topology.continuous_function.ordered
⟷
Mathlib.Topology.ContinuousFunction.Ordered
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
-import Topology.Algebra.Order.ProjIcc
+import Topology.Order.ProjIcc
import Topology.Algebra.Order.Group
import Topology.ContinuousFunction.Basic
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -33,7 +33,7 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
#align continuous_map.abs ContinuousMap.abs
-- see Note [lower instance priority]
-instance (priority := 100) : Abs C(α, β) :=
+instance (priority := 100) : HasAbs C(α, β) :=
⟨fun f => abs f⟩
#print ContinuousMap.abs_apply /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -28,11 +28,9 @@ section
variable [LinearOrderedAddCommGroup β] [OrderTopology β]
-#print ContinuousMap.abs /-
/-- The pointwise absolute value of a continuous function as a continuous function. -/
def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
#align continuous_map.abs ContinuousMap.abs
--/
-- see Note [lower instance priority]
instance (priority := 100) : Abs C(α, β) :=
@@ -79,12 +77,12 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
#align continuous_map.has_sup ContinuousMap.sup
-/
-#print ContinuousMap.sup_coe /-
+#print ContinuousMap.coe_sup /-
@[simp, norm_cast]
-theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
+theorem coe_sup [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
-#align continuous_map.sup_coe ContinuousMap.sup_coe
+#align continuous_map.sup_coe ContinuousMap.coe_sup
-/
#print ContinuousMap.sup_apply /-
@@ -108,12 +106,12 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
#align continuous_map.has_inf ContinuousMap.inf
-/
-#print ContinuousMap.inf_coe /-
+#print ContinuousMap.coe_inf /-
@[simp, norm_cast]
-theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
+theorem coe_inf [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
-#align continuous_map.inf_coe ContinuousMap.inf_coe
+#align continuous_map.inf_coe ContinuousMap.coe_inf
-/
#print ContinuousMap.inf_apply /-
@@ -146,11 +144,11 @@ theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(
#align continuous_map.sup'_apply ContinuousMap.sup'_apply
-/
-#print ContinuousMap.sup'_coe /-
+#print ContinuousMap.coe_sup' /-
@[simp, norm_cast]
-theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem coe_sup' {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
-#align continuous_map.sup'_coe ContinuousMap.sup'_coe
+#align continuous_map.sup'_coe ContinuousMap.coe_sup'
-/
end Sup'
@@ -166,12 +164,12 @@ theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
-/
-#print ContinuousMap.inf'_coe /-
+#print ContinuousMap.coe_inf' /-
@[simp, norm_cast]
-theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem coe_inf' {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
- @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
-#align continuous_map.inf'_coe ContinuousMap.inf'_coe
+ @coe_sup' _ γᵒᵈ _ _ _ _ _ _ H f
+#align continuous_map.inf'_coe ContinuousMap.coe_inf'
-/
end Inf'
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
-import Mathbin.Topology.Algebra.Order.ProjIcc
-import Mathbin.Topology.Algebra.Order.Group
-import Mathbin.Topology.ContinuousFunction.Basic
+import Topology.Algebra.Order.ProjIcc
+import Topology.Algebra.Order.Group
+import Topology.ContinuousFunction.Basic
#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"3dadefa3f544b1db6214777fe47910739b54c66a"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-
-! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 3dadefa3f544b1db6214777fe47910739b54c66a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Topology.Algebra.Order.ProjIcc
import Mathbin.Topology.Algebra.Order.Group
import Mathbin.Topology.ContinuousFunction.Basic
+#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"3dadefa3f544b1db6214777fe47910739b54c66a"
+
/-!
# Bundled continuous maps into orders, with order-compatible topology
mathlib commit https://github.com/leanprover-community/mathlib/commit/9240e8be927a0955b9a82c6c85ef499ee3a626b8
@@ -43,7 +43,7 @@ instance (priority := 100) : Abs C(α, β) :=
#print ContinuousMap.abs_apply /-
@[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
+theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
rfl
#align continuous_map.abs_apply ContinuousMap.abs_apply
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -41,10 +41,12 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
instance (priority := 100) : Abs C(α, β) :=
⟨fun f => abs f⟩
+#print ContinuousMap.abs_apply /-
@[simp]
theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
rfl
#align continuous_map.abs_apply ContinuousMap.abs_apply
+-/
end
@@ -62,13 +64,17 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
#align continuous_map.partial_order ContinuousMap.partialOrder
-/
+#print ContinuousMap.le_def /-
theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
Pi.le_def
#align continuous_map.le_def ContinuousMap.le_def
+-/
+#print ContinuousMap.lt_def /-
theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
+-/
#print ContinuousMap.sup /-
instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
@@ -76,17 +82,21 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
#align continuous_map.has_sup ContinuousMap.sup
-/
+#print ContinuousMap.sup_coe /-
@[simp, norm_cast]
theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
#align continuous_map.sup_coe ContinuousMap.sup_coe
+-/
+#print ContinuousMap.sup_apply /-
@[simp]
theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊔ g) a = max (f a) (g a) :=
rfl
#align continuous_map.sup_apply ContinuousMap.sup_apply
+-/
instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
{ ContinuousMap.partialOrder,
@@ -101,17 +111,21 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
#align continuous_map.has_inf ContinuousMap.inf
-/
+#print ContinuousMap.inf_coe /-
@[simp, norm_cast]
theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
#align continuous_map.inf_coe ContinuousMap.inf_coe
+-/
+#print ContinuousMap.inf_apply /-
@[simp]
theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊓ g) a = min (f a) (g a) :=
rfl
#align continuous_map.inf_apply ContinuousMap.inf_apply
+-/
instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
{ ContinuousMap.partialOrder,
@@ -128,15 +142,19 @@ section Sup'
variable [LinearOrder γ] [OrderClosedTopology γ]
+#print ContinuousMap.sup'_apply /-
theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H fun a => f a b :=
Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
#align continuous_map.sup'_apply ContinuousMap.sup'_apply
+-/
+#print ContinuousMap.sup'_coe /-
@[simp, norm_cast]
theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
#align continuous_map.sup'_coe ContinuousMap.sup'_coe
+-/
end Sup'
@@ -144,16 +162,20 @@ section Inf'
variable [LinearOrder γ] [OrderClosedTopology γ]
+#print ContinuousMap.inf'_apply /-
theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H fun a => f a b :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
+-/
+#print ContinuousMap.inf'_coe /-
@[simp, norm_cast]
theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
@sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
#align continuous_map.inf'_coe ContinuousMap.inf'_coe
+-/
end Inf'
@@ -171,11 +193,13 @@ def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
#align continuous_map.Icc_extend ContinuousMap.IccExtend
-/
+#print ContinuousMap.coe_IccExtend /-
@[simp]
theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
rfl
#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtend
+-/
end Extend
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -163,11 +163,13 @@ section Extend
variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
+#print ContinuousMap.IccExtend /-
/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
⟨Set.IccExtend h f⟩
#align continuous_map.Icc_extend ContinuousMap.IccExtend
+-/
@[simp]
theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -41,12 +41,6 @@ def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
instance (priority := 100) : Abs C(α, β) :=
⟨fun f => abs f⟩
-/- warning: continuous_map.abs_apply -> ContinuousMap.abs_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
-Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
@[simp]
theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
rfl
@@ -68,22 +62,10 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
#align continuous_map.partial_order ContinuousMap.partialOrder
-/
-/- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
Pi.le_def
#align continuous_map.le_def ContinuousMap.le_def
-/- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
-Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
@@ -94,24 +76,12 @@ instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
#align continuous_map.has_sup ContinuousMap.sup
-/
-/- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
@[simp, norm_cast]
theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
#align continuous_map.sup_coe ContinuousMap.sup_coe
-/- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
@[simp]
theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊔ g) a = max (f a) (g a) :=
@@ -131,24 +101,12 @@ instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
#align continuous_map.has_inf ContinuousMap.inf
-/
-/- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
@[simp, norm_cast]
theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
#align continuous_map.inf_coe ContinuousMap.inf_coe
-/- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
@[simp]
theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊓ g) a = min (f a) (g a) :=
@@ -170,23 +128,11 @@ section Sup'
variable [LinearOrder γ] [OrderClosedTopology γ]
-/- warning: continuous_map.sup'_apply -> ContinuousMap.sup'_apply is a dubious translation:
-lean 3 declaration is
- forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u2, u3} γ ι (Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
-but is expected to have type
- forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_apply ContinuousMap.sup'_applyₓ'. -/
theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H fun a => f a b :=
Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
#align continuous_map.sup'_apply ContinuousMap.sup'_apply
-/- warning: continuous_map.sup'_coe -> ContinuousMap.sup'_coe is a dubious translation:
-lean 3 declaration is
- forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeSup.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
-but is expected to have type
- forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeSup.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
-Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
@[simp, norm_cast]
theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
@@ -198,23 +144,11 @@ section Inf'
variable [LinearOrder γ] [OrderClosedTopology γ]
-/- warning: continuous_map.inf'_apply -> ContinuousMap.inf'_apply is a dubious translation:
-lean 3 declaration is
- forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u2, u3} γ ι (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
-but is expected to have type
- forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_apply ContinuousMap.inf'_applyₓ'. -/
theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H fun a => f a b :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
-/- warning: continuous_map.inf'_coe -> ContinuousMap.inf'_coe is a dubious translation:
-lean 3 declaration is
- forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeInf.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
-but is expected to have type
- forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeInf.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
-Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_coe ContinuousMap.inf'_coeₓ'. -/
@[simp, norm_cast]
theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
@@ -229,21 +163,12 @@ section Extend
variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
-/- warning: continuous_map.Icc_extend -> ContinuousMap.IccExtend is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) -> (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))) a b) -> (ContinuousMap.{u1, u2} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align continuous_map.Icc_extend ContinuousMap.IccExtendₓ'. -/
/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
⟨Set.IccExtend h f⟩
#align continuous_map.Icc_extend ContinuousMap.IccExtend
-/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
@[simp]
theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -189,10 +189,7 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
@[simp, norm_cast]
theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
- ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) :=
- by
- ext
- simp [sup'_apply]
+ ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) := by ext; simp [sup'_apply]
#align continuous_map.sup'_coe ContinuousMap.sup'_coe
end Sup'
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -245,10 +245,7 @@ def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
#align continuous_map.Icc_extend ContinuousMap.IccExtend
/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
+<too large>
Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
@[simp]
theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -70,7 +70,7 @@ instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
/- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
@@ -80,7 +80,7 @@ theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤
/- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
@@ -232,17 +232,21 @@ section Extend
variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
-#print ContinuousMap.IccExtend /-
+/- warning: continuous_map.Icc_extend -> ContinuousMap.IccExtend is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) -> (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4)))))) a b) -> (ContinuousMap.{u1, u2} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_4))))) a b)) _inst_1) _inst_2) -> (ContinuousMap.{u1, u2} α β _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align continuous_map.Icc_extend ContinuousMap.IccExtendₓ'. -/
/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
⟨Set.IccExtend h f⟩
#align continuous_map.Icc_extend ContinuousMap.IccExtend
--/
/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -45,7 +45,7 @@ instance (priority := 100) : Abs C(α, β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
@[simp]
theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
@@ -88,17 +88,17 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
-#print ContinuousMap.hasSup /-
-instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
+#print ContinuousMap.sup /-
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
where sup f g := { toFun := fun a => max (f a) (g a) }
-#align continuous_map.has_sup ContinuousMap.hasSup
+#align continuous_map.has_sup ContinuousMap.sup
-/
/- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.instHasSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
@[simp, norm_cast]
theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -108,9 +108,9 @@ theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
/- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Sup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.sup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
@[simp]
theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
@@ -120,22 +120,22 @@ theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
{ ContinuousMap.partialOrder,
- ContinuousMap.hasSup with
+ ContinuousMap.sup with
le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
-#print ContinuousMap.hasInf /-
-instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
+#print ContinuousMap.inf /-
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
where inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.hasInf
+#align continuous_map.has_inf ContinuousMap.inf
-/
/- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.instHasInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toHasInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
@[simp, norm_cast]
theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -145,9 +145,9 @@ theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
/- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (Inf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.inf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
@[simp]
theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
@@ -157,7 +157,7 @@ theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
{ ContinuousMap.partialOrder,
- ContinuousMap.hasInf with
+ ContinuousMap.inf with
inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
mathlib commit https://github.com/leanprover-community/mathlib/commit/22131150f88a2d125713ffa0f4693e3355b1eb49
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
+! leanprover-community/mathlib commit 3dadefa3f544b1db6214777fe47910739b54c66a
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Topology.ContinuousFunction.Basic
/-!
# Bundled continuous maps into orders, with order-compatible topology
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -28,14 +28,22 @@ section
variable [LinearOrderedAddCommGroup β] [OrderTopology β]
+#print ContinuousMap.abs /-
/-- The pointwise absolute value of a continuous function as a continuous function. -/
def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
#align continuous_map.abs ContinuousMap.abs
+-/
-- see Note [lower instance priority]
instance (priority := 100) : Abs C(α, β) :=
⟨fun f => abs f⟩
+/- warning: continuous_map.abs_apply -> ContinuousMap.abs_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrderedAddCommGroup.{u2} β] [_inst_5 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (OrderedAddCommGroup.toPartialOrder.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4)))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (Abs.abs.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasAbs.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddCommGroup.toAddGroup.{u2} β (OrderedAddCommGroup.toAddCommGroup.{u2} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u2} β _inst_4))))) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β (LinearOrderedAddCommGroup.toLinearOrder.{u2} β _inst_4))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x))
+but is expected to have type
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrderedAddCommGroup.{u1} β] [_inst_5 : OrderTopology.{u1} β _inst_2 (PartialOrder.toPreorder.{u1} β (OrderedAddCommGroup.toPartialOrder.{u1} β (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} β _inst_4)))] (f : ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (Abs.abs.{max u2 u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) (ContinuousMap.instAbsContinuousMap.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5) f) x) (Abs.abs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Neg.toHasAbs.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (NegZeroClass.toNeg.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubNegZeroMonoid.toNegZeroClass.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionMonoid.toSubNegZeroMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (SubtractionCommMonoid.toSubtractionMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (AddCommGroup.toDivisionAddCommMonoid.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (OrderedAddCommGroup.toAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4))))))) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) (LinearOrderedAddCommGroup.toLinearOrder.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) x) _inst_4)))))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) f x))
+Case conversion may be inaccurate. Consider using '#align continuous_map.abs_apply ContinuousMap.abs_applyₓ'. -/
@[simp]
theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
rfl
@@ -51,28 +59,56 @@ on continuous functions.
section Lattice
+#print ContinuousMap.partialOrder /-
instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
PartialOrder.lift (fun f => f.toFun) (by tidy)
#align continuous_map.partial_order ContinuousMap.partialOrder
+-/
+/- warning: continuous_map.le_def -> ContinuousMap.le_def is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.le_def ContinuousMap.le_defₓ'. -/
theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
Pi.le_def
#align continuous_map.le_def ContinuousMap.le_def
+/- warning: continuous_map.lt_def -> ContinuousMap.lt_def is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_4)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : PartialOrder.{u2} β] {f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2} {g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2}, Iff (LT.lt.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLT.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (PartialOrder.toPreorder.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.partialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_4))) f g) (And (forall (a : α), LE.le.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a)) (Exists.{succ u1} α (fun (a : α) => LT.lt.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))))
+Case conversion may be inaccurate. Consider using '#align continuous_map.lt_def ContinuousMap.lt_defₓ'. -/
theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ ∃ a, f a < g a :=
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
+#print ContinuousMap.hasSup /-
instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
where sup f g := { toFun := fun a => max (f a) (g a) }
#align continuous_map.has_sup ContinuousMap.hasSup
+-/
+/- warning: continuous_map.sup_coe -> ContinuousMap.sup_coe is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.instHasSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4))))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup_coe ContinuousMap.sup_coeₓ'. -/
@[simp, norm_cast]
theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
#align continuous_map.sup_coe ContinuousMap.sup_coe
+/- warning: continuous_map.sup_apply -> ContinuousMap.sup_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.max.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasSup.sup.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Max.max.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMax.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup_apply ContinuousMap.sup_applyₓ'. -/
@[simp]
theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊔ g) a = max (f a) (g a) :=
@@ -86,16 +122,30 @@ instance [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
+#print ContinuousMap.hasInf /-
instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
where inf f g := { toFun := fun a => min (f a) (g a) }
#align continuous_map.has_inf ContinuousMap.hasInf
+-/
+/- warning: continuous_map.inf_coe -> ContinuousMap.inf_coe is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.instHasInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Lattice.toHasInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf_coe ContinuousMap.inf_coeₓ'. -/
@[simp, norm_cast]
theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
#align continuous_map.inf_coe ContinuousMap.inf_coe
+/- warning: continuous_map.inf_apply -> ContinuousMap.inf_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_4))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (LinearOrder.min.{u2} β _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u2} β] [_inst_5 : OrderClosedTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_4)))))] (f : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (g : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) (HasInf.inf.{max u1 u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5) f g) a) (Min.min.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (LinearOrder.toMin.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) _inst_4) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u1, u2} α β _inst_1 _inst_2)) g a))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf_apply ContinuousMap.inf_applyₓ'. -/
@[simp]
theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
(f ⊓ g) a = min (f a) (g a) :=
@@ -117,11 +167,23 @@ section Sup'
variable [LinearOrder γ] [OrderClosedTopology γ]
+/- warning: continuous_map.sup'_apply -> ContinuousMap.sup'_apply is a dubious translation:
+lean 3 declaration is
+ forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u2, u3} γ ι (Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
+but is expected to have type
+ forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.sup'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_apply ContinuousMap.sup'_applyₓ'. -/
theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H fun a => f a b :=
Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun i j => rfl
#align continuous_map.sup'_apply ContinuousMap.sup'_apply
+/- warning: continuous_map.sup'_coe -> ContinuousMap.sup'_coe is a dubious translation:
+lean 3 declaration is
+ forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.sup'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeSup.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeSup.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
+but is expected to have type
+ forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.sup'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeSup.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.sup'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeSup.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeSup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
+Case conversion may be inaccurate. Consider using '#align continuous_map.sup'_coe ContinuousMap.sup'_coeₓ'. -/
@[simp, norm_cast]
theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H fun a => (f a : β → γ) :=
@@ -136,11 +198,23 @@ section Inf'
variable [LinearOrder γ] [OrderClosedTopology γ]
+/- warning: continuous_map.inf'_apply -> ContinuousMap.inf'_apply is a dubious translation:
+lean 3 declaration is
+ forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u2} γ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u2, u3} γ ι (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4)) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a) b))
+but is expected to have type
+ forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (b : β), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f) b) (Finset.inf'.{u1, u3} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) ι (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) b) _inst_4))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a) b))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_apply ContinuousMap.inf'_applyₓ'. -/
theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H fun a => f a b :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
+/- warning: continuous_map.inf'_coe -> ContinuousMap.inf'_coe is a dubious translation:
+lean 3 declaration is
+ forall {β : Type.{u1}} {γ : Type.{u2}} [_inst_2 : TopologicalSpace.{u1} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_4 : LinearOrder.{u2} γ] [_inst_5 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3)), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u1 u2, u3} ((fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (Finset.inf'.{max u1 u2, u3} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u1, u2} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) ι (Pi.semilatticeInf.{u1, u2} β (fun (ᾰ : β) => γ) (fun (i : β) => Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_4))) s H (fun (a : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) (fun (_x : ContinuousMap.{u1, u2} β γ _inst_2 _inst_3) => β -> γ) (ContinuousMap.hasCoeToFun.{u1, u2} β γ _inst_2 _inst_3) (f a)))
+but is expected to have type
+ forall {β : Type.{u2}} {γ : Type.{u1}} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] [_inst_4 : LinearOrder.{u1} γ] [_inst_5 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_4)))))] {ι : Type.{u3}} {s : Finset.{u3} ι} (H : Finset.Nonempty.{u3} ι s) (f : ι -> (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3)), Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (Finset.inf'.{max u2 u1, u3} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) ι (ContinuousMap.semilatticeInf.{u2, u1} β γ _inst_2 _inst_3 _inst_4 _inst_5) s H f)) (Finset.inf'.{max u2 u1, u3} (forall (a : β), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) a) ι (Pi.semilatticeInf.{u2, u1} β (fun (ᾰ : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) ᾰ) (fun (i : β) => Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (DistribLattice.toLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) (instDistribLattice.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) i) _inst_4)))) s H (fun (a : ι) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : β) => γ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} β γ _inst_2 _inst_3)) (f a)))
+Case conversion may be inaccurate. Consider using '#align continuous_map.inf'_coe ContinuousMap.inf'_coeₓ'. -/
@[simp, norm_cast]
theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H fun a => (f a : β → γ) :=
@@ -155,17 +229,25 @@ section Extend
variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
+#print ContinuousMap.IccExtend /-
/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
-def iccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
+def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) :=
⟨Set.IccExtend h f⟩
-#align continuous_map.Icc_extend ContinuousMap.iccExtend
+#align continuous_map.Icc_extend ContinuousMap.IccExtend
+-/
+/- warning: continuous_map.coe_Icc_extend -> ContinuousMap.coe_IccExtend is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_4 : LinearOrder.{u1} α] [_inst_5 : OrderTopology.{u1} α _inst_1 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))] {a : α} {b : α} (h : LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4))))) a b) (f : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_1 _inst_2) (fun (_x : ContinuousMap.{u1, u2} α β _inst_1 _inst_2) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (ContinuousMap.IccExtend.{u1, u2} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u1, u2} α β _inst_4 a b h (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) (fun (_x : ContinuousMap.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) => (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) -> β) (ContinuousMap.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) β (Subtype.topologicalSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_4)))) a b)) _inst_1) _inst_2) f))
+but is expected to have type
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] [_inst_4 : LinearOrder.{u2} α] [_inst_5 : OrderTopology.{u2} α _inst_1 (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))] {a : α} {b : α} (h : LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4)))))) a b) (f : ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2), Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_1 _inst_2)) (ContinuousMap.IccExtend.{u2, u1} α β _inst_1 _inst_2 _inst_4 _inst_5 a b h f)) (Set.IccExtend.{u2, u1} α β _inst_4 a b h (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) (fun (_x : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2) (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} (Set.Elem.{u2} α (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) β (instTopologicalSpaceSubtype.{u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Set.Icc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_4))))) a b)) _inst_1) _inst_2)) f))
+Case conversion may be inaccurate. Consider using '#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtendₓ'. -/
@[simp]
-theorem coe_iccExtend (f : C(Set.Icc a b, β)) :
- ((iccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
+theorem coe_IccExtend (f : C(Set.Icc a b, β)) :
+ ((IccExtend h f : C(α, β)) : α → β) = Set.IccExtend h f :=
rfl
-#align continuous_map.coe_Icc_extend ContinuousMap.coe_iccExtend
+#align continuous_map.coe_Icc_extend ContinuousMap.coe_IccExtend
end Extend
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Move files from Topology.Algebra.Order
to Topology.Order
when they do not contain any algebra. Also move Topology.LocalExtr
to Topology.Order.LocalExtr
.
According to git, the moves are:
Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
Mathlib/Topology/{Algebra => }/Order/Filter.lean
Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
Mathlib/Topology/{Algebra => }/Order/T5.lean
Mathlib/Topology/{ => Order}/LocalExtr.lean
@@ -3,9 +3,9 @@ Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
-import Mathlib.Topology.Algebra.Order.ProjIcc
import Mathlib.Topology.ContinuousFunction.Basic
import Mathlib.Topology.Order.Lattice
+import Mathlib.Topology.Order.ProjIcc
#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -16,7 +16,6 @@ import Mathlib.Topology.Order.Lattice
variable {α : Type*} {β : Type*} {γ : Type*}
-
variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
namespace ContinuousMap
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -28,7 +28,7 @@ on continuous functions.
instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
PartialOrder.lift (fun f => f.toFun) (fun f g _ => by cases f; cases g; congr)
- -- porting note: was `by tidy`, and `by aesop` alone didn't work
+ -- Porting note: was `by tidy`, and `by aesop` alone didn't work
#align continuous_map.partial_order ContinuousMap.partialOrder
theorem le_def [PartialOrder β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
import Mathlib.Topology.Algebra.Order.ProjIcc
-import Mathlib.Topology.Algebra.Order.Group
import Mathlib.Topology.ContinuousFunction.Basic
import Mathlib.Topology.Order.Lattice
FunLike
to DFunLike
(#9785)
This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.
This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:
sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -53,7 +53,7 @@ instance sup : Sup C(α, β) where sup f g := { toFun := fun a ↦ f a ⊔ g a }
#align continuous_map.sup_apply ContinuousMap.sup_apply
instance semilatticeSup : SemilatticeSup C(α, β) :=
- FunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
+ DFunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
lemma sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
s.sup' H f a = s.sup' H fun i ↦ f i a :=
@@ -80,7 +80,7 @@ instance inf : Inf C(α, β) where inf f g := { toFun := fun a ↦ f a ⊓ g a }
#align continuous_map.inf_apply ContinuousMap.inf_apply
instance semilatticeInf : SemilatticeInf C(α, β) :=
- FunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
+ DFunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
lemma inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
s.inf' H f a = s.inf' H fun i ↦ f i a :=
@@ -95,7 +95,7 @@ lemma coe_inf' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α,
end SemilatticeInf
instance [Lattice β] [TopologicalLattice β] : Lattice C(α, β) :=
- FunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
+ DFunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
-- TODO transfer this lattice structure to `BoundedContinuousFunction`
@@ -6,6 +6,7 @@ Authors: Scott Morrison, Shing Tak Lam
import Mathlib.Topology.Algebra.Order.ProjIcc
import Mathlib.Topology.Algebra.Order.Group
import Mathlib.Topology.ContinuousFunction.Basic
+import Mathlib.Topology.Order.Lattice
#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
@@ -21,33 +22,11 @@ variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
namespace ContinuousMap
-section
-
-variable [LinearOrderedAddCommGroup β] [OrderTopology β]
-
-/-- The pointwise absolute value of a continuous function as a continuous function. -/
-def abs (f : C(α, β)) : C(α, β) where toFun x := |f x|
-#align continuous_map.abs ContinuousMap.abs
-
--- see Note [lower instance priority]
-instance (priority := 100) : Abs C(α, β) :=
- ⟨fun f => abs f⟩
-
-@[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
- rfl
-#align continuous_map.abs_apply ContinuousMap.abs_apply
-
-end
-
/-!
We now set up the partial order and lattice structure (given by pointwise min and max)
on continuous functions.
-/
-
-section Lattice
-
instance partialOrder [PartialOrder β] : PartialOrder C(α, β) :=
PartialOrder.lift (fun f => f.toFun) (fun f g _ => by cases f; cases g; congr)
-- porting note: was `by tidy`, and `by aesop` alone didn't work
@@ -61,92 +40,64 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
-instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β) where
- sup f g := { toFun := fun a => max (f a) (g a) }
+section SemilatticeSup
+variable [SemilatticeSup β] [ContinuousSup β]
+
+instance sup : Sup C(α, β) where sup f g := { toFun := fun a ↦ f a ⊔ g a }
#align continuous_map.has_sup ContinuousMap.sup
-@[simp, norm_cast]
-theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
- ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
- rfl
-#align continuous_map.sup_coe ContinuousMap.sup_coe
+@[simp, norm_cast] lemma coe_sup (f g : C(α, β)) : ⇑(f ⊔ g) = ⇑f ⊔ g := rfl
+#align continuous_map.sup_coe ContinuousMap.coe_sup
-@[simp]
-theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
- (f ⊔ g) a = max (f a) (g a) :=
- rfl
+@[simp] lemma sup_apply (f g : C(α, β)) (a : α) : (f ⊔ g) a = f a ⊔ g a := rfl
#align continuous_map.sup_apply ContinuousMap.sup_apply
-instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
- { ContinuousMap.partialOrder,
- ContinuousMap.sup with
- le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
- le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
- sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
+instance semilatticeSup : SemilatticeSup C(α, β) :=
+ FunLike.coe_injective.semilatticeSup _ fun _ _ ↦ rfl
-instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β) where
- inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.inf
+lemma sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
+ s.sup' H f a = s.sup' H fun i ↦ f i a :=
+ Finset.comp_sup'_eq_sup'_comp H (fun g : C(α, β) ↦ g a) fun _ _ ↦ rfl
+#align continuous_map.sup'_apply ContinuousMap.sup'_apply
@[simp, norm_cast]
-theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
- ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
- rfl
-#align continuous_map.inf_coe ContinuousMap.inf_coe
-
-@[simp]
-theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a : α) :
- (f ⊓ g) a = min (f a) (g a) :=
- rfl
-#align continuous_map.inf_apply ContinuousMap.inf_apply
-
-instance semilatticeInf [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
- { ContinuousMap.partialOrder,
- ContinuousMap.inf with
- inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
- inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
- le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
-
-instance [LinearOrder β] [OrderClosedTopology β] : Lattice C(α, β) :=
- { ContinuousMap.semilatticeInf, ContinuousMap.semilatticeSup with }
+lemma coe_sup' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) :
+ ⇑(s.sup' H f) = s.sup' H fun i ↦ ⇑(f i) := by ext; simp [sup'_apply]
+#align continuous_map.sup'_coe ContinuousMap.coe_sup'
--- TODO transfer this lattice structure to `BoundedContinuousFunction`
-section Sup'
-
-variable [LinearOrder γ] [OrderClosedTopology γ]
+end SemilatticeSup
-theorem sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
- s.sup' H f b = s.sup' H fun a => f a b :=
- Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun _ _ => rfl
-#align continuous_map.sup'_apply ContinuousMap.sup'_apply
+section SemilatticeInf
+variable [SemilatticeInf β] [ContinuousInf β]
-@[simp, norm_cast]
-theorem sup'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
- ((s.sup' H f : C(β, γ)) : β → γ) = s.sup' H fun a => (f a : β → γ) := by
- ext
- simp [sup'_apply]
-#align continuous_map.sup'_coe ContinuousMap.sup'_coe
+instance inf : Inf C(α, β) where inf f g := { toFun := fun a ↦ f a ⊓ g a }
+#align continuous_map.has_inf ContinuousMap.inf
-end Sup'
+@[simp, norm_cast] lemma coe_inf (f g : C(α, β)) : ⇑(f ⊓ g) = ⇑f ⊓ g := rfl
+#align continuous_map.inf_coe ContinuousMap.coe_inf
-section Inf'
+@[simp] lemma inf_apply (f g : C(α, β)) (a : α) : (f ⊓ g) a = f a ⊓ g a := rfl
+#align continuous_map.inf_apply ContinuousMap.inf_apply
-variable [LinearOrder γ] [OrderClosedTopology γ]
+instance semilatticeInf : SemilatticeInf C(α, β) :=
+ FunLike.coe_injective.semilatticeInf _ fun _ _ ↦ rfl
-theorem inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
- s.inf' H f b = s.inf' H fun a => f a b :=
- @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
+lemma inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) (a : α) :
+ s.inf' H f a = s.inf' H fun i ↦ f i a :=
+ Finset.comp_inf'_eq_inf'_comp H (fun g : C(α, β) ↦ g a) fun _ _ ↦ rfl
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
@[simp, norm_cast]
-theorem inf'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
- ((s.inf' H f : C(β, γ)) : β → γ) = s.inf' H fun a => (f a : β → γ) :=
- @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
-#align continuous_map.inf'_coe ContinuousMap.inf'_coe
+lemma coe_inf' {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(α, β)) :
+ ⇑(s.inf' H f) = s.inf' H fun i ↦ ⇑(f i) := by ext; simp [inf'_apply]
+#align continuous_map.inf'_coe ContinuousMap.coe_inf'
-end Inf'
+end SemilatticeInf
-end Lattice
+instance [Lattice β] [TopologicalLattice β] : Lattice C(α, β) :=
+ FunLike.coe_injective.lattice _ (fun _ _ ↦ rfl) fun _ _ ↦ rfl
+
+-- TODO transfer this lattice structure to `BoundedContinuousFunction`
section Extend
@@ -61,8 +61,8 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
-instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
- where sup f g := { toFun := fun a => max (f a) (g a) }
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β) where
+ sup f g := { toFun := fun a => max (f a) (g a) }
#align continuous_map.has_sup ContinuousMap.sup
@[simp, norm_cast]
@@ -84,8 +84,8 @@ instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeS
le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
-instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
- where inf f g := { toFun := fun a => min (f a) (g a) }
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β) where
+ inf f g := { toFun := fun a => min (f a) (g a) }
#align continuous_map.has_inf ContinuousMap.inf
@[simp, norm_cast]
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -15,7 +15,7 @@ import Mathlib.Topology.ContinuousFunction.Basic
-/
-variable {α : Type _} {β : Type _} {γ : Type _}
+variable {α : Type*} {β : Type*} {γ : Type*}
variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
@@ -115,13 +115,13 @@ section Sup'
variable [LinearOrder γ] [OrderClosedTopology γ]
-theorem sup'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
+theorem sup'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H fun a => f a b :=
Finset.comp_sup'_eq_sup'_comp H (fun f : C(β, γ) => f b) fun _ _ => rfl
#align continuous_map.sup'_apply ContinuousMap.sup'_apply
@[simp, norm_cast]
-theorem sup'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem sup'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : β → γ) = s.sup' H fun a => (f a : β → γ) := by
ext
simp [sup'_apply]
@@ -133,13 +133,13 @@ section Inf'
variable [LinearOrder γ] [OrderClosedTopology γ]
-theorem inf'_apply {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
+theorem inf'_apply {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H fun a => f a b :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
#align continuous_map.inf'_apply ContinuousMap.inf'_apply
@[simp, norm_cast]
-theorem inf'_coe {ι : Type _} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
+theorem inf'_coe {ι : Type*} {s : Finset ι} (H : s.Nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : β → γ) = s.inf' H fun a => (f a : β → γ) :=
@sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
#align continuous_map.inf'_coe ContinuousMap.inf'_coe
@@ -2,16 +2,13 @@
Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-
-! This file was ported from Lean 3 source module topology.continuous_function.ordered
-! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Topology.Algebra.Order.ProjIcc
import Mathlib.Topology.Algebra.Order.Group
import Mathlib.Topology.ContinuousFunction.Basic
+#align_import topology.continuous_function.ordered from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
+
/-!
# Bundled continuous maps into orders, with order-compatible topology
@@ -37,7 +37,7 @@ instance (priority := 100) : Abs C(α, β) :=
⟨fun f => abs f⟩
@[simp]
-theorem abs_apply (f : C(α, β)) (x : α) : (|f|) x = |f x| :=
+theorem abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
rfl
#align continuous_map.abs_apply ContinuousMap.abs_apply
fix-comments.py
on all files.@@ -155,7 +155,7 @@ section Extend
variable [LinearOrder α] [OrderTopology α] {a b : α} (h : a ≤ b)
-/-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`. -/
+/-- Extend a continuous function `f : C(Set.Icc a b, β)` to a function `f : C(α, β)`. -/
def IccExtend (f : C(Set.Icc a b, β)) : C(α, β) where
toFun := Set.IccExtend h f
#align continuous_map.Icc_extend ContinuousMap.IccExtend
@@ -64,9 +64,9 @@ theorem lt_def [PartialOrder β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g
Pi.lt_def
#align continuous_map.lt_def ContinuousMap.lt_def
-instance hasSup [LinearOrder β] [OrderClosedTopology β] : HasSup C(α, β)
+instance sup [LinearOrder β] [OrderClosedTopology β] : Sup C(α, β)
where sup f g := { toFun := fun a => max (f a) (g a) }
-#align continuous_map.has_sup ContinuousMap.hasSup
+#align continuous_map.has_sup ContinuousMap.sup
@[simp, norm_cast]
theorem sup_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -82,14 +82,14 @@ theorem sup_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
instance semilatticeSup [LinearOrder β] [OrderClosedTopology β] : SemilatticeSup C(α, β) :=
{ ContinuousMap.partialOrder,
- ContinuousMap.hasSup with
+ ContinuousMap.sup with
le_sup_left := fun f g => le_def.mpr (by simp [le_refl])
le_sup_right := fun f g => le_def.mpr (by simp [le_refl])
sup_le := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
-instance hasInf [LinearOrder β] [OrderClosedTopology β] : HasInf C(α, β)
+instance inf [LinearOrder β] [OrderClosedTopology β] : Inf C(α, β)
where inf f g := { toFun := fun a => min (f a) (g a) }
-#align continuous_map.has_inf ContinuousMap.hasInf
+#align continuous_map.has_inf ContinuousMap.inf
@[simp, norm_cast]
theorem inf_coe [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) :
@@ -105,7 +105,7 @@ theorem inf_apply [LinearOrder β] [OrderClosedTopology β] (f g : C(α, β)) (a
instance semilatticeInf [LinearOrder β] [OrderClosedTopology β] : SemilatticeInf C(α, β) :=
{ ContinuousMap.partialOrder,
- ContinuousMap.hasInf with
+ ContinuousMap.inf with
inf_le_left := fun f g => le_def.mpr (by simp [le_refl])
inf_le_right := fun f g => le_def.mpr (by simp [le_refl])
le_inf := fun f₁ f₂ g w₁ w₂ => le_def.mpr fun a => by simp [le_def.mp w₁ a, le_def.mp w₂ a] }
The unported dependencies are