topology.continuous_function.orderedMathlib.Topology.ContinuousFunction.Ordered

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright © 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
 -/
-import Topology.Algebra.Order.ProjIcc
+import Topology.Order.ProjIcc
 import Topology.Algebra.Order.Group
 import Topology.ContinuousFunction.Basic
 
Diff
@@ -33,7 +33,7 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
 #align continuous_map.abs ContinuousMap.abs
 
 -- see Note [lower instance priority]
-instance (priority := 100) : Abs C(α, β) :=
+instance (priority := 100) : HasAbs C(α, β) :=
   ⟨fun f => abs f⟩
 
 #print ContinuousMap.abs_apply /-
Diff
@@ -28,11 +28,9 @@ section
 
 variable [LinearOrderedAddCommGroup β] [OrderTopology β]
 
-#print ContinuousMap.abs /-
 /-- The pointwise absolute value of a continuous function as a continuous function. -/
 def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
 #align continuous_map.abs ContinuousMap.abs
--/
 
 -- see Note [lower instance priority]
 instance (priority := 100) : Abs C(α, β) :=
@@ -79,12 +77,12 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
 #align continuous_map.has_sup ContinuousMap.sup
 -/
 
-#print ContinuousMap.sup_coe /-
+#print ContinuousMap.coe_sup /-
 @[simp, norm_cast]
-theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
+theorem coe_sup [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
   rfl
-#align continuous_map.sup_coe ContinuousMap.sup_coe
+#align continuous_map.sup_coe ContinuousMap.coe_sup
 -/
 
 #print ContinuousMap.sup_apply /-
@@ -108,12 +106,12 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
 #align continuous_map.has_inf ContinuousMap.inf
 -/
 
-#print ContinuousMap.inf_coe /-
+#print ContinuousMap.coe_inf /-
 @[simp, norm_cast]
-theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
+theorem coe_inf [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
   rfl
-#align continuous_map.inf_coe ContinuousMap.inf_coe
+#align continuous_map.inf_coe ContinuousMap.coe_inf
 -/
 
 #print ContinuousMap.inf_apply /-
@@ -146,11 +144,11 @@ theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(
 #align continuous_map.sup'_apply ContinuousMap.sup'_apply
 -/
 
-#print ContinuousMap.sup'_coe /-
+#print ContinuousMap.coe_sup' /-
 @[simp, norm_cast]
-theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem coe_sup' {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
-#align continuous_map.sup'_coe ContinuousMap.sup'_coe
+#align continuous_map.sup'_coe ContinuousMap.coe_sup'
 -/
 
 end Sup'
@@ -166,12 +164,12 @@ theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
 -/
 
-#print ContinuousMap.inf'_coe /-
+#print ContinuousMap.coe_inf' /-
 @[simp, norm_cast]
-theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem coe_inf' {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
-  @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
-#align continuous_map.inf'_coe ContinuousMap.inf'_coe
+  @coe_sup' _ γᵒᵈ _ _ _ _ _ _ H f
+#align continuous_map.inf'_coe ContinuousMap.coe_inf'
 -/
 
 end Inf'
Diff
@@ -3,9 +3,9 @@ Copyright © 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
 -/
-import Mathbin.Topology.Algebra.Order.ProjIcc
-import Mathbin.Topology.Algebra.Order.Group
-import Mathbin.Topology.ContinuousFunction.Basic
+import Topology.Algebra.Order.ProjIcc
+import Topology.Algebra.Order.Group
+import Topology.ContinuousFunction.Basic
 
 #align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"3dadefa3f544b1db6214777fe47910739b54c66a"
 
Diff
@@ -2,16 +2,13 @@
 Copyright © 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
-
-! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 3dadefa3f544b1db6214777fe47910739b54c66a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Algebra.Order.ProjIcc
 import Mathbin.Topology.Algebra.Order.Group
 import Mathbin.Topology.ContinuousFunction.Basic
 
+#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"3dadefa3f544b1db6214777fe47910739b54c66a"
+
 /-!
 # Bundled continuous maps into orders, with order-compatible topology
 
Diff
@@ -43,7 +43,7 @@ instance (priority := 100) : Abs C(α, β) :=
 
 #print ContinuousMap.abs_apply /-
 @[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
+theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
   rfl
 #align continuous_map.abs_apply ContinuousMap.abs_apply
 -/
Diff
@@ -41,10 +41,12 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
 instance (priority := 100) : Abs C(α, β) :=
   ⟨fun f => abs f⟩
 
+#print ContinuousMap.abs_apply /-
 @[simp]
 theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
   rfl
 #align continuous_map.abs_apply ContinuousMap.abs_apply
+-/
 
 end
 
@@ -62,13 +64,17 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
 #align continuous_map.partial_order ContinuousMap.partialOrder
 -/
 
+#print ContinuousMap.le_def /-
 theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
   Pi.le_def
 #align continuous_map.le_def ContinuousMap.le_def
+-/
 
+#print ContinuousMap.lt_def /-
 theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
+-/
 
 #print ContinuousMap.sup /-
 instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
@@ -76,17 +82,21 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
 #align continuous_map.has_sup ContinuousMap.sup
 -/
 
+#print ContinuousMap.sup_coe /-
 @[simp, norm_cast]
 theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
   rfl
 #align continuous_map.sup_coe ContinuousMap.sup_coe
+-/
 
+#print ContinuousMap.sup_apply /-
 @[simp]
 theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊔ g) a = max (f a) (g a) :=
   rfl
 #align continuous_map.sup_apply ContinuousMap.sup_apply
+-/
 
 instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
   { ContinuousMap.partialOrder,
@@ -101,17 +111,21 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
 #align continuous_map.has_inf ContinuousMap.inf
 -/
 
+#print ContinuousMap.inf_coe /-
 @[simp, norm_cast]
 theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
   rfl
 #align continuous_map.inf_coe ContinuousMap.inf_coe
+-/
 
+#print ContinuousMap.inf_apply /-
 @[simp]
 theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊓ g) a = min (f a) (g a) :=
   rfl
 #align continuous_map.inf_apply ContinuousMap.inf_apply
+-/
 
 instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
   { ContinuousMap.partialOrder,
@@ -128,15 +142,19 @@ section Sup'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
+#print ContinuousMap.sup'_apply /-
 theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.sup' H f b = s.sup' H fun a => f a b :=
   Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
 #align continuous_map.sup'_apply ContinuousMap.sup'_apply
+-/
 
+#print ContinuousMap.sup'_coe /-
 @[simp, norm_cast]
 theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
 #align continuous_map.sup'_coe ContinuousMap.sup'_coe
+-/
 
 end Sup'
 
@@ -144,16 +162,20 @@ section Inf'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
+#print ContinuousMap.inf'_apply /-
 theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.inf' H f b = s.inf' H fun a => f a b :=
   @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
+-/
 
+#print ContinuousMap.inf'_coe /-
 @[simp, norm_cast]
 theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
   @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
 #align continuous_map.inf'_coe ContinuousMap.inf'_coe
+-/
 
 end Inf'
 
@@ -171,11 +193,13 @@ def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
 -/
 
+#print ContinuousMap.coe_IccExtend /-
 @[simp]
 theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
     ((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
   rfl
 #align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtend
+-/
 
 end Extend
 
Diff
@@ -163,11 +163,13 @@ section Extend
 
 variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
 
+#print ContinuousMap.IccExtend /-
 /-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
 -/
 def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
   ⟨Set.IccExtend h f⟩
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
+-/
 
 @[simp]
 theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
Diff
@@ -41,12 +41,6 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
 instance (priority := 100) : Abs C(α, β) :=
   ⟨fun f => abs f⟩
 
-/- warning: continuous_map.abs_apply -> ContinuousMap.abs_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
-Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
 @[simp]
 theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
   rfl
@@ -68,22 +62,10 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
 #align continuous_map.partial_order ContinuousMap.partialOrder
 -/
 
-/- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
 theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
   Pi.le_def
 #align continuous_map.le_def ContinuousMap.le_def
 
-/- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
 theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
@@ -94,24 +76,12 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
 #align continuous_map.has_sup ContinuousMap.sup
 -/
 
-/- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
   rfl
 #align continuous_map.sup_coe ContinuousMap.sup_coe
 
-/- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
 @[simp]
 theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊔ g) a = max (f a) (g a) :=
@@ -131,24 +101,12 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
 #align continuous_map.has_inf ContinuousMap.inf
 -/
 
-/- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
 @[simp, norm_cast]
 theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
   rfl
 #align continuous_map.inf_coe ContinuousMap.inf_coe
 
-/- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
 @[simp]
 theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊓ g) a = min (f a) (g a) :=
@@ -170,23 +128,11 @@ section Sup'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
-/- warning: continuous_map.sup'_apply -> ContinuousMap.sup'_apply is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u2, u3} γ ι (Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
-but is expected to have type
-  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_apply ContinuousMap.sup'_applyₓ'. -/
 theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.sup' H f b = s.sup' H fun a => f a b :=
   Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
 #align continuous_map.sup'_apply ContinuousMap.sup'_apply
 
-/- warning: continuous_map.sup'_coe -> ContinuousMap.sup'_coe is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeSup.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
-but is expected to have type
-  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeSup.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
@@ -198,23 +144,11 @@ section Inf'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
-/- warning: continuous_map.inf'_apply -> ContinuousMap.inf'_apply is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u2, u3} γ ι (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
-but is expected to have type
-  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_apply ContinuousMap.inf'_applyₓ'. -/
 theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.inf' H f b = s.inf' H fun a => f a b :=
   @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
 
-/- warning: continuous_map.inf'_coe -> ContinuousMap.inf'_coe is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeInf.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
-but is expected to have type
-  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeInf.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_coe ContinuousMap.inf'_coeₓ'. -/
 @[simp, norm_cast]
 theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
@@ -229,21 +163,12 @@ section Extend
 
 variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
 
-/- warning: continuous_map.Icc_extend -> ContinuousMap.IccExtend is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) -> (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))) a b) -> (ContinuousMap.{u1, u2} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align continuous_map.Icc_extend ContinuousMap.IccExtendₓ'. -/
 /-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
 -/
 def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
   ⟨Set.IccExtend h f⟩
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
 
-/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
 @[simp]
 theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
     ((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
Diff
@@ -189,10 +189,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
-    ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) :=
-  by
-  ext
-  simp [sup'_apply]
+    ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
 #align continuous_map.sup'_coe ContinuousMap.sup'_coe
 
 end Sup'
Diff
@@ -245,10 +245,7 @@ def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
 
 /- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
 @[simp]
 theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
Diff
@@ -70,7 +70,7 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
 
 /- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
 Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
@@ -80,7 +80,7 @@ theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤
 
 /- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
 Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
@@ -232,17 +232,21 @@ section Extend
 
 variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
 
-#print ContinuousMap.IccExtend /-
+/- warning: continuous_map.Icc_extend -> ContinuousMap.IccExtend is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) -> (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))) a b) -> (ContinuousMap.{u1, u2} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align continuous_map.Icc_extend ContinuousMap.IccExtendₓ'. -/
 /-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
 -/
 def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
   ⟨Set.IccExtend h f⟩
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
--/
 
 /- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
 Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
Diff
@@ -45,7 +45,7 @@ instance (priority := 100) : Abs C(α, β) :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
 Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
 @[simp]
 theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
@@ -88,17 +88,17 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
 
-#print ContinuousMap.hasSup /-
-instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
+#print ContinuousMap.sup /-
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
     where sup f g := { toFun := fun a => max (f a) (g a) }
-#align continuous_map.has_sup ContinuousMap.hasSup
+#align continuous_map.has_sup ContinuousMap.sup
 -/
 
 /- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.instHasSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
 Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -108,9 +108,9 @@ theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
 
 /- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
 Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
 @[simp]
 theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
@@ -120,22 +120,22 @@ theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
 
 instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
   { ContinuousMap.partialOrder,
-    ContinuousMap.hasSup with
+    ContinuousMap.sup with
     le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
     le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
     sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
 
-#print ContinuousMap.hasInf /-
-instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
+#print ContinuousMap.inf /-
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
     where inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.hasInf
+#align continuous_map.has_inf ContinuousMap.inf
 -/
 
 /- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.instHasInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toHasInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
 Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
 @[simp, norm_cast]
 theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -145,9 +145,9 @@ theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
 
 /- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
 Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
 @[simp]
 theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
@@ -157,7 +157,7 @@ theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
 
 instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
   { ContinuousMap.partialOrder,
-    ContinuousMap.hasInf with
+    ContinuousMap.inf with
     inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
     inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
     le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
 
 ! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
+! leanprover-community/mathlib commit 3dadefa3f544b1db6214777fe47910739b54c66a
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.ContinuousFunction.Basic
 /-!
 # Bundled continuous maps into orders, with order-compatible topology
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 -/
 
 
Diff
@@ -28,14 +28,22 @@ section
 
 variable [LinearOrderedAddCommGroup β] [OrderTopology β]
 
+#print ContinuousMap.abs /-
 /-- The pointwise absolute value of a continuous function as a continuous function. -/
 def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
 #align continuous_map.abs ContinuousMap.abs
+-/
 
 -- see Note [lower instance priority]
 instance (priority := 100) : Abs C(α, β) :=
   ⟨fun f => abs f⟩
 
+/- warning: continuous_map.abs_apply -> ContinuousMap.abs_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
+Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
 @[simp]
 theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
   rfl
@@ -51,28 +59,56 @@ on continuous functions.
 
 section Lattice
 
+#print ContinuousMap.partialOrder /-
 instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
   PartialOrder.lift (fun f => f.toFun) (by tidy)
 #align continuous_map.partial_order ContinuousMap.partialOrder
+-/
 
+/- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
 theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
   Pi.le_def
 #align continuous_map.le_def ContinuousMap.le_def
 
+/- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
+Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
 theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
 
+#print ContinuousMap.hasSup /-
 instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
     where sup f g := { toFun := fun a => max (f a) (g a) }
 #align continuous_map.has_sup ContinuousMap.hasSup
+-/
 
+/- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.instHasSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
   rfl
 #align continuous_map.sup_coe ContinuousMap.sup_coe
 
+/- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
 @[simp]
 theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊔ g) a = max (f a) (g a) :=
@@ -86,16 +122,30 @@ instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
     le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
     sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
 
+#print ContinuousMap.hasInf /-
 instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
     where inf f g := { toFun := fun a => min (f a) (g a) }
 #align continuous_map.has_inf ContinuousMap.hasInf
+-/
 
+/- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.instHasInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toHasInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
 @[simp, norm_cast]
 theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
     ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
   rfl
 #align continuous_map.inf_coe ContinuousMap.inf_coe
 
+/- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
 @[simp]
 theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
     (f ⊓ g) a = min (f a) (g a) :=
@@ -117,11 +167,23 @@ section Sup'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
+/- warning: continuous_map.sup'_apply -> ContinuousMap.sup'_apply is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u2, u3} γ ι (Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
+but is expected to have type
+  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_apply ContinuousMap.sup'_applyₓ'. -/
 theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.sup' H f b = s.sup' H fun a => f a b :=
   Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
 #align continuous_map.sup'_apply ContinuousMap.sup'_apply
 
+/- warning: continuous_map.sup'_coe -> ContinuousMap.sup'_coe is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeSup.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
+but is expected to have type
+  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeSup.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
 @[simp, norm_cast]
 theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) :=
@@ -136,11 +198,23 @@ section Inf'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
+/- warning: continuous_map.inf'_apply -> ContinuousMap.inf'_apply is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u2, u3} γ ι (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
+but is expected to have type
+  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_apply ContinuousMap.inf'_applyₓ'. -/
 theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.inf' H f b = s.inf' H fun a => f a b :=
   @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
 
+/- warning: continuous_map.inf'_coe -> ContinuousMap.inf'_coe is a dubious translation:
+lean 3 declaration is
+  forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeInf.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
+but is expected to have type
+  forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeInf.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_coe ContinuousMap.inf'_coeₓ'. -/
 @[simp, norm_cast]
 theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
@@ -155,17 +229,25 @@ section Extend
 
 variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
 
+#print ContinuousMap.IccExtend /-
 /-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
 -/
-def iccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
+def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
   ⟨Set.IccExtend h f⟩
-#align continuous_map.Icc_extend ContinuousMap.iccExtend
+#align continuous_map.Icc_extend ContinuousMap.IccExtend
+-/
 
+/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
+Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
 @[simp]
-theorem coe_iccExtend (f : C(Set.Icc a b, β)) :
-    ((iccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
+theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
+    ((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
   rfl
-#align continuous_map.coe_Icc_extend ContinuousMap.coe_iccExtend
+#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtend
 
 end Extend
 

Changes in mathlib4

mathlib3
mathlib4
move(Topology/Order): Move anything that doesn't concern algebra (#11610)

Move files from Topology.Algebra.Order to Topology.Order when they do not contain any algebra. Also move Topology.LocalExtr to Topology.Order.LocalExtr.

According to git, the moves are:

  • Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
  • Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
  • Mathlib/Topology/{Algebra => }/Order/Filter.lean
  • Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
  • Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
  • Mathlib/Topology/{Algebra => }/Order/T5.lean
  • Mathlib/Topology/{ => Order}/LocalExtr.lean
Diff
@@ -3,9 +3,9 @@ Copyright © 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
 -/
-import Mathlib.Topology.Algebra.Order.ProjIcc
 import Mathlib.Topology.ContinuousFunction.Basic
 import Mathlib.Topology.Order.Lattice
+import Mathlib.Topology.Order.ProjIcc
 
 #align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -16,7 +16,6 @@ import Mathlib.Topology.Order.Lattice
 
 
 variable {α : Type*} {β : Type*} {γ : Type*}
-
 variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
 namespace ContinuousMap
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -28,7 +28,7 @@ on continuous functions.
 
 instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
   PartialOrder.lift (fun f => f.toFun) (fun f g _ => by cases f; cases g; congr)
-  -- porting note: was `by tidy`, and `by aesop` alone didn't work
+  -- Porting note: was `by tidy`, and `by aesop` alone didn't work
 #align continuous_map.partial_order ContinuousMap.partialOrder
 
 theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
 -/
 import Mathlib.Topology.Algebra.Order.ProjIcc
-import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.ContinuousFunction.Basic
 import Mathlib.Topology.Order.Lattice
 
chore(*): rename FunLike to DFunLike (#9785)

This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.

This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:

sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean     
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean

Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -53,7 +53,7 @@ instance sup : Sup C(α, β) where sup f g := { toFun := fun a ↦ f a ⊔ g a }
 #align continuous_map.sup_apply ContinuousMap.sup_apply
 
 instance semilatticeSup : SemilatticeSup C(α, β) :=
-  FunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
+  DFunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
 
 lemma sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
     s.sup' H f a = s.sup' H fun i ↦ f i a :=
@@ -80,7 +80,7 @@ instance inf : Inf C(α, β) where inf f g := { toFun := fun a ↦ f a ⊓ g a }
 #align continuous_map.inf_apply ContinuousMap.inf_apply
 
 instance semilatticeInf : SemilatticeInf C(α, β) :=
-  FunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
+  DFunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
 
 lemma inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
     s.inf' H f a = s.inf' H fun i ↦ f i a :=
@@ -95,7 +95,7 @@ lemma coe_inf' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, 
 end SemilatticeInf
 
 instance [Lattice β] [TopologicalLattice β] : Lattice C(α, β) :=
-  FunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
+  DFunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
 
 -- TODO transfer this lattice structure to `BoundedContinuousFunction`
 
refactor: Generalise absolute value of continuous map to topological lattices (#9501)

Delete ContinuousMap.abs in favor of the general construction in lattice ordered groups.

Part of #9411

Diff
@@ -6,6 +6,7 @@ Authors: Scott Morrison, Shing Tak Lam
 import Mathlib.Topology.Algebra.Order.ProjIcc
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.ContinuousFunction.Basic
+import Mathlib.Topology.Order.Lattice
 
 #align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
 
@@ -21,33 +22,11 @@ variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
 namespace ContinuousMap
 
-section
-
-variable [LinearOrderedAddCommGroup β] [OrderTopology β]
-
-/-- The pointwise absolute value of a continuous function as a continuous function. -/
-def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
-#align continuous_map.abs ContinuousMap.abs
-
--- see Note [lower instance priority]
-instance (priority := 100) : Abs C(α, β) :=
-  ⟨fun f => abs f⟩
-
-@[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
-  rfl
-#align continuous_map.abs_apply ContinuousMap.abs_apply
-
-end
-
 /-!
 We now set up the partial order and lattice structure (given by pointwise min and max)
 on continuous functions.
 -/
 
-
-section Lattice
-
 instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
   PartialOrder.lift (fun f => f.toFun) (fun f g _ => by cases f; cases g; congr)
   -- porting note: was `by tidy`, and `by aesop` alone didn't work
@@ -61,92 +40,64 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
 
-instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β) where
-  sup f g := { toFun := fun a => max (f a) (g a) }
+section SemilatticeSup
+variable [SemilatticeSup β] [ContinuousSup β]
+
+instance sup : Sup C(α, β) where sup f g := { toFun := fun a ↦ f a ⊔ g a }
 #align continuous_map.has_sup ContinuousMap.sup
 
-@[simp, norm_cast]
-theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
-    ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
-  rfl
-#align continuous_map.sup_coe ContinuousMap.sup_coe
+@[simp, norm_cast] lemma coe_sup (f g : C(α, β)) : ⇑(f ⊔ g) = ⇑f ⊔ g := rfl
+#align continuous_map.sup_coe ContinuousMap.coe_sup
 
-@[simp]
-theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
-    (f ⊔ g) a = max (f a) (g a) :=
-  rfl
+@[simp] lemma sup_apply (f g : C(α, β)) (a : α) : (f ⊔ g) a = f a ⊔ g a := rfl
 #align continuous_map.sup_apply ContinuousMap.sup_apply
 
-instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
-  { ContinuousMap.partialOrder,
-    ContinuousMap.sup with
-    le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
-    le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
-    sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
+instance semilatticeSup : SemilatticeSup C(α, β) :=
+  FunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
 
-instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β) where
-  inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.inf
+lemma sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
+    s.sup' H f a = s.sup' H fun i ↦ f i a :=
+  Finset.comp_sup'_eq_sup'_comp H (fun g : C(α, β) ↦ g a) fun _ _ ↦ rfl
+#align continuous_map.sup'_apply ContinuousMap.sup'_apply
 
 @[simp, norm_cast]
-theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
-    ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
-  rfl
-#align continuous_map.inf_coe ContinuousMap.inf_coe
-
-@[simp]
-theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
-    (f ⊓ g) a = min (f a) (g a) :=
-  rfl
-#align continuous_map.inf_apply ContinuousMap.inf_apply
-
-instance semilatticeInf [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
-  { ContinuousMap.partialOrder,
-    ContinuousMap.inf with
-    inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
-    inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
-    le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
-
-instance [LinearOrder β] [OrderClosedTopology β] : Lattice C(α, β) :=
-  { ContinuousMap.semilatticeInf, ContinuousMap.semilatticeSup with }
+lemma coe_sup' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) :
+    ⇑(s.sup' H f) = s.sup' H fun i ↦ ⇑(f i) := by ext; simp [sup'_apply]
+#align continuous_map.sup'_coe ContinuousMap.coe_sup'
 
--- TODO transfer this lattice structure to `BoundedContinuousFunction`
-section Sup'
-
-variable [LinearOrder γ] [OrderClosedTopology γ]
+end SemilatticeSup
 
-theorem sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
-    s.sup' H f b = s.sup' H fun a => f a b :=
-  Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun _ _ => rfl
-#align continuous_map.sup'_apply ContinuousMap.sup'_apply
+section SemilatticeInf
+variable [SemilatticeInf β] [ContinuousInf β]
 
-@[simp, norm_cast]
-theorem sup'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
-    ((s.sup' H f : C(β, γ)) : β → γ) = s.sup' H fun a => (f a : β → γ) := by
-  ext
-  simp [sup'_apply]
-#align continuous_map.sup'_coe ContinuousMap.sup'_coe
+instance inf : Inf C(α, β) where inf f g := { toFun := fun a ↦ f a ⊓ g a }
+#align continuous_map.has_inf ContinuousMap.inf
 
-end Sup'
+@[simp, norm_cast] lemma coe_inf (f g : C(α, β)) : ⇑(f ⊓ g) = ⇑f ⊓ g := rfl
+#align continuous_map.inf_coe ContinuousMap.coe_inf
 
-section Inf'
+@[simp] lemma inf_apply (f g : C(α, β)) (a : α) : (f ⊓ g) a = f a ⊓ g a := rfl
+#align continuous_map.inf_apply ContinuousMap.inf_apply
 
-variable [LinearOrder γ] [OrderClosedTopology γ]
+instance semilatticeInf : SemilatticeInf C(α, β) :=
+  FunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
 
-theorem inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
-    s.inf' H f b = s.inf' H fun a => f a b :=
-  @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
+lemma inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
+    s.inf' H f a = s.inf' H fun i ↦ f i a :=
+  Finset.comp_inf'_eq_inf'_comp H (fun g : C(α, β) ↦ g a) fun _ _ ↦ rfl
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
 
 @[simp, norm_cast]
-theorem inf'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
-    ((s.inf' H f : C(β, γ)) : β → γ) = s.inf' H fun a => (f a : β → γ) :=
-  @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
-#align continuous_map.inf'_coe ContinuousMap.inf'_coe
+lemma coe_inf' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) :
+    ⇑(s.inf' H f) = s.inf' H fun i ↦ ⇑(f i) := by ext; simp [inf'_apply]
+#align continuous_map.inf'_coe ContinuousMap.coe_inf'
 
-end Inf'
+end SemilatticeInf
 
-end Lattice
+instance [Lattice β] [TopologicalLattice β] : Lattice C(α, β) :=
+  FunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
+
+-- TODO transfer this lattice structure to `BoundedContinuousFunction`
 
 section Extend
 
style: fix wrapping of where (#7149)
Diff
@@ -61,8 +61,8 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
 
-instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
-    where sup f g := { toFun := fun a => max (f a) (g a) }
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β) where
+  sup f g := { toFun := fun a => max (f a) (g a) }
 #align continuous_map.has_sup ContinuousMap.sup
 
 @[simp, norm_cast]
@@ -84,8 +84,8 @@ instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeS
     le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
     sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
 
-instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
-    where inf f g := { toFun := fun a => min (f a) (g a) }
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β) where
+  inf f g := { toFun := fun a => min (f a) (g a) }
 #align continuous_map.has_inf ContinuousMap.inf
 
 @[simp, norm_cast]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -15,7 +15,7 @@ import Mathlib.Topology.ContinuousFunction.Basic
 -/
 
 
-variable {α : Type _} {β : Type _} {γ : Type _}
+variable {α : Type*} {β : Type*} {γ : Type*}
 
 variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
@@ -115,13 +115,13 @@ section Sup'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
-theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
+theorem sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.sup' H f b = s.sup' H fun a => f a b :=
   Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun _ _ => rfl
 #align continuous_map.sup'_apply ContinuousMap.sup'_apply
 
 @[simp, norm_cast]
-theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem sup'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.sup' H f : C(β, γ)) : β → γ) = s.sup' H fun a => (f a : β → γ) := by
   ext
   simp [sup'_apply]
@@ -133,13 +133,13 @@ section Inf'
 
 variable [LinearOrder γ] [OrderClosedTopology γ]
 
-theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
+theorem inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
     s.inf' H f b = s.inf' H fun a => f a b :=
   @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
 #align continuous_map.inf'_apply ContinuousMap.inf'_apply
 
 @[simp, norm_cast]
-theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem inf'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
     ((s.inf' H f : C(β, γ)) : β → γ) = s.inf' H fun a => (f a : β → γ) :=
   @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
 #align continuous_map.inf'_coe ContinuousMap.inf'_coe
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright © 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Shing Tak Lam
-
-! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Algebra.Order.ProjIcc
 import Mathlib.Topology.Algebra.Order.Group
 import Mathlib.Topology.ContinuousFunction.Basic
 
+#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
+
 /-!
 # Bundled continuous maps into orders, with order-compatible topology
 
fix: precedence of , and abs (#5619)
Diff
@@ -37,7 +37,7 @@ instance (priority := 100) : Abs C(α, β) :=
   ⟨fun f => abs f⟩
 
 @[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
+theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
   rfl
 #align continuous_map.abs_apply ContinuousMap.abs_apply
 
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -155,7 +155,7 @@ section Extend
 
 variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
 
-/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.  -/
+/-- Extend a continuous function `f : C(Set.Icc a b, β)` to a function `f : C(α, β)`.  -/
 def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) where
   toFun := Set.IccExtend h f
 #align continuous_map.Icc_extend ContinuousMap.IccExtend
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -64,9 +64,9 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
   Pi.lt_def
 #align continuous_map.lt_def ContinuousMap.lt_def
 
-instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
     where sup f g := { toFun := fun a => max (f a) (g a) }
-#align continuous_map.has_sup ContinuousMap.hasSup
+#align continuous_map.has_sup ContinuousMap.sup
 
 @[simp, norm_cast]
 theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -82,14 +82,14 @@ theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
 
 instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
   { ContinuousMap.partialOrder,
-    ContinuousMap.hasSup with
+    ContinuousMap.sup with
     le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
     le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
     sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
 
-instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
     where inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.hasInf
+#align continuous_map.has_inf ContinuousMap.inf
 
 @[simp, norm_cast]
 theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -105,7 +105,7 @@ theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
 
 instance semilatticeInf [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
   { ContinuousMap.partialOrder,
-    ContinuousMap.hasInf with
+    ContinuousMap.inf with
     inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
     inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
     le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
feat: port Topology.ContinuousFunction.Ordered (#2448)

Dependencies 9 + 399

400 files ported (97.8%)
174066 lines ported (97.2%)
Show graph

The unported dependencies are