundedMap.coe_comp
-/- warning: locally_bounded_map.comp_apply -> LocallyBoundedMap.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u3} γ] (f : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (g : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LocallyBoundedMap.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LocallyBoundedMap.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u3} β] [_inst_3 : Bornology.{u2} γ] (f : LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) (g : LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => γ) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u2, u1, u2} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3)) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : β) => γ) _x) (LocallyBoundedMapClass.toFunLike.{max u3 u2, u3, u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3)) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u3, u1, u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.comp_apply LocallyBoundedMap.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : LocallyBoundedMap β γ) (g : LocallyBoundedMap α β) (a : α) :
f.comp g a = f (g a) :=
rfl
#align locally_bounded_map.comp_apply LocallyBoundedMap.comp_apply
-/- warning: locally_bounded_map.comp_assoc -> LocallyBoundedMap.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u3} γ] [_inst_4 : Bornology.{u4} δ] (f : LocallyBoundedMap.{u3, u4} γ δ _inst_3 _inst_4) (g : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (h : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (LocallyBoundedMap.{u1, u4} α δ _inst_1 _inst_4) (LocallyBoundedMap.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (LocallyBoundedMap.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (LocallyBoundedMap.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u4} γ] [_inst_4 : Bornology.{u3} δ] (f : LocallyBoundedMap.{u4, u3} γ δ _inst_3 _inst_4) (g : LocallyBoundedMap.{u2, u4} β γ _inst_2 _inst_3) (h : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α δ _inst_1 _inst_4) (LocallyBoundedMap.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (LocallyBoundedMap.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (LocallyBoundedMap.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (LocallyBoundedMap.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.comp_assoc LocallyBoundedMap.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : LocallyBoundedMap γ δ) (g : LocallyBoundedMap β γ)
(h : LocallyBoundedMap α β) : (f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align locally_bounded_map.comp_assoc LocallyBoundedMap.comp_assoc
-/- warning: locally_bounded_map.comp_id -> LocallyBoundedMap.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (LocallyBoundedMap.id.{u1} α _inst_1)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) (LocallyBoundedMap.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (LocallyBoundedMap.id.{u2} α _inst_1)) f
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.comp_id LocallyBoundedMap.comp_idₓ'. -/
@[simp]
theorem comp_id (f : LocallyBoundedMap α β) : f.comp (LocallyBoundedMap.id α) = f :=
ext fun a => rfl
#align locally_bounded_map.comp_id LocallyBoundedMap.comp_id
-/- warning: locally_bounded_map.id_comp -> LocallyBoundedMap.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] (f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (LocallyBoundedMap.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (LocallyBoundedMap.id.{u2} β _inst_2) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Bornology.{u2} α] [_inst_2 : Bornology.{u1} β] (f : LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (LocallyBoundedMap.{u2, u1} α β _inst_1 _inst_2) (LocallyBoundedMap.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (LocallyBoundedMap.id.{u1} β _inst_2) f) f
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.id_comp LocallyBoundedMap.id_compₓ'. -/
@[simp]
theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f = f :=
ext fun a => rfl
#align locally_bounded_map.id_comp LocallyBoundedMap.id_comp
-/- warning: locally_bounded_map.cancel_right -> LocallyBoundedMap.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u3} γ] {g₁ : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3} {g₂ : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3} {f : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LocallyBoundedMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u3} β] [_inst_3 : Bornology.{u2} γ] {g₁ : LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3} {f : LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : α) => β) _x) (LocallyBoundedMapClass.toFunLike.{max u1 u3, u1, u3} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2)) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
-/- warning: locally_bounded_map.cancel_left -> LocallyBoundedMap.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u2} β] [_inst_3 : Bornology.{u3} γ] {g : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3} {f₁ : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2} {f₂ : LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LocallyBoundedMap.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LocallyBoundedMap.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LocallyBoundedMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Bornology.{u1} α] [_inst_2 : Bornology.{u3} β] [_inst_3 : Bornology.{u2} γ] {g : LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2} {f₂ : LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.Bornology.Hom._hyg.92 : β) => γ) _x) (LocallyBoundedMapClass.toFunLike.{max u3 u2, u3, u2} (LocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LocallyBoundedMap.instLocallyBoundedMapClassLocallyBoundedMap.{u3, u2} β γ _inst_2 _inst_3)) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LocallyBoundedMap.{u1, u2} α γ _inst_1 _inst_3) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LocallyBoundedMap.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LocallyBoundedMap.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align locally_bounded_map.cancel_left LocallyBoundedMap.cancel_leftₓ'. -/
theorem cancel_left {g : LocallyBoundedMap β γ} {f₁ f₂ : LocallyBoundedMap α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -81,10 +81,7 @@ variable [Bornology α] [Bornology β] [Bornology γ] [Bornology δ]
instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β
where
coe f := f.toFun
- coe_injective' f g h := by
- cases f
- cases g
- congr
+ coe_injective' f g h := by cases f; cases g; congr
comap_cobounded_le f := f.comap_cobounded_le'
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -88,7 +88,7 @@ instance : FunLike (LocallyBoundedMap α β) α β where
instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β where
comap_cobounded_le f := f.comap_cobounded_le'
--- porting note: syntactic tautology because of the way coercions work
+-- Porting note: syntactic tautology because of the way coercions work
#noalign locally_bounded_map.to_fun_eq_coe
@[ext]
@@ -116,7 +116,7 @@ sets. -/
def ofMapBounded (f : α → β) (h : ∀ ⦃s : Set α⦄, IsBounded s → IsBounded (f '' s)) :
LocallyBoundedMap α β :=
⟨f, comap_cobounded_le_iff.2 h⟩
--- porting note: I had to provide the type of `h` explicitly.
+-- Porting note: I had to provide the type of `h` explicitly.
#align locally_bounded_map.of_map_bounded LocallyBoundedMap.ofMapBounded
@[simp]
@@ -190,7 +190,7 @@ theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congrArg (fun x => comp x f)⟩
--- porting note: unification was not strong enough to do `congrArg _`.
+-- Porting note: unification was not strong enough to do `congrArg _`.
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
@[simp]
The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun
instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike
is EquivLike
, since that has a custom coe_injective'
field that is easier to implement. All other classes should take FunLike
or EquivLike
as a parameter.
Previously, morphism classes would be Type
-valued and extend FunLike
:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
After this PR, they should be Prop
-valued and take FunLike
as a parameter:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
[FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
(Note that A B
stay marked as outParam
even though they are not purely required to be so due to the FunLike
parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam
is slightly faster.)
Similarly, MyEquivClass
should take EquivLike
as a parameter.
As a result, every mention of [MyHomClass F A B]
should become [FunLike F A B] [MyHomClass F A B]
.
While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul
is more expensive. This is due to suboptimal processing of arguments. For example:
variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)
theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y
example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _
Before this PR, applying map_mul f
gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Since M
and N
are out_param
s, [MulHomClass F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found.
After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Now [FunLike F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found, before trying MulHomClass F M N
which fails. Since the Mul
hierarchy is very big, this can be slow to fail, especially when there is no such Mul
instance.
A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul
to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N]
because MulHomClass
fails or succeeds much faster than the others.
As a consequence, the simpNF
linter is much slower since by design it tries and fails to apply many map_
lemmas. The same issue occurs a few times in existing calls to simp [map_mul]
, where map_mul
is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.
simp
not firing sometimesThis affects map_smulₛₗ
and related definitions. For simp
lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw
can find every argument to map_smulₛₗ
successfully but simp
can't: leanprover/lean4#3701.
Especially in the category theory library, we might sometimes have a type A
which is also accessible as a synonym (Bundled A hA).1
. Instance synthesis doesn't always work if we have f : A →* B
but x * y : (Bundled A hA).1
or vice versa. This seems to be mostly fixed by keeping A B
as outParam
s in MulHomClass F A B
. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1
instead of using the syntax in the discrimination tree.)
The timeouts can be worked around for now by specifying which map_mul
we mean, either as map_mul f
for some explicit f
, or as e.g. MonoidHomClass.map_mul
.
map_smulₛₗ
not firing as simp
lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ
a simp
lemma instead of the generic map_smulₛₗ
. Writing simp [map_smulₛₗ _]
also works.
Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -44,7 +44,7 @@ section
You should extend this class when you extend `LocallyBoundedMap`. -/
class LocallyBoundedMapClass (F : Type*) (α β : outParam <| Type*) [Bornology α]
- [Bornology β] extends DFunLike F α (fun _ => β) where
+ [Bornology β] [FunLike F α β] : Prop where
/-- The pullback of the `Bornology.cobounded` filter under the function is contained in the
cobounded filter. Equivalently, the function maps bounded sets to bounded sets. -/
comap_cobounded_le (f : F) : (cobounded β).comap f ≤ cobounded α
@@ -54,6 +54,8 @@ end
export LocallyBoundedMapClass (comap_cobounded_le)
+variable [FunLike F α β]
+
theorem Bornology.IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] (f : F)
{s : Set α} (hs : IsBounded s) : IsBounded (f '' s) :=
comap_cobounded_le_iff.1 (comap_cobounded_le f) hs
@@ -76,19 +78,15 @@ namespace LocallyBoundedMap
variable [Bornology α] [Bornology β] [Bornology γ] [Bornology δ]
-instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β where
+instance : FunLike (LocallyBoundedMap α β) α β where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
congr
- comap_cobounded_le f := f.comap_cobounded_le'
-/- omitting helper instance because it is not needed in Lean 4.
-/-- Helper instance for when there's too many metavariables to apply the coercion via `DFunLike`
-directly.
-instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β where
- coe := LocallyBoundedMap.toFun -/ -/
+instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β where
+ comap_cobounded_le f := f.comap_cobounded_le'
-- porting note: syntactic tautology because of the way coercions work
#noalign locally_bounded_map.to_fun_eq_coe
FunLike
(#9833)
This follows up from #9785, which renamed FunLike
to DFunLike
, by introducing a new abbreviation FunLike F α β := DFunLike F α (fun _ => β)
, to make the non-dependent use of FunLike
easier.
I searched for the pattern DFunLike.*fun
and DFunLike.*λ
in all files to replace expressions of the form DFunLike F α (fun _ => β)
with FunLike F α β
. I did this everywhere except for extends
clauses for two reasons: it would conflict with #8386, and more importantly extends
must directly refer to a structure with no unfolding of def
s or abbrev
s.
@@ -44,7 +44,7 @@ section
You should extend this class when you extend `LocallyBoundedMap`. -/
class LocallyBoundedMapClass (F : Type*) (α β : outParam <| Type*) [Bornology α]
- [Bornology β] extends DFunLike F α fun _ => β where
+ [Bornology β] extends DFunLike F α (fun _ => β) where
/-- The pullback of the `Bornology.cobounded` filter under the function is contained in the
cobounded filter. Equivalently, the function maps bounded sets to bounded sets. -/
comap_cobounded_le (f : F) : (cobounded β).comap f ≤ cobounded α
FunLike
to DFunLike
(#9785)
This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.
This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:
sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -12,7 +12,7 @@ import Mathlib.Topology.Bornology.Basic
This file defines locally bounded maps between bornologies.
-We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
+We use the `DFunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
@@ -44,7 +44,7 @@ section
You should extend this class when you extend `LocallyBoundedMap`. -/
class LocallyBoundedMapClass (F : Type*) (α β : outParam <| Type*) [Bornology α]
- [Bornology β] extends FunLike F α fun _ => β where
+ [Bornology β] extends DFunLike F α fun _ => β where
/-- The pullback of the `Bornology.cobounded` filter under the function is contained in the
cobounded filter. Equivalently, the function maps bounded sets to bounded sets. -/
comap_cobounded_le (f : F) : (cobounded β).comap f ≤ cobounded α
@@ -85,7 +85,7 @@ instance : LocallyBoundedMapClass (LocallyBoundedMap α β) α β where
comap_cobounded_le f := f.comap_cobounded_le'
/- omitting helper instance because it is not needed in Lean 4.
-/-- Helper instance for when there's too many metavariables to apply the coercion via `FunLike`
+/-- Helper instance for when there's too many metavariables to apply the coercion via `DFunLike`
directly.
instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β where
coe := LocallyBoundedMap.toFun -/ -/
@@ -95,7 +95,7 @@ instance : CoeFun (LocallyBoundedMap α β) fun _ => α → β where
@[ext]
theorem ext {f g : LocallyBoundedMap α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align locally_bounded_map.ext LocallyBoundedMap.ext
/-- Copy of a `LocallyBoundedMap` with a new `toFun` equal to the old one. Useful to fix
@@ -110,7 +110,7 @@ theorem coe_copy (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) :
#align locally_bounded_map.coe_copy LocallyBoundedMap.coe_copy
theorem copy_eq (f : LocallyBoundedMap α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align locally_bounded_map.copy_eq LocallyBoundedMap.copy_eq
/-- Construct a `LocallyBoundedMap` from the fact that the function maps bounded sets to bounded
@@ -191,7 +191,7 @@ theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f
@[simp]
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congrArg (fun x => comp x f)⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congrArg (fun x => comp x f)⟩
-- porting note: unification was not strong enough to do `congrArg _`.
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
Metric.Bounded
(#7240)
Use Bornology.IsBounded
instead.
@@ -54,10 +54,10 @@ end
export LocallyBoundedMapClass (comap_cobounded_le)
-theorem IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] {f : F}
+theorem Bornology.IsBounded.image [Bornology α] [Bornology β] [LocallyBoundedMapClass F α β] (f : F)
{s : Set α} (hs : IsBounded s) : IsBounded (f '' s) :=
comap_cobounded_le_iff.1 (comap_cobounded_le f) hs
-#align is_bounded.image IsBounded.image
+#align is_bounded.image Bornology.IsBounded.image
/-- Turn an element of a type `F` satisfying `LocallyBoundedMapClass F α β` into an actual
`LocallyBoundedMap`. This is declared as the default coercion from `F` to
@@ -188,12 +188,14 @@ theorem id_comp (f : LocallyBoundedMap α β) : (LocallyBoundedMap.id β).comp f
ext fun _ => rfl
#align locally_bounded_map.id_comp LocallyBoundedMap.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : LocallyBoundedMap β γ} {f : LocallyBoundedMap α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congrArg (fun x => comp x f)⟩
-- porting note: unification was not strong enough to do `congrArg _`.
#align locally_bounded_map.cancel_right LocallyBoundedMap.cancel_right
+@[simp]
theorem cancel_left {g : LocallyBoundedMap β γ} {f₁ f₂ : LocallyBoundedMap α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -27,10 +27,10 @@ be satisfied by itself and all stricter types.
open Bornology Filter Function Set
-variable {F α β γ δ : Type _}
+variable {F α β γ δ : Type*}
/-- The type of bounded maps from `α` to `β`, the maps which send a bounded set to a bounded set. -/
-structure LocallyBoundedMap (α β : Type _) [Bornology α] [Bornology β] where
+structure LocallyBoundedMap (α β : Type*) [Bornology α] [Bornology β] where
/-- The function underlying a locally bounded map -/
toFun : α → β
/-- The pullback of the `Bornology.cobounded` filter under the function is contained in the
@@ -43,7 +43,7 @@ section
/-- `LocallyBoundedMapClass F α β` states that `F` is a type of bounded maps.
You should extend this class when you extend `LocallyBoundedMap`. -/
-class LocallyBoundedMapClass (F : Type _) (α β : outParam <| Type _) [Bornology α]
+class LocallyBoundedMapClass (F : Type*) (α β : outParam <| Type*) [Bornology α]
[Bornology β] extends FunLike F α fun _ => β where
/-- The pullback of the `Bornology.cobounded` filter under the function is contained in the
cobounded filter. Equivalently, the function maps bounded sets to bounded sets. -/
@@ -2,14 +2,11 @@
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module topology.bornology.hom
-! leanprover-community/mathlib commit e3d9ab8faa9dea8f78155c6c27d62a621f4c152d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Topology.Bornology.Basic
+#align_import topology.bornology.hom from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
+
/-!
# Locally bounded maps
The unported dependencies are